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Abstract

We consider the problem of dualizing a Boolean functjfogiven by CNF, i.e., computing a CNF for its
dual . While this problem is not solvable in quasi-polynomial total time in general (unless SAT is solvable in
guasi-polynomial time), it is so in case the input belongs to special classes, e.g., the class of bidual Hgern CNF
[9] (i.e., bothy and its dualp? represent Horn functions). In this paper, we show that a disguised bidual Horn
CNF ¢ (i.e., p becomes a bidual Horn CNF after renaming of variables) can be recognized in polynomial time,
and its dualization can be done in quasi-polynomial total time. We also establish a similar result for dualization
of prime CNFs.

Keywords: algorithm, output-polynomial, Boolean function, dualization, Horn function, and bidual Horn function.

1 Introduction

Dualization of a Boolean functiofi : {0,1}™ — {0,1} is the problem of computing a conjunctive normal form
(CNF) of f¢ from a given CNF off, wheref?(z) = f(Z). By the law of De Morgan, a disjunctive normal form
(DNF) of f4 is obtained from a CNF of by interchanging (1) disjunctions and conjunctions, and (2) constiants
and1, and we can regard this problem as computing a N f from a given CNFp of f.

Dualization is a fundamental problem in Boolean theory, which has been extensively studied and is, on certain
classes of functions, polynomially equivalent to many other important problems encountered in various fields
such as hypergraph theory, operations research, artificial intelligence, database theory, and reliability theory; for
example, computing an Armstrong relation for a given set of functional dependencies (see e.g. [7]), or computing
a prime implicant cover for a set of clauses in knowledge compilation (cf. [5]). As well-known, the size of the
output DNF can be exponentially larger than the size of the input G\Bnd in general, the output DNFis
not uniquely defined. In such cases, efficient computation is usually measured by the combined size of the input
and the shortest permissible output. An algorithm is cgtlelgnomial total timg16] (or output-polynomid| if
it runs in polynomial time in the input size and the shortest output size.

Unfortunately, an easy reduction from the classical satisfiability problem shows that there exists no polynomial
total time algorithm for the dualization problem of general Boolean functions unless P=NP. Therefore, research
has been focused on important restricted classes of Boolean functions, and in particular on positive (also called
monotone) and Horn CNFs (e.g., [3, 7, 12, 16, 17]). Recall that a Cdesgive(resp.,Horn) if each clause
contains only positive literals (resp., at most one positive literal). It may happen that a CNF is neither positive
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nor Horn, but becomes so after changing the polarity of some of the variables; such a CNF isicatkshd
disguisedor hidder) Horn, respectively. A respective change of polarities can be efficiently found [18, 1].

It is known [12] that there exists a quasi-polynomial total time ({'°2 V) whereN denotes the combined
size of the input and output) algorithm for dualization of positive CNFs, and many polynomial total time algorithm
were constructed for special classes of positive functions including posHBfeF, regular, threshold, read-once,
acyclic functions (e.g., [4, 6, 7, 20, 19, 22]). However, it is still open whether the positive dualization problem has
a polynomial total time algorithm or not. For Horn functions, our state of knowledge is less advanced; we have a
guasi-polynomial total time algorithm for generating a DNF which contains all prime implicants of a Horn CNF
[17], but it is not known whether the Horn dualization problem has a polynomial (or even only quasi-polynomial)
total time algorithm. Note, however, that this problem is at least as hard as the positive dualization problem, since
by changing the polarities of all literals in a positive CNF, we obtain a negative CNF, which is Horn.

In this paper, we consider the dualization problem for disguised bidual Horn functions. Here a fyhition
bidual Horn [9], if both f and its dualf? can be described by Horn CNFs. The biduality constraint balances
the roles of the set&(f) and F(f) of all true and false vectors gf, respectively. From the logical perspective,
the bidual Horn functions are those functiofisuch thatT’(f) and F'(f) are described by using implications
iy NTiy A+ - - Az, — 0 andT;, AT, A- - - AT;,, — £, respectively, wheré > 0 and/ is a literal [9]. Thus, if the
false vectors describe illegal states, then they are fully characterized by dependencies of literals from false facts,
and the legal states are also characterized by similar dependencies of literals from true facts. Note that bidual
Horn functions can be seen as a natural generalization of negative functions, and enjoy similar properties (e.g.,
all irredundant CNFs have the same number of clauses). In particular, they include all functions defined by Horn
CNFs in which only one variable occurs positively. The disguised bidual Horn functions are an intermediate class
between the classes of unate and disguised Horn functions. It contains, as easily seen from results in [8], the
double Horn functions (i.e.f and its complemenf are Horn) as a subclass, but not the submodular functions
(i.e., f and its contra-duaf(z) = f(z) are Horn) [10].

Let us call a CNRdisguised bidual Hornf, after an appropriate renaming, it becomes a Horn CNF rep-
resenting a bidual Horn function. As we show in this paper, it can be checked in polynomial time whether a
given CNF is disguised bidual Horn. Combining this with the results for bidual Horn functions [9], we ob-
tain a quasi-polynomial total time algorithm for dualizing disguised bidual Horn CNFs. This result enlarges the
guasi-polynomially dualizable classes. As a further result, we show that, given a disguised bidual Horn CNF, an
equivalent smallest CNF is computable in polynomial time. It is possible that a CNF representing a disguised
bidual Horn function is not disguised bidual Horn in the above sense. However, we also show that in case where
the input CNFp is prime(i.e., no clause contains redundant literajsjs a disguised bidual Horn CNF if and only
if it represents a disguised bidual Horn function. Prime CNFs are important representations of Boolean functions
and propositional knowledge bases (cf. [24, 13]). In such cases, our results yield quasi-polynomial total time and
polynomial-time algorithms for dualization and minimization of disguised bidual Horn functions, respectively.
Note that double Horn and submodular functions can be dualized in polynomial time and polynomial total time,
respectively, and minimized in polynomial time [8, 10].

2 Disguised bidual Horn functions

A clausecis a disjunction\/iep(c) x; V vjEN(c) z; of literals on Boolean variables,, . . ., z,, such thatP(c) N
N(c) = 0. We denote the variable indicesdy V' (¢) = P(c) U N(c). A conjunctive normal form (CNFp is a



conjunction/\f’:1 ¢; of clauses; a disjunctive normal form (DNF) is dually defined as usual. A claisdgorn, if

|P(c)] <1,and a CNRp = A, ¢; isHorn, if all ¢; are Horn. A Boolean functiorf : {0,1}" — {0,1} is Horn,

if it can be represented by some Horn CNF. It is well-known that this is equivalent to the condition that the set
of true vectorsI'(f) = {v € {0,1}" | f(v) = 1} is closed under componentwise conjunction. A clauisean
implicateof a formulay (resp., functionf), if ¢ > ¢ (resp.,c > f) holds, and iprime, if no proper subclause

¢ of cis an implicate. Here; andy are regarded as the Boolean functions they representf;andf, denotes

fi(v) > f2(v) holds for all vectors). A CNF ¢ = A\, ¢; is calledprime, if all clauses; are prime implicates.

For examplee; = (T1 VT4 V T V x6) is @ Horn clauseR(cz) = {6} and N(c2) = {1,4,5}), while
co = (T1 VT4 Va5 V 26) is Not. The CNFsp() = Ty (Zy V Z3)(T1 V Ty) andp@) = 25(T1 V 22) (T3 V Ty),
respectively, are Horn and thus represent Horn functions. As easily checked, each claiSeiofa prime
implicate, and thug() is prime. Howevery(?) is not prime since; V z- is not a prime implicate.

A Boolean functionf is calledbidual Horn[9], if f and its dualf¢ are Horn. In other words, the bidual Horn
functions are those functions such tigtf) and F'(f) are respectively closed under componentwise conjunction
and disjunction, wher&'(f) = {0,1}"\ T'(f). For examplef = (21 VT2 VT3)(T1 Va3 VT4)(T2 VT3V Ty) IS
bidual Horn, because by De Morgan’s laffl, = x1To%3 V Z103T4 V To@3T4 = (21 VT4)(T1 VT2) (T2 V 23) (T2 V
T4)(T1 VT3)(T3 VT4) is also Horn. In particular, it is easy to see that evegativefunction, which is a function
represented by megativeCNF (i.e., a CNF without positive literals, such@s) from above), is bidual Horn.

Bidual Horn functions were extensively studied in [9]. The following result is known, where for a pair of
clausesc; andc;, we denote by:ffj the negative clause such thm(cfj) = V(e) UV(c); eg., ife; =
(T1 V aa VT3) andey = (21 V T4), thencljf2 = (T1 VT2 VT3 VIy).

Lemma 2.1 ([9]) Lety be a Horn CNF. Theip represents a bidual Horn function if and only if
k> (2.1)
holds for all pairs of Horn clauses; andc; in ¢ such thai P(c;) U P(c;)| = 2.

We call any Horn CNF satisfying (2.bidual Horn Clearly, any bidual Horn CNF represents a bidual Horn
function, but other CNFs may also represent bidual Horn functions.

A renamings avector = (r,rq,...,r,) € {0,1}". For any Boolean functiof, its renaming by-, denoted
f7,isthe function defined by"(a) = 1 <= f(a®r) = 1, where for any vectat = (aq,as,...,a,) € {0,1}",
a @ r denotes the vectdb, b, . . ., b, ) such that

bj:{ a;, if r; =0;
) 1—a;, otherwise.
Note thata ©r denotes the componentwisgclusive orand is the vector obtained frosrby changing the polarity
of variablesi with r; = 1. Notice thatf"" = f holds for anyf andr. The renaming of a formula by r, denoted
", is the formula resulting fromp by replacing each literal involving a variabie with »; = 1 by its opposite. A
CNF ¢ is disguised Horr(resp.,disguised bidual Hor) if there exists a renamingsuch thaty" is Horn (resp.,
bidual Horn). For example, let= (0, 1,1, 0), and considet: = (1,1,0,0) andy = (z1 Vz2)(x1 Vas) (22 VTs).
Then,a®r = (1,0,1,0), andy” = (21 V T2)(x1 V T3)(T2 V T4) is Horn. Thusyp is disguised Horn; moreover,
by Lemma 2.1, we can immediately see thétis disguised bidual Horn.

Denote, for any class of Boolean functia@isthe closure of under renamings bg”?, and letC,,,,, Cx, and
Cpy denote the classes of unate (i.e., disguised negative), Horn, and bidual Horn functions, respectively. Then
we immediately have the following relationships.



Proposition 2.1 C,,, € CE, C CE.

The inclusions are clearly strict, as shown by the following simple examples. ThesxCNEz; VZs) (22 Vx3)
represents a disguised bidual Horn function (apph¢ (011)), but not a unate function. The CNF = (z; Vv
x9)(T2 V x3) (T3 V 1) represents a Horn (hence trivially disguised Horn) function, but not a disguised bidual
Horn function, because its dual representediby (21 V 25 V z3)(T1 V T2 V T3) is not disguised Horn.

3 Results

3.1 Recognizing disguised bidual Horn CNFs

We first consider the problem of recognizing disguised bidual Horn CNFs, i.e., the problem of deciding whether
a given CNFp can be renamed to a Horn CNF representing a bidual Horn function.

Our approach is to reduce the recognition problem to the problem of finding a renaming for an (already
Horn) CNF toanotherHorn CNF, such that the biduality condition (2.1) is satisfied. This is achieved from a
known polynomial time method for finding a Horn renaming by imposing some additional constraints, whose
satisfiability can be decided in polynomial time.

Lety = A, ¢; be a given CNF. We construct a 2SAT instari¢esuch that this instance is satisfiable if and
only if ¢ is disguised Horn. Moreover, the satisfying assignments will give us all possible renamingssuch
thaty” is bidual Horn.C' consists of two groups of claus€§ andC; that serve for different purposes.

Let us introduce binary variableg, : = 1,2, ..., n, such that; = 1 (resp.,z; = 0) means that; is renamed
(resp., not renamed), i.e:; = 1 (resp.,; = 0). The first groupC; consists of the clauses expressing that a
renaming of the variables must lead to a Horn expression.is the conjunction of the clauses generated by
applying the following rules to all clauses=\/,cp(.) i V Ve n(e) Tj N ¢

(1) z; — zj, forie N(c),je€ Plc);
(1.it) 2z — z;, fori,j € N(c)andi < j;and
(1.4id) Z; — z;, fori,j € P(c)andi < j,
wherey; — y; stands for the clausgj, V y;) for literalsy; andy;. The following lemma is well-known.
Lemma 3.1 (cf. [18]) The CNFC} is satisfiable if and only if is disguised Horn. Moreover, there is a one-to-

one correspondence between the satisfying assignments fond renamings of ¢ such thaty™ is Horn.

The second grou@’s consists of the clauses which prohibit renamings that lead to a violation of the biduality
condition (2.1). For a CNEk, letr € {0,1}™ be called &Horn renamingof ¢ if ©" is Horn. If a Horn renaming
of ¢ has clauses, andc, such thats = ¢| andcy = ¢ satisfyP(c3) = {i}, P(ca) = {j}, i # 7, andc§f4 2o,
then thisr violates the biduality condition. Note that, sinzcr;é4 = cfz,

Ga2e = .2y
= A /\ i issatisfiable
1€V (c1)UV (c2)
— oA /\ z; A /\ 7; s satisfiable. (3.2)
1€V (c1)UV (c2):ir;=0 €V (c1)UV (c2):ri=1



Hence, for each triple;, co, r of clausescy, c2 in ¢ and Horn renaming of ¢; A ¢o such thatP(c]) = {i},
P(ct) = {j} and: # j, if cgtA # " holds, then exactly one of the following clauses on the paindj is
included inCs (in order to prohibit such a renamingrom the assignment te):

(24) 2z — zj, ifr;,=1andr; =0;
(2.11) 2z —7%;, ifr;=r;=1and
(2222) Zi = Zj, if r; = r; = 0.

Note that if we first choose;, ¢, @ andj in the above process, then the corresponding Horn renaming
r € {0,1}V()UV(e) if any exists, is uniquely determined. Moreover, given such,, i andj, (3.2) (and thus
c§,4 7 ©" without knowing the full renaming) can be decided in polynomial time¢fis Horn.

LetC = C; A Cs. (Note thatC; andC, need not be disjoint.) Then we have the following result.

Lemma 3.2 The CNFC is satisfiable if and only if> is disguised bidual Horn. Moreover, there is a one-to-one
correspondence between the satisfying assignments &d all renamings: of ¢ such thaty" is bidual Horn.
Proof. Let us first show the only-if-part of the first statement. kdie a satisfying assignment to the variables
ze, £ = 1,2,...,n,in C, Then, it is easily checked from the definition ©fand Lemma 2.1 thap” is bidual
Horn. To prove the if-part, assume thats disguised bidual Horn. Then there is a renamiraf f such thaty”

is bidual Horn. Clearlyy™ must be Horn, and moreover satisfy condition (2.1). Threggtisfies all the clauses in
C. The one-to-one correspondence follows from the arguments in the proof of the first statement. O

As a result of Lemmas 3.1 and 3.2, the following algorithm solves the recognition problem for disguised
bidual Horn CNFs (Step 1 is not needed for correctness, but ensures that testing (3.2) in Step 2 is efficient):

Algorithm CHECK-RBH
Input: A CNF ¢ on variablesey, . . ., x,.
Output: A renamingr if there is an- such thaty” is bidual Horn; otherwise, “No.”

Step 1. ConstructC; from ¢ and solve it;
if no satisfying assignment is found 6% then output “No” and halt
elselet s be a satisfying assignment€q , andy := ° fi.

Step 2. Construct agaiiC; from; Cy := 0;
for each triplecy, co, r Of clauses:y, ¢o in ¢» and Horn renaming of ¢; A ¢
such thatP(c]) = {i}, P(c}) = {j} andi # j do
if (3.2) holdsthen add toC; the binary clause op; andz; according to (2.i)—(2.ivji
end{for}.

Step 3. SolveC' = C; A Cs;
if a satisfying assignmentis foundthen
outputr
elseoutput “No” fi. O

Example 3.1 Let us execute CHECK-RBH op = (x1 V x2) (21 V 23) (22 V T4), Which is not Horn.

Step 1 C; is as follows:

C1=(Z1 > 22)(Z1 — 23)(24 = 22) = (21 V 22)(21 V 23)(Z4 V 22).



The first two clauses are included by (1.iii), and the third(by). The assignment = (1000) for example
satisfies”; . Hence, by the renaming= (1000) obtained in Step 1, we have a Horn CNF:

P = gOS = (fl \/l‘g)(fl \/Z‘3)($2 \/54)-

Step 2 For thisy, we construct
C, = (Zl — 22)(21 — 23)(24 — ZQ) = (51 V 22)(51 V 2’3)(54 V 2’2).

The clauses;, ¢z in 1 and the corresponding Horn renamingsf ¢; A ¢z such thatP(c}) = {i}, P(c}) = {j}
and: # j are shown below, as well as whether the condition for biduality, i.e., (3.2) holds or nét for

c1, cz andr P(ci) U P(cy) (3.2) holds fory
1) (Z1V 22), (Z1 V 2z3) and(000) € {0, 1}{1>3} {2,3} Yes
(2) (Z1V 22), (ZaV z2) and(111) € {0, 1}{1:24 {1,4} Yes
(3) (Z1V 23), (Z4 V 22) and(0000) € {0,1}{H234} {2,3} Yes
(4)  (Z1V 23), (Z1 V 22) and(1010) € {0,1}{1234 {1,2} Yes
(5) (21 V 23), (Za V z2) and(0101) € {0, 1}1:2:34} {3,4} No
(6) (Z1V 23), (Z4V 22) and(1111) € {0, 1}{1:23:4} {1,4} Yes
Accordingly, we have
02 = (EQ — 23)( zZ1 — 54)(2’1 — 2’2) = (ZQ Vv 23)(21 V 54)(51 Vv 22).

The first clause is from (1) and (3); the second clause is obtained from (2) and (6); and the last clause from (4).

Step 3 SolvingC' = C; A C5, yields six satisfying assignments in the following table. The resulting bidual Horn
functions are also shown.

r P
(0100) | (T1 VZ2)(T1 V a3)(T2 V Ta)
(0010) | (71 V x2)(T1 VT3)(z2 V T4a)
(0110) | (1 VT2)(T1 V T3)(T2 V Ta)
(0101) | (1 VT2)(T1 V 23)(T2 V x4)
(0111) | (1 VZ2)(T1 VZ3)(T2 V T4)
(1110) | (1 VZ2)(z1 VZ3)(T2 V Ta)

Now we consider the complexity of algorithm CHECK-RBH. Denote, for any G\ Rs size by|y|, which
is the number of symbols in it, where negative literajsre also counted as single symbols.

Theorem 3.1 Algorithm CHECK-RBH correctly decides whether a given CNFis disguised bidual Horn in
O(n?m?|y|) time, wheren is the number of variables and the number of clauses ip.

Proof. Correctness follows from Lemmas 3.1 and 3.2. Let us consider the time complexity. In Steps 1 and 2,
constructing’; is clearly possible in timé&(n?m) (since we have at most pairsi and; for each clause), and
solving2SAT for C; can be done in linear time, i.e., (|C1|) = O(n?) time [11, 2]. In Step 2, constructing,

is possible inO(n?m?|¢|) time; for each pair of clauses, c2, there are at most? Horn renamings oé; A ca,

since there are at most pairs ofi and; satisfyingP(c}) = {i}, P(c5) = {j} andi # j. Moreover, since)

is Horn, testing (3.2) for each triplg, ¢, r can be done in linear time, i.e., ®(|¢|) time using a proper data



structure [21]. Overall, Step 2 requir€gn?m?|yp|) time. Finally, Step 3 (solvingSAT for C = C; A Cy) is
possible in linear time [11, 2], i.e., iI®(|C|) = O(n?) time. Thus, the total running time of the algorithm is
O(n*m?|p|). O

Remarks (1) Step 1 of algorithm CHECK-RBH (finding a Horn renaming of a Cfcan in fact be done in
linear time, i.e.0(|¢|) time. The seC; can be replaced by a set©f||) many binary clauseS’ (which involve
auxiliary variables) such that the constructiontdfcan be done iD(|¢|) time and the satisfying assignments of
C{ correspond to the Horn renamings (see e.g. [1]). Likewise, the construct@niofStep 3 can be replaced
by C1. However, the worst-case running time of the improved algorithm is(3tili>m?|¢|).

(2) Since all satisfying assignments of a 2SAT-instance can be output with polynomial delay (cf. [23]), all renam-
ingsr that makep bidual Horn can be output with polynomial delay in Step 3, ofideas been constructed.

3.2 Recognizing disguised bidual Horn functions

Let us now turn from recognition of bidual Horn CNFs (i.e., the syntactic level) to recognition of bidual Horn
functions(i.e., the semantic level). That is, given a CiFdecide whether it represents sohe CE,,. At this
point, we emphasize that the above two concepts are different. Although any disguised bidual HasitiEalfy
represents afi € C%,, it may happen that a CNg is not a disguised bidual Horn CNF, but still represents some
f € CE,. For example, consider = z12273(x1 VT2 VT3)(T1 V 22 V T3)(T1 VT2 V T3). This CNF is Horn, but
not bidual Horn. Furthermore, there is no renamimguch thaty” is bidual Horn, sincey” is not Horn for any
renamingr different from identity. Howevery represents the functiofi = x;x5T3, which is disguised bidual
Horn (e.g., renaming both; andz, makesf negative, and thus disguised bidual Horn). Informally, the last three
clauses inp, which are subsumed by the prime implicatg contain redundant literals,, T2, ; anday which
prevent a suitable Horn renaming. Changing the polarity of any varialgeviolates its Horn property.

As it turns out, our algorithm can be readily applied to recognize disguised bidual Horn functions if the input
CNF has no such redundancies, i.e., it is prime. We note the following lemmas.

Lemma 3.3 Let f andg be functions ana be a renaming. Theji > g holds if and only iff” > ¢ holds.
Proof. Indeed, iff > g, then for everyv, g"(v) = g(v") = 1 implies thatf(v") = f"(v) = 1, and hence
f7 > g". The converse is similar. |

Lemma 3.4 Let p be a prime CNF that defines a functigh Then, for any renaming, ¢" is a prime CNF for
f7. In particular, the CNFp" is Horn if and only if the functiorf” is Horn.

Proof. If ¢ is prime, theny” must consist of prime implicates ¢gf'. Otherwise, by using Lemma 3.3, a contra-
diction to primality of o is easily derived. Next, since a function is Horn if and only if all prime implicates are
Horn [14], it follows thaty™ is Horn if and only if /™ is Horn. |

Thus, combined with Theorem 3.1, we obtain the following result.

Theorem 3.2 Algorithm CHECK-RBH correctly decides whether a given prime ChNFepresents a function
f € CE in O(n*m?|¢|) time, wheren is the number of variables and the number of clauses ip, and outputs
a renamingr such thatf” € Cpy if this is the case.

By virtue of this result, we can recognize disguised bidual Horn functions also from non-prime &MFs
polynomial time provided that an equivalent prime CNF is computable in polynomial time. In particular, this is
the case if the CNk is disguised Horn.



Corollary 3.1 Deciding whether a given disguised Horn CidFepresents arf € CZ,; is possible irO(n?m?|p|)
time, wheren is the number of variables and the number of clauses ip.

Proof. First, find a Horn renaming of ¢, which is computable irO(|¢|) time (e.g., [1]). Then make"
prime, which can be easily done @(||?) time (cf. [14]). Finally, apply algorithm CHECK-RBH, which takes
O(n?m?|y|) time (note that Step 1 can be omitted, sigcis already Horn). Sincgp| < nm, it follows that the
overall running time of the algorithm 8 (n?m?|¢p|). O

Recall that the example given in the beginning of this subsection shows that ngagige is in fact needed
for this result. Observe that, unsurprisingly, the recognition probfem C%, from an arbitrary CNF is in-
tractable. This is easily obtained from the following general result.

Theorem 3.3 ([15]) The recognition problem from a CNF ¢®-NP-hard for any clas€ of functions which con-
tains f = 1 for each arity, does not contain all functions, and is closed under projectionsf{ie( implies that
the functionsf,,.; and f,,.o onn — 1 variables obtained by fixing the value of any variableare also inC).

Clearly,CE,, is closed under projections, establishing the next
Corollary 3.2 Deciding whether a given CNE represents arf € C%,; is co-NPhard.

On the other hand, by exploiting Theorem 3.2, we obtain that the complexity of this problem does not drasti-
cally exceedto-NP. Indeed, we can make a given ChFprime in polynomial time with the help of an NP oracle,
by iteratively removing redundant literals from the clauseg;inote that deciding whether a particular literal can
not be removed from a clause @fis in NP. After that, we may apply CHECK-RBH on the resulting prime CNF
@. Thus, the problem in Corollary 3.2 is in the complexity cl&¥". Making ¢ prime seems unlikely to be
PNP-hard, since different from typicd?NP-hard problems such as the Traveling Salesman Problem, it appears
that the oracle calls do not have to follow a particular strict order. Therefore, we conjecture that recognizing
disguised bidual Horn functions from arbitrary CNFs is not complet@f8t. The precise complexity is open.

3.3 Dualization and minimization

Now we consider the dualization and minimization of a disguised bidual Horn function. As discussed in introduc-
tion, it is known [9] that, given a bidual Horn CNF, the dualization and computing a smallest CNF representation
can be done in quasi-polynomial total time and polynomial time, respectively. Therefore, the above results imply
the following nice theorem.

Theorem 3.4 If the input CNF represents ary € CE, and a prime CNF equivalent tg is polynomially
computable, then:

() The dualization problem can be solved in quasi-polynomial total time.

(ii) A smallest CNF representation fgrcan computed in polynomial time.

4 Conclusion

In this paper, we have pushed the frontier of the dualization problem, which is solvable in quasi-polynomial total
time, from positive CNFs to disguised bidual Horn CNFs. However, several problems still remain for further

work. The most interesting ones, as we feel, are dualization of Horn CNFs and of prime CNFs (i.e., computing
a shortest DNF from a given Horn CNF or prime CNF, respectively). The former problem reduces to the latter



in polynomial time, since making a Horn CNF prime is easily accomplished in quadratic time. While dualizing a
Horn CNF or a prime CNF is at least as hard as dualizing a positive CNF, it is open whether these problems are
harder, and in particular, whether solvability by a quasi-polynomial total time algorithm would imply P=NP.
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