

Reasoning with Inconsistent and Uncertain Ontologies

Guilin Qi

Southeast University

China gqi@seu.edu.cn

Reasoning Web 2012 September 05, 2012

Probabilistic logic vs possibilistic logic

□ Probabilistic description logics

□ Possibilistic description logics and its extension

Revising ontologies in description logics

- Belief revision
- Revision of ontologies in DLs

□ Mapping repair in description logics

Probabilistic logic vs possibilistic logic

□ Probabilistic description logics

□ Possibilistic description logics and its extension

Revising ontologies in description logics

- Belief revision
- Revision of ontologies in DLs

□ Mapping repair in description logics

- Give the strange new animal and it appears to be a bird
- $\hfill \Box$ As it comes closer, we see clearly it is red
 - Belief: the animal is a red bird
 - Formally: Bird(a) ∧ Red(a)
- We ask a bird expert who says the animal is not a bird but a sort of mammal
 - ➔ Conflict!

What do we believe now?

Example

□ Knowledge

- Old knowledge: K={Bird(a) \ Red(a)}
- New knowledge: φ=¬Bird(a)

$\hfill \Box$ Problem: K and φ are in conflict

- $KU\{\phi\}$ is inconsistent

Introduction of Belief Revision

- Earlier was proposed in database update
 - New tuples are added to a database
 - Cause the violation of integrity constraints
- □ Has been discussed from a philosophical view
 - Pioneer work by Carlos E. Alchourrón, Peter Gärdenfors, David Makinson (AGM)

□ Has application in many areas

- Databases
- Artificial intelligence
- Multi-agent systems
- Planning
- Semantics Web

Definition of a Revision Operator

- According to wikipedia
 - "Belief revision is the process of changing beliefs to take into account a new piece of information."
- A revision operator is a mapping from a theory and a formula to a theory
 - A theory is a set of deductively closed formulas (also called belief set)

Questions

....

- Is it reasonable to consider "theory"?
- What is a rational revision operator?
- How do we iterate the revision?

Belief Base

□ Arguments against belief set

- No distinction is made between pieces of knowledge that are known by themselves and pieces of knowledge that are merely consequences of them
- It fulfils the principle of irrelevance of syntax, which is debatable $\{p,q\}$ and $\{p \land q\}$ should be treated differently when revised by $\neg p$

Use of Belief base

- A set of formulas that are not deductively closed
- Revision operators applied to belief bases typically selects some subset of the original knowledge base that are consistent with the new knowledge

Principle of Belief Revision

- Adequacy of representation: The revised knowledge should have the same representation as the old knowledge
- Irrelevance of syntax: The revised knowledge base should not depend on the syntactical form of either original knowledge base or the new formula
- Maintenance of consistency: The revised knowledge base should be consistent
- Primacy of new information: New information should always be accepted
- Minimal change: As much information in original knowledge base should be kept after revision

Example (Cont.)

□ Knowledge

- Old knowledge: $K = \{Bird(a) \land Red(a)\}$
- New knowledge: φ=¬Bird(a)

\Box Problem: *K* and ϕ are in conflict

- $K \cup \{\phi\}$ is inconsistent
- $\Box K * \phi = \{\neg \mathsf{Bird}(a) \land \mathsf{Red}(a)\}$
 - Minimal change
 - Primacy of new information

- ...

AGM Postulates

- (K₁) $K * \phi$ is a belief set (adequacy of representation)
- (K₂) $\phi \in K * \phi$ (primacy of new information)
- $(\mathsf{K}_3) \ \mathit{K} \ast \phi \subseteq \mathit{K} \ast \phi$
- (K₄) If $\neg \phi \notin K$ then $K + \phi \subseteq K * \phi$

(K₅) If ϕ is consistent then $K * \phi$ is also consistent (maintenance of consistency)

(K₆) If Cn(ϕ) = Cn(ψ) then $K * \phi = K * \psi$ (independency of syntax) (K₇) $K * (\phi \land \psi) \subseteq (K * \phi) + \psi$ (K₈) If $\neg \psi \notin K * \phi$ then $(K * \phi) + \psi \subseteq K * (\phi \land \psi)$

Constructive Models for AGM Postulates

- Selection function
- **D** Epistemic entrenchments
- □ System of spheres

Partial Meet Belief Revision

- $\Box \text{ Selection function } \gamma: \text{ maps a non-empty collection } X \text{ of subsets} \\ \text{ of } K \text{ to a non-empty subset } \gamma(X) \text{ of } X$
- $\Box \phi$ -remainder of K: a maximal subsets of K that fail to entail ϕ
- $\Box K \perp \phi$: set of all ϕ -remainders of K
- \Box Partial meet belief revision for *K* and ϕ
 - We first find all the $\neg \phi$ -remainders of K (subsets of K that are consistent with ϕ)
 - We apply the selection function to $K \perp \neg \phi$, get $\gamma(K \perp \neg \phi)$
 - Take conjunction of elements in $\gamma(K \perp \neg \phi)$ and ϕ as the result of revision
- □ Theorem: partial meet belief revision operators correspond to the postulates (K_1) to (K_8)

Reformulation of AGM Postulates in Propositional Logic

 $(\mathsf{R}_1) \phi * \mu \vdash \mu$

(R₂) If $\phi \wedge \mu$ is satisfiable then $\phi * \mu \equiv \phi \wedge \mu$

(R₃) If μ is satisfiable then $\phi * \mu$ is also satisfiable

(R₄) If
$$\phi_1 \equiv \phi_2$$
 and $\mu_1 \equiv \mu_2$ then $\phi_1 * \mu_1 \equiv \phi_2 * \mu_2$

(R₅) ($\phi * \mu$) $\land \psi$ implies $\phi * (\mu \land \psi)$

(R₆) If $(\phi * \mu) \land \psi$ is satisfiable then $\phi * (\mu \land \psi)$ implies $(\phi * \mu) \land \psi$

□ Theorem: Given a belief set *K*, if ϕ is a formula that satisfies *K* =Cn(ϕ) and *K* *µ= Cn($\phi_{\circ}\mu$), then * satisfies (K₁) –(K₈) iff $_{\circ}$ satisfies (R₁)–(R₆)

Dalal's Revision Operator

- Distance function: Hamming distance between two interpretations
 - Example: atoms are p, q, r
 - ω: 1 1 0
 ω': 0 1 0
 d(ω,ω')=1

1 denotes the atom is assigned T and 0 denote the atom is assigned F

- \Box Idea: to revise formula ϕ by formula ψ
 - **\bullet** Compute the distance $d(\phi, \psi)$ between ϕ and ψ
 - ***** Take models of ψ whose distance with ϕ is equal to $d(\phi, \psi)$
- \Box Theorem: Dalal' s operator satisfies (R₁)–(R₆)

Base Revision Operators

- □ Assumption: K is not closed under logical consequence, i.e. K≠Cn(K)
- Operators: related to foundationalism in philosophy
 - WIDTIO (When in Doubt, Throw it Out)
 - * Idea: the maximal subsets of $K \cup \{ \phi \}$ that are consistent and contain φ are combined by intersection
 - Ginsberg-Fagin-Ullman-Vardi
 - * Idea: the maximal subsets of $K \cup \{ \phi \}$ that are consistent and contain φ are combined by disjunction
 - Nebel's revision operators
 - Similar to WIDTIO and Ginsberg-Fagin-Ullman-Vardi but priority among formulas are given
 - Hansson's revision operators: defined by selection function

Example

- □ Tweety is a bird: Bird(Tweety)
- $\Box \text{ Any bird can fly: } \forall x (Bird(x) \rightarrow Fly(x))$
 - We can infer that Fly(Tweety)
- □ Later on, we learn that ¬Fly(Tweety) (Inconsistency!)
- □ Formally
 - $K = \{Bird(Tweety), \forall x (Bird(x) \rightarrow Fly(x))\}$
 - $\phi =: Fly(Tweety)$

Example (Cont.)

- $\Box K \bot \neg \phi = \{K_1, K_2\}$
 - $K_1 = \{Bird(Tweety)\}$
 - $K_2 = \{ \forall x (Bird(x) \rightarrow Fly(x)) \}$

Different selection functions result in dierent revision operators

 $-\gamma(K\perp \neg \phi) = K_1$

 $\bigstar K_{0}\phi = \{Bird(Tweety), \neg Fly(Tweety)\}$

$$-\gamma(K\perp \neg \phi) = K_2$$

 $\bigstar K_{0}\phi = \{\forall x (Bird(x) \rightarrow Fly(x)), \neg Fly(Tweety)\}$

Probabilistic logic vs possibilistic logic

□ Probabilistic description logics

□ Possibilistic description logics and its extension

Revising ontologies in description logics

- Belief revision
- Revision of ontologies in DLs

□ Mapping repair in description logics

Motivation of Revision in DLs

❑ Ontologies change due to the following reasons

- New axioms are added during ontology learning
- Axioms contains modelling errors are modified
- Ontologies with different priorities are merged

Problems with ontology change

....

- The old ontology and the newly added ontology are not consistent together
- Revision: dealing with logical contradictions during ontology change

 $(0+1) X \subseteq K * X$

(O+2) If $K \cup X$ is consistent, then $K * X = K \cup X$

(O+3) If X is consistent, then K * X is also consistent.

(O+4) If $X \equiv Y$, then $K * X \equiv K * Y$

Plus the following postulate which is dened by a contraction operator:

 $(O+5)(K*X)\cap K=K-\neg X$

- The negation of an axiom has two different definitions (consistencynegation and coherence-negation)
- Two kinds of logical contradictions

Reformulation of AGM Postulates –Problems

- Their reformulation of AGM postulates deviate the original idea of AGM theory
- Disjunction is not used: the result of revision must be a single ontology
- There are two kinds of contradictions in DLs: inconsistency and incoherence
 - Revision operators defined by these postulates are applied to deal with inconsistency only

Incoherence

□ Unsatisfiable concept $C: C = \emptyset$, for all $I \models T$

 \Box Incoherence: there is an unsatisfiable concept in \mathcal{T}

- □ Problem of incoherence
 - Main source of inconsistency
 - Trivial subsumption

Debugging Terminologies

\Box MUPS for A w.r.t. T: a subset T' of TBox T such that

- A is unsatisfiable in T' Minimal sub-TBox of
- *A* is satisfiable in any T'' where $T'' \subset T'$ *T* in which *A* is unsatisfiable
- Example: $T = \{Manager \sqsubseteq Employee, Employee \sqsubseteq JobPosition, \}$

JobPosition $\sqsubseteq \neg$ Employee, Leader \sqsubseteq JobPosition}

* Manager is unsatisfiable

 $\bigstar MUPS: \{Manager \sqsubseteq Employee, Employee \sqsubseteq JobPosition, \\$

JobPosition $\sqsubseteq \neg$ Employee}

\Box MIPS for T: a subset T' of TBox T such that

- T' is incoherent
- any \mathcal{T} with \mathcal{T} $\subset \mathcal{T}$ is coherent
- Example (cont.): One MIPS

Minimal sub-TBox of *T* which is incoherent

♦ {Employee \sqsubseteq JobPosition, JobPosition \sqsubseteq ¬Employee}

A Kernel Revision Operator

□ Idea: based on MIPS

- **\diamond** Step 1: find *MIPS* of *T w.r.t.* T_0
- Step 2: remove some axioms in these MIPS
- \Box MIPS of T w.r.t. T_0 : a subset T' of TBox T
 - * $T' \cup T_0$ is incoherent (incoherence)
 - Any T'' with $T'' \subseteq T'$ is coherent with T_0 (minimalism)

Example

- $T = \{Manager \sqsubseteq Employee, Employee \sqsubseteq JobPosition\}$
- T_0 ={JobPosition ⊑ ¬Employee, Leader ⊑ JobPosition}
- A MIPS of T w.r.t. T_0

A Kernel Revision Operator

Which axioms should be removed from MIPS?

- □ Incision function σ for T: for each TBox T_0 and the set MIPS $_{T_0}(T)$ of all MIPS of T w.r.t. T_0
 - $\sigma(\text{MIPS}_{T_0}(\mathcal{T})) \subseteq \bigcup_{T_i \in \text{MIPS}_{T_0}(T)} T_i \text{ (Axioms selected belong to some MIPS)}$
 - $T' \cap \sigma(\text{MIPS}_{T_0}(T)) \neq \emptyset, \text{ for any } T' \in \text{MIPS}_{T_0}(T) \text{ (Each MIPS has at least one axiom selected)}$
- □ Naïve incision function: $\sigma(MIPS_{T_0}(T)) = \bigcup_{T_i \in MIPS_{T_0}(T)} T_i$
- Principle: minimal change, i.e., select minimal number or set of axioms

A Kernel Revision Operator

 \Box Kernel revision operator: Given T and σ , for any T_0

 $T *_{\sigma} T_0 = (T \setminus \sigma(\text{MIPS}_{T_0}(T))) \cup T_0$

- The result of revision is always a coherent TBox

Logical properties

- (R₁) $T_0 \subseteq T *_{\sigma} T_0$ (success)
- (R₂) If $T \cup T_0$ is coherent, then $T *_{\sigma} T_0 = T \cup T_0$
- (R₃) If T_0 is coherent then $T *_{\sigma} T_0$ is coherent (coherence preserve)
- (R₄) If $T_1 \equiv T_2$, then $T *_{\sigma} T_1 \equiv T *_{\sigma} T_2$ (weak syntax independence)
- (R₅) If $\phi \in T$ and $\phi \notin T *_{\sigma} T_0$, then there is a subset S of T and a subset S_0 of T_0 such that $S \cup S_0$ is coherent, but $S \cup S_0 \cup \{\phi\}$ is not (relevance)

Algorithms

Different incision functions will result in different specific kernel revision operators

- Incision functions can be computed by Reiter's hitting set tree (HST) algorithm
- However, there are potentially exponential number of hitting sets computed by the algorithm
 - We reduce the search space by using *scoring function* or *confidence values*

Algorithms

\Box Main steps: Given *T* and *T*₀

- Step 1: compute MIPS of T w.r.t. T_0
- Step 2: For each MIPS, we take its subset consisting of axioms whose priority is the lowest
- Step 3 Remove minimal number of axioms in these subsets from the ontology

Example

- $\Box T = \{ Example \sqsubseteq Knowledge, Document \sqsubseteq \neg Knowledge, Form \sqsubseteq Knowledge, Firm \sqsubseteq Organization \}$
- $T_0 = \{ \text{Document} \sqsubseteq \text{Example, Knowhow}_\text{document} \sqsubseteq \text{Document}, Form \sqsubseteq \text{Document} \}$
 - w_{Example ⊑ Knowledge} = 0:4
 - $w_{\text{Document}} \equiv \neg \text{Knowledge} = 0.8$
 - $\mathbf{w}_{Form \sqsubseteq Knowledge} = 0:6$
 - $\mathbf{w}_{\text{Firm}} \subseteq \text{Organisation} = 0.9$
 - The axioms in T_0 are assigned weight 1

Example

- $\Box T = \{ Example \sqsubseteq Knowledge, Document \sqsubseteq \neg Knowledge, Form \sqsubseteq Knowledge, Firm \sqsubseteq Organization \}$
- $T_0 = \{ \text{Document} \sqsubseteq \text{Example, Knowhow}_\text{document} \sqsubseteq \text{Document}, Form \sqsubseteq \text{Document} \}$
- \Box MIPS of T w.r.t. T_0
 - $T_1 = \{ \text{Document} \sqsubseteq \neg \text{Knowledge} (0.8), \text{Form} \sqsubseteq \text{Knowledge} (0.6) \}$
 - T_1 ={Example ⊑ Knowledge (0.4), Document ⊑ ¬Knowledge (0.8)}

Result of revision

 $T *_{\sigma} T_0 = T \cup T_0 \setminus \{\text{Example} \sqsubseteq \text{Knowledge}, \text{Form} \sqsubseteq \text{Knowledge} \}$

Probabilistic logic vs possibilistic logic

□ Probabilistic description logics

- □ Possibilistic description logics and its extension
- **Revising ontologies in description logics**
- □ Mapping repair in description logics

Example

Example

Formal Definition of Mapping Revision

- \Box Distributed system D: <O₁,O₂,M>
- $\Box \text{ Union: } O_1 \cup_M O_2 = O_1 \cup O_2 \cup \{t(m): m \in M\}$
 - t(<crs:article, ekaw:Conference_paper, ⊑, 0.65 >) =
 crs:article ⊑ ekaw:Conference_ paper
- \Box Inconsistency: M is inconsistent with O₁ and O₂ iff there is a concept which is satisfiable in O_i, but unsatisfiable in O₁ \cup_M O₂
- □ Mapping revision operator: $*\langle O_1, O_2, M \rangle = \langle O_1, O_2, M' \rangle$ with M' ⊆ M

Example

Conflict-based Mapping Revision

- \Box Consider a distributed system D: $\langle O_1, O_2, M \rangle$
- □ Conflict set for *A* in O_i : C ⊆M, *A* is satisfiable in O_i but unsatisfiable in $O_1 \cup_C O_2$
 - Minimal conflict set: conflict set which is minimal w.r.t. set inclusion
 - MCS_{01,02}(M) : all the minimal conflict sets for all the unsatisfiable concepts
- $\hfill\square$ Incision function σ for D
 - $\sigma(\mathsf{D}) \subseteq \cup (\mathsf{MCS}_{\mathsf{O}_1,\mathsf{O}_2}(\mathsf{M}))$

selects at least one element from each minimal conflict set

- If $\mathbf{C} \neq \emptyset$ and $\mathbf{C} \in MCS_{O_1,O_2}(\mathbf{M})$, then $\mathbf{C} \cap \sigma(\mathbf{D}) \neq \emptyset$;
- If $m \in \langle C, C', r, \alpha \rangle \in \sigma(D)$, then there exists $C \in MCS_{O_1, O_2}(M)$ such that $m \in C$, $\alpha = \min \{\alpha_i : \langle C_i, C'_i, r_i, \alpha_i \rangle \in C\}$
- □ Conflict-based Revision operator:
 - $* \langle O_1, O_2, M \rangle = \langle O_1, O_2, M \rangle \sigma(MCS_{O_1, O_2}(M)) \rangle$

Representation Theorem

- $\Box \quad \alpha \text{-cut of } D: D_{\geq \alpha} = (O_1, O_2, \{\langle C, C', r, \beta \rangle \in M, \beta \geq \alpha\})$
- Inconsistency degree of D

Maximum degree α such that α-cut of D is inconsistent

- Inc(D)=max{ α : there is an unsatisfiable concept in $D_{\geq \alpha}$ }
- Postulates
 - (Relevance) : a correspondence is removed only if it is (1) involved in a conflict, and (2) its confidence degree is minimal
 - (Consistency): consistency must be restored after revision
- Theorem: Operator * is a conflict-based mapping revision operator iff it satisfies (Relevance) and (Consistency)

Input: A distributed system D=<O₁,O₂,M> and a revision operator

Output: A repaired distributed system

□ Algorithm:

- Step 1: Stratify the mapping M
- Step 2: Compute inconsistency degree d
- Step 3: Use $O_1 \cup O_2 \cup M_{>d}$ to revise $M_{=d}$
- Step 4: If revised D is still inconsistent, go to Step 2

Input: A distributed system D=<O₁,O₂,M> and a revision operator

Output: A repaired distributed system

□ Algorithm:

- Step 1: Stratify the mapping M
- Step 2: Compute inconsistency degree d
- Step 3: Use $O_1 \cup O_2 \cup M_{>d}$ to revise $M_{=d}$
- Step 4: If revised D is still inconsistent, go to Step 2

Input: A distributed system D=<O₁,O₂,M> and a revision operator

Output: A repaired distributed system

Algorithm:

- Step 1: Stratify the mapping M
- Step 2: Compute inconsistency degree d
- Step 3: Use $O_1 \cup O_2 \cup M_{>d}$ to revise $M_{=d}$
- Step 4: If revised D is still inconsistent, go to Step 2

Algorithm (Step 3) ----- Do revision

Input: A distributed system D=<O₁,O₂,M> and a revision operator

Output: A repaired distributed system

□ Algorithm:

- Step 1: Stratify the mapping M
- Step 2: Compute inconsistency degree d
- Step 3: Use $O_1 \cup O_2 \cup M_{>d}$ to revise $M_{=d}$
- Step 4: If revised D is still inconsistent, go to Step 2

Conclusions

- □ We give a short introduction of probabilistic logic and possibilistic logic and a comparison between them
- We introduce probabilistic description logics and possibilistic description logics
- □ We introduce belief revision in propositional logic and description logics

Thank You!