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Abstract

We consider the problem of dualizing a Boolean functionf given by CNF, i.e., computing a CNF for its

dualfd. While this problem is not solvable in quasi-polynomial total time in general (unless SAT is solvable in

quasi-polynomial time), it is so in case the input belongs to special classes, e.g., the class of bidual Horn CNFϕ

[9] (i.e., bothϕ and its dualϕd represent Horn functions). In this paper, we show that a disguised bidual Horn

CNFϕ (i.e.,ϕ becomes a bidual Horn CNF after renaming of variables) can be recognized in polynomial time,

and its dualization can be done in quasi-polynomial total time. We also establish a similar result for dualization

of prime CNFs.

Keywords: algorithm, output-polynomial, Boolean function, dualization, Horn function, and bidual Horn function.

1 Introduction

Dualization of a Boolean functionf : {0, 1}n → {0, 1} is the problem of computing a conjunctive normal form

(CNF) of fd from a given CNF off , wherefd(x) = f(x). By the law of De Morgan, a disjunctive normal form

(DNF) of fd is obtained from a CNF off by interchanging (1) disjunctions and conjunctions, and (2) constants0
and1, and we can regard this problem as computing a DNFψ of f from a given CNFϕ of f .

Dualization is a fundamental problem in Boolean theory, which has been extensively studied and is, on certain

classes of functions, polynomially equivalent to many other important problems encountered in various fields

such as hypergraph theory, operations research, artificial intelligence, database theory, and reliability theory; for

example, computing an Armstrong relation for a given set of functional dependencies (see e.g. [7]), or computing

a prime implicant cover for a set of clauses in knowledge compilation (cf. [5]). As well-known, the size of the

output DNFψ can be exponentially larger than the size of the input CNFϕ, and in general, the output DNFψ is

not uniquely defined. In such cases, efficient computation is usually measured by the combined size of the input

and the shortest permissible output. An algorithm is calledpolynomial total time[16] (or output-polynomial), if

it runs in polynomial time in the input size and the shortest output size.

Unfortunately, an easy reduction from the classical satisfiability problem shows that there exists no polynomial

total time algorithm for the dualization problem of general Boolean functions unless P=NP. Therefore, research

has been focused on important restricted classes of Boolean functions, and in particular on positive (also called

monotone) and Horn CNFs (e.g., [3, 7, 12, 16, 17]). Recall that a CNF ispositive(resp.,Horn) if each clause

contains only positive literals (resp., at most one positive literal). It may happen that a CNF is neither positive
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nor Horn, but becomes so after changing the polarity of some of the variables; such a CNF is calledunateand

disguised(or hidden) Horn, respectively. A respective change of polarities can be efficiently found [18, 1].

It is known [12] that there exists a quasi-polynomial total time (i.e.,No(logN), whereN denotes the combined

size of the input and output) algorithm for dualization of positive CNFs, and many polynomial total time algorithm

were constructed for special classes of positive functions including positivek-CNF, regular, threshold, read-once,

acyclic functions (e.g., [4, 6, 7, 20, 19, 22]). However, it is still open whether the positive dualization problem has

a polynomial total time algorithm or not. For Horn functions, our state of knowledge is less advanced; we have a

quasi-polynomial total time algorithm for generating a DNF which contains all prime implicants of a Horn CNF

[17], but it is not known whether the Horn dualization problem has a polynomial (or even only quasi-polynomial)

total time algorithm. Note, however, that this problem is at least as hard as the positive dualization problem, since

by changing the polarities of all literals in a positive CNF, we obtain a negative CNF, which is Horn.

In this paper, we consider the dualization problem for disguised bidual Horn functions. Here a functionf is

bidual Horn [9], if both f and its dualfd can be described by Horn CNFs. The biduality constraint balances

the roles of the setsT (f) andF (f) of all true and false vectors off , respectively. From the logical perspective,

the bidual Horn functions are those functionsf such thatT (f) andF (f) are described by using implications

xi1∧xi2∧· · ·∧xik→ ` andxi1∧xi2∧· · ·∧xik→ `, respectively, wherek ≥ 0 and` is a literal [9]. Thus, if the

false vectors describe illegal states, then they are fully characterized by dependencies of literals from false facts,

and the legal states are also characterized by similar dependencies of literals from true facts. Note that bidual

Horn functions can be seen as a natural generalization of negative functions, and enjoy similar properties (e.g.,

all irredundant CNFs have the same number of clauses). In particular, they include all functions defined by Horn

CNFs in which only one variable occurs positively. The disguised bidual Horn functions are an intermediate class

between the classes of unate and disguised Horn functions. It contains, as easily seen from results in [8], the

double Horn functions (i.e.,f and its complementf are Horn) as a subclass, but not the submodular functions

(i.e.,f and its contra-dualfd(x) = f(x) are Horn) [10].

Let us call a CNFdisguised bidual Hornif, after an appropriate renaming, it becomes a Horn CNF rep-

resenting a bidual Horn function. As we show in this paper, it can be checked in polynomial time whether a

given CNF is disguised bidual Horn. Combining this with the results for bidual Horn functions [9], we ob-

tain a quasi-polynomial total time algorithm for dualizing disguised bidual Horn CNFs. This result enlarges the

quasi-polynomially dualizable classes. As a further result, we show that, given a disguised bidual Horn CNF, an

equivalent smallest CNF is computable in polynomial time. It is possible that a CNF representing a disguised

bidual Horn function is not disguised bidual Horn in the above sense. However, we also show that in case where

the input CNFϕ is prime(i.e., no clause contains redundant literals),ϕ is a disguised bidual Horn CNF if and only

if it represents a disguised bidual Horn function. Prime CNFs are important representations of Boolean functions

and propositional knowledge bases (cf. [24, 13]). In such cases, our results yield quasi-polynomial total time and

polynomial-time algorithms for dualization and minimization of disguised bidual Horn functions, respectively.

Note that double Horn and submodular functions can be dualized in polynomial time and polynomial total time,

respectively, and minimized in polynomial time [8, 10].

2 Disguised bidual Horn functions

A clausec is a disjunction
∨
i∈P (c) xi ∨

∨
j∈N(c) xj of literals on Boolean variablesx1, . . . , xn such thatP (c) ∩

N(c) = ∅. We denote the variable indices inc by V (c) = P (c)∪N(c). A conjunctive normal form (CNF)ϕ is a
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conjunction
∧k
i=1 ci of clauses; a disjunctive normal form (DNF) is dually defined as usual. A clausec is Horn, if

|P (c)| ≤ 1, and a CNFϕ =
∧
i ci is Horn, if all ci are Horn. A Boolean functionf : {0, 1}n → {0, 1} is Horn,

if it can be represented by some Horn CNF. It is well-known that this is equivalent to the condition that the set

of true vectorsT (f) = {v ∈ {0, 1}n | f(v) = 1} is closed under componentwise conjunction. A clausec is an

implicateof a formulaϕ (resp., functionf ), if c ≥ ϕ (resp.,c ≥ f) holds, and isprime, if no proper subclause

c′ of c is an implicate. Here,c andϕ are regarded as the Boolean functions they represent, andf1 ≥ f2 denotes

f1(v) ≥ f2(v) holds for all vectorsv. A CNFϕ =
∧
i ci is calledprime, if all clausesci are prime implicates.

For example,c1 = (x1 ∨ x4 ∨ x5 ∨ x6) is a Horn clause (P (c2) = {6} andN(c2) = {1, 4, 5}), while

c2 = (x1 ∨ x4 ∨ x5 ∨ x6) is not. The CNFsϕ(1) = x2(x1 ∨ x3)(x1 ∨ x4) andϕ(2) = x2(x1 ∨ x2)(x3 ∨ x4),
respectively, are Horn and thus represent Horn functions. As easily checked, each clause ofϕ(1) is a prime

implicate, and thusϕ(1) is prime. However,ϕ(2) is not prime sincex1 ∨ x2 is not a prime implicate.

A Boolean functionf is calledbidual Horn[9], if f and its dualfd are Horn. In other words, the bidual Horn

functions are those functions such thatT (f) andF (f) are respectively closed under componentwise conjunction

and disjunction, whereF (f) = {0, 1}n \T (f). For example,f = (x1 ∨ x2 ∨ x3)(x1 ∨ x3 ∨ x4)(x2 ∨ x3 ∨ x4) is

bidual Horn, because by De Morgan’s law,fd = x1x2x3∨x1x3x4∨x2x3x4 = (x1∨x4)(x1∨x2)(x2∨x3)(x2∨
x4)(x1∨x3)(x3∨x4) is also Horn. In particular, it is easy to see that everynegativefunction, which is a function

represented by anegativeCNF (i.e., a CNF without positive literals, such asϕ(1) from above), is bidual Horn.

Bidual Horn functions were extensively studied in [9]. The following result is known, where for a pair of

clausesci and cj , we denote byc±i,j the negative clause such thatN(c±i,j) = V (ci) ∪ V (cj); e.g., if c1 =
(x1 ∨ x2 ∨ x3) andc2 = (x1 ∨ x4), thenc±1,2 = (x1 ∨ x2 ∨ x3 ∨ x4).

Lemma 2.1 ([9]) Letϕ be a Horn CNF. Thenϕ represents a bidual Horn function if and only if

c±i,j ≥ ϕ (2.1)

holds for all pairs of Horn clausesci andcj in ϕ such that|P (ci) ∪ P (cj)| = 2.

We call any Horn CNF satisfying (2.1)bidual Horn. Clearly, any bidual Horn CNF represents a bidual Horn

function, but other CNFs may also represent bidual Horn functions.

A renamingis a vectorr = (r1, r2, . . . , rn) ∈ {0, 1}n. For any Boolean functionf , its renaming byr, denoted

fr, is the function defined byfr(a) = 1⇐⇒ f(a⊕r) = 1, where for any vectora = (a1, a2, . . . , an) ∈ {0, 1}n,

a⊕ r denotes the vector(b1, b2, . . . , bn) such that

bi =

{
ai, if ri = 0;

1− ai, otherwise.

Note thata⊕r denotes the componentwiseexclusive or, and is the vector obtained froma by changing the polarity

of variablesi with ri = 1. Notice thatfr·r = f holds for anyf andr. The renaming of a formulaϕ by r, denoted

ϕr, is the formula resulting fromϕ by replacing each literal involving a variablexi with ri = 1 by its opposite. A

CNFϕ is disguised Horn(resp.,disguised bidual Horn), if there exists a renamingr such thatϕr is Horn (resp.,

bidual Horn). For example, letr = (0, 1, 1, 0), and considera = (1, 1, 0, 0) andϕ = (x1∨x2)(x1∨x3)(x2∨x4).
Then,a⊕ r = (1, 0, 1, 0), andϕr = (x1 ∨ x2)(x1 ∨ x3)(x2 ∨ x4) is Horn. Thus,ϕ is disguised Horn; moreover,

by Lemma 2.1, we can immediately see thatϕr is disguised bidual Horn.

Denote, for any class of Boolean functionsC, the closure ofC under renamings byCR, and letCun, CH , and

CBH denote the classes of unate (i.e., disguised negative), Horn, and bidual Horn functions, respectively. Then

we immediately have the following relationships.
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Proposition 2.1 Cun ⊆ CRBH ⊆ CRH .

The inclusions are clearly strict, as shown by the following simple examples. The CNFϕ = (x1∨x2)(x2∨x3)
represents a disguised bidual Horn function (applyr = (011)), but not a unate function. The CNFϕ = (x1 ∨
x2)(x2 ∨ x3)(x3 ∨ x1) represents a Horn (hence trivially disguised Horn) function, but not a disguised bidual

Horn function, because its dual represented byψ = (x1 ∨ x2 ∨ x3)(x1 ∨ x2 ∨ x3) is not disguised Horn.

3 Results

3.1 Recognizing disguised bidual Horn CNFs

We first consider the problem of recognizing disguised bidual Horn CNFs, i.e., the problem of deciding whether

a given CNFϕ can be renamed to a Horn CNF representing a bidual Horn function.

Our approach is to reduce the recognition problem to the problem of finding a renaming for an (already

Horn) CNF toanotherHorn CNF, such that the biduality condition (2.1) is satisfied. This is achieved from a

known polynomial time method for finding a Horn renaming by imposing some additional constraints, whose

satisfiability can be decided in polynomial time.

Let ϕ =
∧
i ci be a given CNF. We construct a 2SAT instanceC, such that this instance is satisfiable if and

only if ϕ is disguised Horn. Moreover, the satisfying assignments toC will give us all possible renamingsr such

thatϕr is bidual Horn.C consists of two groups of clausesC1 andC2 that serve for different purposes.

Let us introduce binary variableszi, i = 1, 2, . . . , n, such thatzi = 1 (resp.,zi = 0) means thatxi is renamed

(resp., not renamed), i.e.,ri = 1 (resp.,ri = 0). The first groupC1 consists of the clauses expressing that a

renaming of the variables must lead to a Horn expression.C1 is the conjunction of the clauses generated by

applying the following rules to all clausesc =
∨
i∈P (c) xi ∨

∨
j∈N(c) xj in ϕ:

(1.i) zi → zj , for i ∈ N(c), j ∈ P (c);

(1.ii) zi → zj , for i, j ∈ N(c) andi < j; and

(1.iii) zi → zj , for i, j ∈ P (c) andi < j,

whereyi → yj stands for the clause(yi ∨ yj) for literalsyi andyj . The following lemma is well-known.

Lemma 3.1 (cf. [18]) The CNFC1 is satisfiable if and only ifϕ is disguised Horn. Moreover, there is a one-to-

one correspondence between the satisfying assignments forC1 and renamingsr ofϕ such thatϕr is Horn.

The second groupC2 consists of the clauses which prohibit renamings that lead to a violation of the biduality

condition (2.1). For a CNFϕ, let r ∈ {0, 1}n be called aHorn renamingof ϕ if ϕr is Horn. If a Horn renamingr

of ϕ has clausesc1 andc2 such thatc3 = cr1 andc4 = cr2 satisfyP (c3) = {i}, P (c4) = {j}, i 6= j, andc±3,4 6≥ ϕr,
then thisr violates the biduality condition. Note that, sincec±3,4 = c±1,2,

c±3,4 6≥ ϕr ⇐⇒ c±1,2 6≥ ϕr

⇐⇒ ϕr ∧
∧

i∈V (c1)∪V (c2)

xi is satisfiable

⇐⇒ ϕ ∧
∧

i∈V (c1)∪V (c2):ri=0

xi ∧
∧

i∈V (c1)∪V (c2):ri=1

xi is satisfiable. (3.2)
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Hence, for each triplec1, c2, r of clausesc1, c2 in ϕ and Horn renamingr of c1 ∧ c2 such thatP (cr1) = {i},
P (cr2) = {j} and i 6= j, if c±3,4 6≥ ϕr holds, then exactly one of the following clauses on the pairi andj is

included inC2 (in order to prohibit such a renamingr from the assignment toz):

(2.i) zi → zj , if ri = 1 andrj = 0;

(2.ii) zi → zj , if ri = rj = 1; and

(2.iii) zi → zj , if ri = rj = 0.

Note that if we first choosec1, c2, i and j in the above process, then the corresponding Horn renaming

r ∈ {0, 1}V (c1)∪V (c2), if any exists, is uniquely determined. Moreover, given suchc1, c2, i andj, (3.2) (and thus

c±3,4 6≥ ϕr without knowing the full renamingr) can be decided in polynomial time ifϕ is Horn.

LetC = C1 ∧ C2. (Note thatC1 andC2 need not be disjoint.) Then we have the following result.

Lemma 3.2 The CNFC is satisfiable if and only ifϕ is disguised bidual Horn. Moreover, there is a one-to-one

correspondence between the satisfying assignments forC and all renamingsr ofϕ such thatϕr is bidual Horn.

Proof. Let us first show the only-if-part of the first statement. Letr be a satisfying assignment to the variables

z`, ` = 1, 2, . . . , n, in C, Then, it is easily checked from the definition ofC and Lemma 2.1 thatϕr is bidual

Horn. To prove the if-part, assume thatϕ is disguised bidual Horn. Then there is a renamingr of f such thatϕr

is bidual Horn. Clearly,ϕr must be Horn, and moreover satisfy condition (2.1). Then,r satisfies all the clauses in

C. The one-to-one correspondence follows from the arguments in the proof of the first statement. 2

As a result of Lemmas 3.1 and 3.2, the following algorithm solves the recognition problem for disguised

bidual Horn CNFs (Step 1 is not needed for correctness, but ensures that testing (3.2) in Step 2 is efficient):

Algorithm CHECK-RBH

Input : A CNFϕ on variablesx1, . . . , xn.

Output : A renamingr if there is anr such thatϕr is bidual Horn; otherwise, “No.”

Step 1. ConstructC1 fromϕ and solve it;

if no satisfying assignment is found forC1 then output “No” and halt

elselet s be a satisfying assignment toC1, andψ := ϕs fi.

Step 2. Construct againC1 fromψ; C2 := ∅;
for each triplec1, c2, r of clausesc1, c2 in ψ and Horn renamingr of c1 ∧ c2

such thatP (cr1) = {i}, P (cr2) = {j} andi 6= j do
if (3.2) holdsthen add toC2 the binary clause onzi andzj according to (2.i)–(2.iv)fi

end{for}.

Step 3. SolveC = C1 ∧ C2;

if a satisfying assignmentr is foundthen
outputr

elseoutput “No” fi. 2

Example 3.1 Let us execute CHECK-RBH onϕ = (x1 ∨ x2)(x1 ∨ x3)(x2 ∨ x4), which is not Horn.

Step 1. C1 is as follows:

C1 = (z1 → z2)(z1 → z3)(z4 → z2) = (z1 ∨ z2)(z1 ∨ z3)(z4 ∨ z2).
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The first two clauses are included by (1.iii), and the third by(1.i). The assignmentz = (1000) for example

satisfiesC1. Hence, by the renamings = (1000) obtained in Step 1, we have a Horn CNF:

ψ := ϕs = (x1 ∨ x2)(x1 ∨ x3)(x2 ∨ x4).

Step 2. For thisψ, we construct

C1 = (z1 → z2)(z1 → z3)(z4 → z2) = (z1 ∨ z2)(z1 ∨ z3)(z4 ∨ z2).

The clausesc1, c2 in ψ and the corresponding Horn renamingsr of c1 ∧ c2 such thatP (cr1) = {i}, P (cr2) = {j}
andi 6= j are shown below, as well as whether the condition for biduality, i.e., (3.2) holds or not forψ.

c1, c2 andr P (cr1) ∪ P (cr2) (3.2) holds forψ

(1) (z1 ∨ z2), (z1 ∨ z3) and(000) ∈ {0, 1}{1,2,3} {2, 3} Yes

(2) (z1 ∨ z2), (z4 ∨ z2) and(111) ∈ {0, 1}{1,2,4} {1, 4} Yes

(3) (z1 ∨ z3), (z4 ∨ z2) and(0000) ∈ {0, 1}{1,2,3,4} {2, 3} Yes

(4) (z1 ∨ z3), (z4 ∨ z2) and(1010) ∈ {0, 1}{1,2,3,4} {1, 2} Yes

(5) (z1 ∨ z3), (z4 ∨ z2) and(0101) ∈ {0, 1}{1,2,3,4} {3, 4} No

(6) (z1 ∨ z3), (z4 ∨ z2) and(1111) ∈ {0, 1}{1,2,3,4} {1, 4} Yes

Accordingly, we have

C2 = (z2 → z3)( z1 → z4)(z1 → z2) = (z2 ∨ z3)(z1 ∨ z4)(z1 ∨ z2).

The first clause is from (1) and (3); the second clause is obtained from (2) and (6); and the last clause from (4).

Step 3. SolvingC = C1 ∧ C2 yields six satisfying assignments in the following table. The resulting bidual Horn

functions are also shown.

r ψr

(0100) (x1 ∨ x2)(x1 ∨ x3)(x2 ∨ x4)

(0010) (x1 ∨ x2)(x1 ∨ x3)(x2 ∨ x4)

(0110) (x1 ∨ x2)(x1 ∨ x3)(x2 ∨ x4)

(0101) (x1 ∨ x2)(x1 ∨ x3)(x2 ∨ x4)

(0111) (x1 ∨ x2)(x1 ∨ x3)(x2 ∨ x4)

(1110) (x1 ∨ x2)(x1 ∨ x3)(x2 ∨ x4)

Now we consider the complexity of algorithm CHECK-RBH. Denote, for any CNFϕ, its size by|ϕ|, which

is the number of symbols in it, where negative literalsxi are also counted as single symbols.

Theorem 3.1 Algorithm CHECK-RBH correctly decides whether a given CNFϕ is disguised bidual Horn in

O(n2m2|ϕ|) time, wheren is the number of variables andm the number of clauses inϕ.

Proof. Correctness follows from Lemmas 3.1 and 3.2. Let us consider the time complexity. In Steps 1 and 2,

constructingC1 is clearly possible in timeO(n2m) (since we have at mostn2 pairsi andj for each clause), and

solving2SAT forC1 can be done in linear time, i.e., inO(|C1|) = O(n2) time [11, 2]. In Step 2, constructingC2

is possible inO(n2m2|ϕ|) time; for each pair of clausesc1, c2, there are at mostn2 Horn renamings ofc1 ∧ c2,

since there are at mostn2 pairs ofi andj satisfyingP (cr1) = {i}, P (cr2) = {j} andi 6= j. Moreover, sinceψ

is Horn, testing (3.2) for each triplec1, c2, r can be done in linear time, i.e., inO(|ψ|) time using a proper data
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structure [21]. Overall, Step 2 requiresO(n2m2|ϕ|) time. Finally, Step 3 (solving2SAT for C = C1 ∧ C2) is

possible in linear time [11, 2], i.e., inO(|C|) = O(n2) time. Thus, the total running time of the algorithm is

O(n2m2|ϕ|). 2

Remarks (1) Step 1 of algorithm CHECK-RBH (finding a Horn renaming of a CNFϕ) can in fact be done in

linear time, i.e.,O(|ϕ|) time. The setC1 can be replaced by a set ofO(|ϕ|) many binary clausesC ′1 (which involve

auxiliary variables) such that the construction ofC ′1 can be done inO(|ϕ|) time and the satisfying assignments of

C ′1 correspond to the Horn renamings (see e.g. [1]). Likewise, the construction ofC1 in Step 3 can be replaced

byC ′1. However, the worst-case running time of the improved algorithm is stillO(n2m2|ϕ|).

(2) Since all satisfying assignments of a 2SAT-instance can be output with polynomial delay (cf. [23]), all renam-

ingsr that makeϕ bidual Horn can be output with polynomial delay in Step 3, onceC has been constructed.

3.2 Recognizing disguised bidual Horn functions

Let us now turn from recognition of bidual Horn CNFs (i.e., the syntactic level) to recognition of bidual Horn

functions(i.e., the semantic level). That is, given a CNFϕ, decide whether it represents somef ∈ CRBH . At this

point, we emphasize that the above two concepts are different. Although any disguised bidual Horn CNFϕ clearly

represents anf ∈ CRBH , it may happen that a CNFϕ is not a disguised bidual Horn CNF, but still represents some

f ∈ CRBH . For example, considerϕ = x1x2x3(x1 ∨x2 ∨x3)(x1 ∨x2 ∨x3)(x1 ∨x2 ∨x3). This CNF is Horn, but

not bidual Horn. Furthermore, there is no renamingr such thatϕr is bidual Horn, sinceϕr is not Horn for any

renamingr different from identity. However,ϕ represents the functionf = x1x2x3, which is disguised bidual

Horn (e.g., renaming bothx1 andx2 makesf negative, and thus disguised bidual Horn). Informally, the last three

clauses inϕ, which are subsumed by the prime implicatex3, contain redundant literalsx1, x2, x1 andx2 which

prevent a suitable Horn renaming. Changing the polarity of any variable inϕ violates its Horn property.

As it turns out, our algorithm can be readily applied to recognize disguised bidual Horn functions if the input

CNF has no such redundancies, i.e., it is prime. We note the following lemmas.

Lemma 3.3 Letf andg be functions andr be a renaming. Thenf ≥ g holds if and only iffr ≥ gr holds.

Proof. Indeed, iff ≥ g, then for everyv, gr(v) = g(vr) = 1 implies thatf(vr) = fr(v) = 1, and hence

fr ≥ gr. The converse is similar. 2

Lemma 3.4 Letϕ be a prime CNF that defines a functionf . Then, for any renamingr, ϕr is a prime CNF for

fr. In particular, the CNFϕr is Horn if and only if the functionfr is Horn.

Proof. If ϕ is prime, thenϕr must consist of prime implicates offr. Otherwise, by using Lemma 3.3, a contra-

diction to primality ofϕ is easily derived. Next, since a function is Horn if and only if all prime implicates are

Horn [14], it follows thatϕr is Horn if and only iffr is Horn. 2

Thus, combined with Theorem 3.1, we obtain the following result.

Theorem 3.2 Algorithm CHECK-RBH correctly decides whether a given prime CNFϕ represents a function

f ∈ CRBH inO(n2m2|ϕ|) time, wheren is the number of variables andm the number of clauses inϕ, and outputs

a renamingr such thatfr ∈ CBH if this is the case.

By virtue of this result, we can recognize disguised bidual Horn functions also from non-prime CNFsϕ in

polynomial time provided that an equivalent prime CNF is computable in polynomial time. In particular, this is

the case if the CNFϕ is disguised Horn.
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Corollary 3.1 Deciding whether a given disguised Horn CNFϕ represents anf ∈ CRBH is possible inO(n2m2|ϕ|)
time, wheren is the number of variables andm the number of clauses inϕ.

Proof. First, find a Horn renamingr of ϕ, which is computable inO(|ϕ|) time (e.g., [1]). Then makeϕr

prime, which can be easily done inO(|ϕ|2) time (cf. [14]). Finally, apply algorithm CHECK-RBH, which takes

O(n2m2|ϕ|) time (note that Step 1 can be omitted, sinceϕ is already Horn). Since|ϕ| ≤ nm, it follows that the

overall running time of the algorithm isO(n2m2|ϕ|). 2

Recall that the example given in the beginning of this subsection shows that makingϕ prime is in fact needed

for this result. Observe that, unsurprisingly, the recognition problemf ∈ CRBH from an arbitrary CNF is in-

tractable. This is easily obtained from the following general result.

Theorem 3.3 ([15]) The recognition problem from a CNF isco-NP-hard for any classC of functions which con-

tainsf = 1 for each arity, does not contain all functions, and is closed under projections (i.e.,f ∈ C implies that

the functionsfxi←1 andfxi←0 onn− 1 variables obtained by fixing the value of any variablexi are also inC).
Clearly,CRBH is closed under projections, establishing the next

Corollary 3.2 Deciding whether a given CNFϕ represents anf ∈ CRBH is co-NP-hard.

On the other hand, by exploiting Theorem 3.2, we obtain that the complexity of this problem does not drasti-

cally exceedco-NP. Indeed, we can make a given CNFϕ prime in polynomial time with the help of an NP oracle,

by iteratively removing redundant literals from the clauses inϕ; note that deciding whether a particular literal can

not be removed from a clause ofϕ is in NP. After that, we may apply CHECK-RBH on the resulting prime CNF

ψ. Thus, the problem in Corollary 3.2 is in the complexity classPNP. Makingϕ prime seems unlikely to be

PNP-hard, since different from typicalPNP-hard problems such as the Traveling Salesman Problem, it appears

that the oracle calls do not have to follow a particular strict order. Therefore, we conjecture that recognizing

disguised bidual Horn functions from arbitrary CNFs is not complete forPNP. The precise complexity is open.

3.3 Dualization and minimization

Now we consider the dualization and minimization of a disguised bidual Horn function. As discussed in introduc-

tion, it is known [9] that, given a bidual Horn CNF, the dualization and computing a smallest CNF representation

can be done in quasi-polynomial total time and polynomial time, respectively. Therefore, the above results imply

the following nice theorem.

Theorem 3.4 If the input CNFϕ represents anf ∈ CRBH and a prime CNF equivalent toϕ is polynomially

computable, then:

(i) The dualization problem can be solved in quasi-polynomial total time.

(ii) A smallest CNF representation forf can computed in polynomial time.

4 Conclusion

In this paper, we have pushed the frontier of the dualization problem, which is solvable in quasi-polynomial total

time, from positive CNFs to disguised bidual Horn CNFs. However, several problems still remain for further

work. The most interesting ones, as we feel, are dualization of Horn CNFs and of prime CNFs (i.e., computing

a shortest DNF from a given Horn CNF or prime CNF, respectively). The former problem reduces to the latter

8



in polynomial time, since making a Horn CNF prime is easily accomplished in quadratic time. While dualizing a

Horn CNF or a prime CNF is at least as hard as dualizing a positive CNF, it is open whether these problems are

harder, and in particular, whether solvability by a quasi-polynomial total time algorithm would imply P=NP.
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