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Abstract

We analyze the computationalcomplexity of
Halpernand Pearls (causal)explanationsin the
structural-modeblpproach,which are basedon
their notions of weak and actual causality In
particular we give a precisepicture of the com-
plexity of decidingexplanationsq-partialexpla-
nations, and partial explanations,and of com-
puting the explanatorypower of partial explana-
tions. Moreover, we analyzethe complexity of
decidingwhetheran explanationor an a-partial
explanationover certainvariablesxists. We also
analyzethe compleity of decidingexplanations
andpartialexplanationsn the caseof succinctly
representedontet sets,andthe complexity of
decidingexplanationsin the generalcaseof sit-
uations. All compleity resultsare derived for
the generalcase,as well as for the restriction
to the caseof binary causalmodels,in which
all endogenousariablesmaytake only two val-
ues. To our knowledge, no complexity results
for explanationsn thestructural-modeapproach
have beenderivedsofar. Our resultsgive insight
into the computationaktructureof Halpernand
Pearls explanations,and pave the way for effi-
cientalgorithmsandimplementations.

1 INTRODUCTION

Theautomaticgeneratiorof explanationsor humanss of
crucialimportancein areadik e planning,diagnosishatu-
ral languageprocessingand probabilisticinference. No-
tions of explanationshave beenstudiedquite extensiely
in theliterature,seeespecially[21, 14, 36] for philosoph-
ical work, and[25, 38, 22] for work in Al thatis related
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to Bayesianmnetworks. A critical examinationof suchap-
proachegrom the viewpoint of explanationsn probabilis-
tic systemss givenin [4].

In arecentpaper{18, 20], HalpernandPearlintroducedan
elegantdefinition of causalexplanationin the structural-
modelapproachwhich is basedon their notionsof weak
andactualcausality[18, 19]. They shavedthatthis notion
of causakxplanationrmodelswell mary problematicexam-
plesin theliterature. Note that Halpernand Pearls causal
explanationis very differentfrom theconcepf causakx-

planationin [28, 29, 15].

The following example from [18, 19, 2Q] illustratesthe
structural-modebpproach. Seeespecially[1, 13, 31, 32,
17] for moredetailson structuralcausaimodels.

Example 1.1 (arsonists) Suppose two arsonists lit
matchesn differentpartsof a dry forest, and both cause
treesto startburning. Assumenow eithermatchby itself
sufiicesto burn down the whole forest. We may model
such a scenarioin the structural-modelframewnork as
follows. We assumetwo binary backgroundvariables
U andUs, which determinethe motivation andthe state
of mind of the two arsonistswhereU; is 1 iff arsonist;
intendsto starta fire. We thenhave threebinary variables
Ay, Ay, and B, which describethe obsenable situation,
where 4; is 1 iff arsonisti dropsthe match,and B is 1
iff the whole forestburnsdown. The causaldependencies
betweerthesevariablesareexpressedy functions,which
saythatthe value of 4; is given by the value of U;, and
that B is 1 iff either A; or A, is 1. Thesedependencies
canbegraphicallyrepresentedsin Fig. 1.
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Figurel: CausalGraph



While the semantic aspects of explanations in the
structural-modehpproacthave beenthoroughlystudiedin
[18, 20], an analysisof their computationalpropertiesis
missingso far. In this paper we fill this gap. Our main
contributionsaresummarizedsfollows:

¢ We analyzethe computationacompleity of Halpern
and Pearls explanationsin the structural-modeblpproach
[18, 20]. In particular we draw a precisepicture of the
complity of deciding explanations,a-partial explana-
tions, and partial explanations,and of computingthe ex-
planatorypower of partialexplanations.

¢ We alsoanalyzethe compleity of the naturalproblem
of decidingwhetheran explanationor an a-partial expla-
nationover certainvariablesexists.

¢ We show that decidingexplanationsand partial expla-
nationshasa higher compleity in the caseof succinctly
representedontext sets.Generalizingrom contextsto sit-
uations,in contrast,doesnot increasethe compleity of
decidingexplanations.

¢ We alsoshaow thatall analyzedoroblemshave a lower
compleity in thebinarycase.

Note thatdetailedproofsof all resultsaregivenin the ex-
tendedpaper{10].

2 PRELIMINARIES

We assuma finite setof randomvariables Eachvariable
X,; may take on valuesfrom a finite domain D(X;). A
valuefor a setof variablesX = {X;,...,X,} is amap-
ping z: X - D(X;)U --- UD(X,) suchthat z(X;) €
D(X;) (for X =0, the unique value is the empty map-
ping #). The domainof X, denotedD(X), is the setof
all valuesfor X. For YCX andz € D(X), denoteby z|Y’
the restrictionof = to Y. For setsof variablesX,Y and
valuesz € D(X),y € D(Y), denoteby zy the unionof =
andy. We oftenidentify singletons{ X; } with X;, andtheir
valuesz with z(X;).

21 CAUSAL MODELS

A causalmodel M = (U, V, F) consistsof two disjoint
finite setsU and V of exogenousand endaenousvari-
ables,respectiely, anda set F = {Fx | X € V} of func-
tions Fx : D(PAx) — D(X) thatassigna valueof X to
eachvalueof theparentsPAx CU UV — {X} of X.

We focus here on the principal class[18] of recursive
causalmodels M = (U, V, F) in which a total ordering
< onV exists suchthatY € PAx impliesY < X, for
all X,Y eV. In suchmodels,every assignmento the

exogenousvariablesU = determinesa unique value y

for every set of endogenousvariablesY CV, denoted
Ym(u) (or simply Y(u)). In the sequel, M is resered
for denotinga recursve causalmodel. For ary causal
model M = (U, V, F), setof variablesX CV, andz €

D(X), the causalmodel M, =(U,V, F,), where F,, =

{Fy |YeV-X}U{Fx =z(X')| X'eX}, isasubmodel
of M. ForY CV, weabbreiateY), (u) by Y, (u). We say
M = (U,V, F)isbinaryiff |[D(X)|=2forall X e V.

Example 2.1 (arsonistscontinued)M = (U, V, F') for Ex-
amplel.1lis givenby U ={U;, Uz}, V={A4;,A,,B},
andF ={Fy,, Fa,,Fp}, whereF4, =U, Fa, =Us, and
Fp=1iff Ay =1o0r A, =1 (Fig. 1 shovsthe parentrela-
tionshipbetweerthevariables).

As for computation,we assumethat in M = (U,V, F),
every function Fix : D(PAx)— D(X), X €V, is com-
putablein polynomialtime. Thefollowing isimmediate.

Proposition 2.1 Forall X,Y CV andz € D(X), theval-
uesY (u) andY,(u), givenu € D(U), are computabldn
polynomialtime

22 CAUSALITY

Wenow recallweakcause$rom[18, 19]. A primitive event
is anexpressionof the form Y =y, whereY is a variable
andy is avaluefor Y. Thesetof eventsis the closureof
the setof primitive eventsunderthe Booleanoperations-
andA. Thetruth of anevent¢ in M =(U,V, F) under
u€ D(U), denoted M, u) = ¢, is inductively definedby:

o (Mu) EY =yiff Ya(u) =y,
o (M,u) = —¢iff (M,u) | ¢ doesnothold,
o (M,u) £ ¢ A iff (M,u) = ¢ and(M, u) F o.

We write ¢(u) to abbreviate (M, u) = ¢. For X CV and
z € D(X), wewrite ¢, (u) to abbreviate (M, u) = ¢. For
XZ{X]_,...,Xk}gV with k>1 andw,-ED(X,-), we
useX =x; ---xz;, toabbreviate X1 =z A ... A X}, = xy,.
Thefollowing is immediate.

Proposition 2.2 Let X CV andz € D(X). Givenu €
D(U) and an event¢, decidingwhetherg(u) and ¢, (u)
(givenz) hold canbe donein polynomialtime

Let M =(U,V,F) be a causalmodel. Let X CV and
z € D(X), andlet ¢ beanevent. Then, X =z is aweak
causeof ¢ underu iff thefollowing conditionshold:

ACl. X(u) =z ande(u).

AC2. Somesetof variablesW CV—X and somevalues
zeD(X), we D(W) exist with:



(a) _'%w(u)1 and
(b) ppuws(u)forall ZCV — (X UW) andz = Z(u).

Example 2.2 (arsonistscontinued) Considerthe context
u1,1=(1,1) in which both arsonistsintend to start a
fire. Then,4; =1, A, =1,andA4; =1A Ay, =1 areweak
causenf B=1. Moreover, A; =1 (resp.,A; =1) is the
only weak causeof B =1 underthe contet u,9 = (1,0)
(resp.,up,1 = (0,1)) in which only arsonistl (resp.,2) in-
tendsto startafire.

The following lemmacharacterizegrelevantvariablesin
weakcauses.

Lemma 23 LetM = (U,V, F). LetX CV andzeD(X),
let ¢ be an event,and let ue D(U). Let Xo€V sudh
that in the causalnetworkfor M, it holdsthat X is not
a predecessopf any variable in ¢, and Xo(u) = z(Xo).
LetX'=X—{Xo} andz' = z|X'. Then X =z isaweak
causeof ¢ underu iff X' =z’ is a weakcauseof ¢ underu.

We recallaresultfrom [11, 12], which shawvs that decid-
ing weakcauses completefor &' (resp.,NP) in the gen-
eral (resp.,binary) case. Note that this result holds also
whenthe domain D(X)={1,...,nx} of eachvariable
X eU UV isspecifiedbynx > 1.

Theorem 2.4 (see[11, 12]) GivenM = (U,V, F), XCV,
z € D(X), ue D(U), and an event ¢, decidingwhether
X =z is a weakcauseof ¢ underu is completefor ¥F
(resp.,NP) in thegeneal (resp. binary) case

2.3 EXPLANATION

We now recall the conceptof explanationfrom [18, 20].
Let M =(U,V, F) be a causalmodel. Let X CV and
z € D(X), ¢ beanevent,andC C D(U) be a setof con-
texts. Then, X =z is an explanationof ¢ relative to C iff
thefollowing conditionshold:

EX1. ¢(u) for eachcontet u €C.

EX2. X =z is aweakcauseof ¢ undereveryu € C such
that X (u) = z.

EX3. X isminimal. Thatis, for every X' ¢ X, someu € C
exists suchthat X'(u) = z|X' and X' =z|X' is nota
weakcauseof ¢ underu.

EX4. X(u)=z for some ueC, and X (u')#x for
someu’ €C.

Example 2.3 (arsonists continued) Considerthe set of
contexts C = {u1,1,u1,0,u0,1}. Then, both 4, =1 and
Ay, =1 are explanationsof B=1 relative to C, while
A; =1 A Ay =1 is not, as here, the minimality condi-
tion EX3 is violated.

24 PARTIAL EXPLANATION AND
EXPLANATORY POWER

We finally recall the notions of partial and a-partial
explanationsand of explanatory power [18, 20]. Let
M=(U,V,F) be a causalmodel. Let XCV and
z € D(X), let ¢ beanevent,letC C D(U) suchthat¢(u)
for all ue C. We usethe expressionC?}:w to denotethe
uniquelargestsubsetC’ of C suchthat X =z is an expla-
nation of ¢ relative to C’; it is easyto seethatif sucha
setC’ exists,thenC}l}:z is defined.Let P be a probability
functiononC, anddefine

P(C%_, | X =x)
= )

UECK _,, X (W)=2

P(u) / e 2t P(u).

Then,X =z is calledana-partial explanationof ¢ relative
to (C, P) iff C%_, is definedand P(C%_, | X =z) > a.
We say X =z is a partial explanation of ¢ relatve
to (C, P) iff X =z is ana-partial explanationof ¢ relative
to (C, P) for somea > 0; furthermore,P(Cf}:w | X =z)is
calledits explanatorypower(or goodnesps

Example 2.4 (arsonists continued) Let C = {u1,1,u1,0,
uo,1}, and let P be the uniform distribution over C.
Then, both 4; =1 and A, =1 are 1-partial explanations
of B=1. Thatis, both A; =1 and A, =1 arepartial ex-
planationsof B =1 with explanatorypower 1.

25 COMPLEXITY CLASSES

The compleity classesthat we encounterare shavn in
Fig. 2. They are well-known classesfrom the Polyno-
mial Hierarchy (PH), or derived from them. We recall
P
that NP =3F, co-NP =TI}, £F | =NP>, andII}, =
coxt, k>1, areclassesn PH.TheclassD} = {L x L' |
Lex},L'ell}}, k>1, is the “conjunction” of X}
andIIf; in particular DY is the familiar classDP. The
P
cIasst’“ , k > 1, containghedecisionproblemswhichcan
besolvedin polynomialtime with parallelcallsto ax¥ or-

P
acle; FPf’“ is the analogfor function computationsNote

that PﬁIP = Pﬁf and FPﬁIP = FPlzf. For further back-

groundonthecompleity classesseee.g.[23, 24, 30, 41].

3 OVERVIEW OF RESULTS

In this section,we give anovervien on the compleity re-
sultsthatwe derive, anddiscusgpossibleimplications.
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3.1 PROBLEM STATEMENTS

In ouranalysiswe focusonthefollowing problemswhich
aremajortasksin explanation-basedausakeasoning:

Explanation: Given M =(U,V,F), XCV, z€ D(X),
an event ¢, anda setof contexts C C D(U), decide
whetherX =z is anexplanationof ¢ relativeto C.

Explanation Existence: Given M =(U,V,F), XCV,
anevent ¢, anda setof contextsC C D(U), decide
whethersomeX' C X andz’ € D(X') exist suchthat
X'=z'is anexplanationof ¢ relativeto C.

a-Partial Explanation: Given M =(U,V,F), XCV,
z € D(X), anevent ¢, a setof contets CC D(U)
suchthat¢(u) for all u € C, a probability function P
onC, anda > 0, decidewhetherX =z is ana-partial
explanationof ¢ relativeto (C, P).

a-Partial Explanation Existence: Given M = (U, V, F),
X CV, aneventg, asetof contexts C C D(U) such
that ¢(u) for all weC, a probability function P
on C, anda >0, decidewhethersome X’ C X and
z' € D(X') exist suchthat X' =z’ is ana-partialex-
planationof ¢ relativeto (C, P).

Partial Explanation: GivenM =(U,V,F),XCV,z €
D(X), anevent ¢, a setof contexts C C D(U) such
that¢(u) for all u € C, aprobabilityfunction P onC,
decidewhetherX = z is a partialexplanationof ¢ rel-
ativeto (C, P).

Explanatory Power: GivenM =(U,V,F), XCV,z €
D(X), aneventg, C C D(U), anda probability func-
tion P onC, where(i) ¢(u) forallu € C,and(i) X ==z
is apartialexplanationof ¢ relativeto (C, P), compute
the explanatorypower of X =z.

In all problems,the probability function P is assumedo
be polynomiallycomputable.

Thefirst problem,Explanationjs therecognitionof anex-
planation. It emegesdirectly from the definition of ex-
planationin Section2.3 and capturesits intrinsic com-
plexity. The problemExplanationExistenceis associated
with the importanttask of finding an explanationfor an
event¢. Similar asin otherframeworks for explanations

Tablel: Compleity of Explanations

‘ Problem generakase binarycase

Explanation DY -complete | DF-complete

»¥-complete | ©F-complete
=5

ExplanationExistence

a-Partial Explanation| P -complete| P}'"-complete

a-Partial Explanation

. >P-complete
Existence 2 P

¥ -complete

P
Partial Explanation PfQ -complete| P{*"-complete

P
ExplanatoryPowver FPﬁ2 -complete FP|™"-complete

Table2: Compleity of ExplanationsSuccinctContexts

‘ Problem ‘ generakase| binarycase

Explanation 15 -complete I15 -completd

Partial Explanation IT; -complete ITE -complete

Table3: Compleity of ExplanationsSituations

‘Problem ‘generabase‘ binarycase‘

‘ Explanatiod Dg-completéDP-completef

(e.0.[27, 37)]), the set X focusesattentionto a subsetof
the variables,in termsof which the explanationmust be
formed. Findingexplanationss certainlythecentraltaskof
acausal-reasoningystembuilt for applicationsn practice,
andthusthis problemdeseresspecialattention.Theprob-
lemsa-Partial/ Partial Explanationanda-Partial Explana-
tion Existencecanbeviewedasrelaxationsof Explanation
and ExplanationExistence respectiely, in a probabilistic
context. ExplanatoryPawer is the problemof computing
the“goodness’of apartialexplanationX =z, givenby the
coverageof thecasesvhereX =z istruein thecontextsC.
This information canbe usedto rank partial explanations
andsingleout “best” ones.

3.2 MAINRESULTS

Our maincompleity resultsarecompactlysummarizedn
Tables1-3. Besidesthe generalcase they includeresults
for binary causalmodels,and also addresssuccinctcon-
text representatiofseeTable2) anda generalizatiorfrom



contetsto situationsin [20] (seeTable3).

All resultsn Tablesl-3shav completenessnderstandard
polynomial-timetransformation§24, 30], andthussharply
characterizehe compleity of the problems.Fromthere-
sultsin Table 1, it appearghat finding explanationsand
a-partialexplanationss at the third level of PH. Thus,ex-
planationsare harderto computethanweak causeswhich
lie atthe secondevel of PH[11]. Onthe otherhand,rec-
ognizing explanationsand a-partial explanationsis only
mildly harderthanrecognizingweakcauseswhichis %F-
complete. The reasonis that by the latter, condition EX2
amountsto a conjunctionof a linear numberof problems
in ©¥, and EX3 to the negationof sucha problem; EX1
andEX4 areeasilychecled. Thus,by usualtechniquesthe
explanationcheckcanbereducedo a conjunctionof prob-
lemsin X andIlI%. In thecaseof ana-partialexplanation,
we needto know the context C;:w; by exploiting a basic
characterizationesult(Lemma4.3),it canbecomputecdef-
ficiently with parallelcallsto a ¥ oracle. OnceC}‘}:;c is
known, we needto checkwhetherX =z is anexplanation
relative to it, therestis easy Thus,the compleity of this
problem,aswell asof ExplanatoryPaower, lies herein the
computationof C?}:w. The X¥ upperboundfor Explana-
tion Existenceanda-Partial ExplanationExistences then
straightforvardby a standardyuessandcheckargument.

The X¥-hardnesof ExplanationExistencestemsfrom a
subtletyin the definition of explanation.From satisaction
of EX1, EX2, andEX4 for X = x we cannotconcludethat
someX'=z' containedn X = z existswhichwill satisfy
EX1-EX4;if we minimize X =z soasto satisfyEX3, the
resulting X’ =z' may violate EX4. It is this interplay of
the conditionswhich makesthis problemdifficult, andthe
proofsof the hardnessesultsnontrivial. The £ -hardness
of a-Partial ExplanationExistenceis inherited from the
hardnes®f ExplanationExistence.

3.3 SUCCINCT CONTEXTS

Table2 shavs resultsfor someof the problemsn a setting
wherecontets aresuccinctlyrepresentedin fact, Table1
assumeshatthe setof contetsC is enumeratedh thein-
put. However, C maycontainexponentiallymary contexts;
adescriptverepresentationanbemuchmorecompactand
desirablein practice. In the succinctrepresentatiorset-
ting, we thusassumehat(C is givenby atractablemember
shipfunction x¢(u). Thatis, oninputof uw € D(U), func-
tion x¢ (u) reportsin polynomialtime whetheru € C holds.
This includes,e.g.,descriptionsof C in termsof proposi-
tionalformulasg overU suchthatthemodelsof g describe
the contexts in C. It turnsout that succinctrepresentation
increaseshe complexity of Explanationand a-Partial Ex-
planationdrastically Intuitively, in this casecheckinga
propertyfor all contextsin C becomesnuchharder since

thereseemano betterway than guessinghe “right” con-
text witnessingor disproving the property The comple-
ity increaseby two levelsin PH stemsfrom the fact that
conditionEX3 involvestwo nestedchecksof propertiedor
all contextsin C. This dominateghe compleity of EX1,
EX2, andEX4 andleadsto IT§ complexity. For a-partial
explanationswe have similar effects. Worse,we needto
calculatesumsof probabilitiesover succinctlyrepresented
context sets.This leadsus outsidePH: It requiresto solve
problemswhich are at leastas hard deciding whethera
givenpropositionalCNF g has> k models,wherek is in
theinput. Thisproblemis, asgenerallybelieved,notin PH.
We refrainfrom a detailedanalysisof computinga-partial
explanationshere. For Partial Explanation,we obtainthe
entryshovnin thetable. A compleity increasdor Expla-
nationExistenceundersuccinctcontet setsto XF is plau-
sible,thoughwe have not analyzedt yet; notethatalready
theII} -hardnesgroof for Explanationis ratherinvolved.

34 SITUATIONS

Table 3 shaws resultsfor the generalizationof explana-
tionsfrom contetsto situationgdiscussedh [20]. Without
going into the detailshere,in this scenariothe epistemic
stateconsistsof a setS of pairs (M, ) calledsituations
where}M is a causalmodelandu is a context, ratherthan
a setof contets. Informally, a situation (M, ) encodes
somecausaknowledgein M andsomeknown factsin .
Generalexplanationsarethendefinedaspairs (¢, X = )
where is an arbitrary causalformula that restrictsthe
causalmodelsto be consideredand X =z is a conjunc-
tion of primitive events.Thedefinitionis similarto theone
of explanations,andis too involved to be presentechere
(see[2Q)]); it coversbasicexplanationsas a specialcase.
Interestingly generakexplanationsarenot moredifficult to
recognizehanbasicexplanations.

3.5 RESTRICTED CASES

This concludesour expositionof the complexity resultsin
the generalcase. Tables1-3 also shaw resultsfor the re-
striction to binary causalmodels whereeachendogenous
variablemay take only two values. In this case the com-
plexity of all consideredproblemsdropsby one level in
PH; this parallelshedropof thecomplexity of weakcauses
from ©¥' to NP in the binary case[11]. The membership
partscanbederivedanalogoushasin thegenerakaseand
thehardnesgartsby slightadaptationsf theconstructions
in theproofs,wherecertainsubcomponent®r weakcause
testingaremodularlyreplaced.

Someof our hardnessesultsremainvalid underfurtherre-
strictions, suchas a boundednessondition on the causal
model[11, 12]. In particular all hardnessesultsfrom Ta-
bles1-3 hold for primitive events¢; thus,complex events



Figure3: SchematicConstructiorfor Evaluatingtwo QBFs®; and®,

arenot a sourceof compleity. To avoid a proliferationof
resultswe do notfurtherconsiderestrictionshere.

3.6 IMPLICATIONS FOR COMPUTATION

For “efficient” algorithmsthat generateexplanationsor
“best” a-partial explanations,we candraw the following
conclusions. Both mustsolve an inherentX¥ -hard prob-
lem, i.e., a problemat the third level of PH; such prob-
lemsareratherhardto solve. Informally, the problemis
“triple NP-hard:” even if we could usea subroutinefor
solving X} -completeproblemsfor free,the problemwould
beintractablgNP-hard).Similarly, £ -completgproblems
areintractableevenif we could usea subroutinefor solv-
ing NP-completeproblemsfor free. Thus, computation-
ally speakinggeneratingxplanationss ratherdifficult. In
particular a simpleNP-stylebacktrackingstrateyy thatex-
plores,similar asa simpleDavis-Putnanstyle SAT-solver,
a polynomial-depthsearchtree is infeasible. By similar
argumentspolynomial-timereductionsto a SAT-solver or
a computationalogic systemwhich canhandleproblems
with complexity upto X¥, suchasDLV [9] areinfeasible.

On the other hand, an explanationcan be computedus-
ing anestedbacktrackingprocedurgmodelingnestedsub-
routine calls), or using flat backtrackingcalling a sub-
routine for ¥ tasks(e.g., calls to DLV). A further pos-
sible perspecitie are translationsto QBF-sohers, which
provedvaluablein otherapplicationg33]. We cancompute
an a-partial explanationsimilarly. Computinga bestone
amountgo an optimizationproblem,which canbe solved
by binarysearchovertherange0,1] of a, andthusin poly-
nomialtime with a £t oracle. A substantiallyfasteralgo-
rithm seemsunlikely to exist.

4 DERIVATION OF RESULTS

We now sketchhow someof our compleity resultscanbe
formally derived. More detailedproofs are givenin Ap-

pendixA. Detailedproofsof all resultsaregivenin [10].
Marny of theseproofsaretechnicallyquiteinvolved.

41 EXPLANATION
Theorem 4.1 Explanationis DY -complete

Proof (sketch). As for membershipin DY, recall that
X =z is an explanationof ¢ relative to C iff EX1-EX4
hold. Decidingin EX1 whetherg(u) for everyu € C andin
EX4 whetherX (u) =z and X (u') # = for someu, v’ € C
is polynomial. In EX2, the setC’ of all u € C suchthat
X (u) =z is polynomially computable. By Theorem?2.4
and as XY is closedunder polynomially mary conjunc-
tions, decidingwhetherX =z is a weakcauseof ¢ under
everyu € C' isin ©¥. In EX3, guessingsomeX'’ C X and
checkingthat X' =z| X' is a weak causeof ¢ underev-
eryu € C suchthat X' (u) = z| X" isin ¥ . Thus,deciding
EX3isin II¥. In summarydecidingwhetherX =z is an
explanationof ¢ relativeto C isin DY .

Hardnessfor DY is shavn by a reduction from de-
ciding, given a pair (®,,®,) of QBFs &;=34,VB;y;
with i€ {1,2}, where each v; is a propositional
formula on the variables 4, ={A4;1,...,A4;m;} and
B;={B;1,...,Bin;}, whether®, is valid and ®, is
not valid. We build M =(U,V,F), XCV, z€ D(X),
CC D(U), and ¢ asrequiredsuchthat X =z is an ex-
planation of ¢ relative to C iff ®; is valid and &, is
not valid. Roughly the main idea behindthis construc-
tion is as follows. We constructM; = (U, V4, Fy) and
M, = (U, V4, F>) andtwo events¢; and ¢» suchthat (i)
ViNVy,={G}, and(ii) for everyuw € D(U), it holdsthat
G =0 is aweakcauseof ¢; underu in M; iff ®; is valid
(seeFig. 3, left side). The causalmodel M is the union
of M, and M,, enlagedby additionalendogenouwari-
ables(seeFig. 3, right side). We then construct¢ and
u1,us € D(U) suchthat ¢ is underu; andu, equialent
to ¢1 and ¢, respectiely. Finally, the constructionis



suchthat G=0 A G' =0 is an explanationof ¢ relative
to C = {u1,uz} in M, iff (8) G =0 is aweakcauseof ¢;
underu, in M;, and(b) G =0 is not a weak causeof ¢-
underus in M,, where(a) (resp.,(b)) is encodedn EX2
(resp.,EX3). Thatis, G =0AG' =0 is anexplanationof ¢
relativeto C in M, iff & isvalid and®; is notvalid.

Theorem 4.2 ExplanationExistencds £t -complete

Proof (sketch). We guesssomeX' C X andz’' € D(X'),
andverify that X' = ' is anexplanationof ¢ relativeto C.
By Theoremd.1, this canbe donein polynomialtime with
two callsto a >-¥' -oracle. Thus,the problemis in $£.

¥ f-hardnessis shovn by a reduction from deciding
whetheragivenQBF ®=3BYC3D+ is valid, wherey is a
propositionaformulaonthevariablesB U C U D. Wecon-
structM = (U,V, F), X CV,CC D(U), and¢ suchthat
® is valid iff someX’ C X andz’ € D(X') exist suchthat
X' =1 is anexplanationof ¢ relative to C. Roughly the
mainideais to encodethe quantor*3B” in guessingsome
X' C X, and“VC 3D ~" in checkingthe complemenbf a
weak causein EX3. Note that the constructionis techni-
cally involved. O

4.2 PARTIAL EXPLANATION AND
EXPLANATORY POWER

We now focuson thecomplexity of decidingpartialanda-
partial explanations. The following lemmagivesa useful
characterizationf thesetC%__, whichis usedbelow.

Lemma4.3 Let M =(U,V, F) be a causalmodel. Let
X CVandz € D(X), andlet¢ beanevent.LetC C D(U)
suc that ¢(u) for all u € C. Then,C% _, isthesetof all
u € C sud thateither (i) X (u) # z, or (ii) X (u) =z and
X =z is aweakcauseof ¢ underu.

P
D

Theorem 4.4 «-Partial Explanationis P, complete

Proof (sketch). We first prove membershign PZQP. Re-
call that X =z is an a-partial explanationof ¢ relative to
(C, P) iff (a) X =z isanexplanatiorof ¢ relativeto C}’}:x,
and (b) P(C?}:w | X =z)>a. By Lemma4.3, C?}:w is
the setof all u € C suchthat either (i) X (u) #z, or (ii)
X(u)=z and X =z is a weak causeof ¢ underu. As
deciding(i) is polynomial,and deciding(ii) is in ¥, by
Theorem2.4, computingcﬁzw isin FP?E. OnceC?}:w

is given,deciding(a) is possiblewith two ¥ -oraclecalls,
by Theoremd.1,anddeciding(b) is polynomial. It is now

well-known that two roundsof parallel £F -oraclequeries
in apolynomial-timecomputatiorcanbereplacedy asin-

gle one[2]. Hence theproblemisin Pﬁg.

Ey Ey
X1 Xk
v v
3, (I)k

Figure4: SchematicConstructionfor Evaluatingk QBFs
Dy,..., D

Hardnessfor Pﬁg is shovn by a reductionfrom decid-
ing, given k QBFs ®; =3A4,VB;y; with i€{1,...,k},

where each+; is a propositionalformula on the vari-

ablesAi:{Ai,l, Ceey Ai,m;} and B;= {Bi,17 ey Bi,ni },

whetherthe numberof valid formulasamong®,, . .., &

iseven.W.l.o.g.,A; U By, ..., A, U By, arepairwisedis-
joint, ®; is valid, andfor eachje{2,...,k}, the valid-

ity of ®; implies the validity of ®;_; [41]. We create
M=(UV,F),XCV,zeD(X),¢,CCD(U), P,anda

suchthat X = z is ana-partialexplanationof ¢ relative to

(C, P) iff thenumberof valid formulasamong®,, . .., &

is even. Roughly the mainideabehindthis constructioris

asfollows. For each®;, we constructaninstanceof weak
causethatis, M; =(U;,V;, F;), X; C V;, z; € D(X;),

u; € D(U;) andan event ¢;, suchthat X; = z; is a weak
causeof ¢; underu; in M; iff ®; is valid. Then, M is the
unionof all M;, enlagedby additionalvariables(seeFig.

4),andwedefineX = X; U---UX, andz=x; ...xzg. By

settingP to theuniformdistributionoverC anda =1/ |C|,

we obtainthat X = z is an a-partial explanationof ¢ rel-
ative to (C, P), iff X =z is an explanationof ¢ relatve
to C%_,. Thelatteris madeto hold iff thenumberof valid

formulasamongthe ®;’sis even. In detail, EX3is violated,
iff 4 is even,®; is notvalid,and®;_; is valid. O

Theorem 4.5 a-Partial Explanation Existenceis Xf-
complete

Proof. As for membershipn ¥, by Theorem4.4, decid-
ing whetherX' =z’ is an a-partial explanationof ¢ rela-

tiveto (C, P) isin PF. Thus,guessingsomeX’ C X and
z' € D(X'), anddecidingwhetherX' =z’ is an a-partial
explanationof ¢ relativeto (C, P) isin XF.

¥¥-hardnesss shavn by areductionfrom ExplanatiorEx-
istence.Givenaninstanceof it, let P be the uniform dis-
tributiononC, andlet a« =1. Then, X' =2' is ana-partial
explanationof ¢ relativeto (C, P) iff X' =1’ is anexpla-
nationof ¢ relatveto C. O



Theorem 4.6 Partial Explanationis PF -complete

Proof (sketch). The membershipart canbe proved sim-
ilarly asin the proof of Theorem4.4. The hardnesgart
follows easilyfrom the hardnessesultin Theoremd.4. O

Theorem 4.7 ExplanatoryPoweris FPﬁg -complete

Proof (sketch). We compute first C?}:w and then

P(C}’}:z | X = z). By theproofof Theoremd.4,theformer
P

isin FPf2 , while thelattercanclearly bedonein polyno-

mial time. In summary computingthe explanatorypower

.. P

Isin FPH 2.

FPF-hardnessis shavn by a reduction from comput-
ing, given k¥ QBFs &; =3A4;VB;v; with i€ {1,..., k},

whereeach; is a propositionalformula on the variables
A= {Az',I; ey Ai,m,-} and B;= {Bz"l, ceey Bz’,ni}r the
vector(vy, . . ., vg) € {0, 1}* suchthatv; = 1 iff ®; isvalid,

forallie{1,...,k}. Wl.o.g.,A; UBy,..., A, U By are
pairwisedisjoint, and ®; is valid. Roughly the mainidea
is to constructa probleminstancesuchthat (vy, .. ., vg)

is the bitvector representatiorof the explanatory power
of X =z. For each®;, we constructM; = (U;, V;, F;),

X;CV;, z; € D(X;), u; € D(U;), andan event ¢; such
that X; = x; is aweakcauseof ¢; underu; in M; iff ®; is
valid. Thesemodelsare then combinedin M suchthat
u; €C%_, iff ®; is valid. Defining P(u;) =21 for all

ie{l,...,k} completeghereduction.O

4.3 SUCCINCT REPRESENTATION

Theorem 4.8 Explanationis T} -completein the caseof
succinctcontext sets.

Proof (sketch). Recallthat X =z is an explanationof ¢

relative to C iff EX1-EX4 hold. Under succinctcontext

sets,in EX1, deciding ¢(u) for all we€C is in co-NP.

In EX4, decidingwhetherX (u) =z and X (v') #« hold

for somew,u' €C is in NP. By Theorem2.4, deciding
whether X =z is a weak causeof ¢ underevery u € C

with X (u) =z in EX2is in II§. Thus,decidingwhether
someX' C X existssuchthat X' =z| X' is a weakcause
of ¢ underevery u € C with X'(u) =z|X' isin X¥. That
is, decidingEX3 is in TI}. In summarydecidingwhether
EX1-EX4holdisin I} undersuccinctcontext sets.

Hardnesdor IIY is shavn by a reductionfrom deciding
whetheragivenQBF ® = YAIBYC3 Dy isvalid, wherey
is apropositionaformulaonthevariablesA U BUC U D.
Roughly speakingthe mainideais to encode® in EX3,
wherethe quantorVA” is representedby consideringall
X' Cc X, the quantor“3B” is expressedy finding some

u € D(U),andvVC 3D ~ is expressedby checkingthecom-
plementof aweakcauseO

Theorem 4.9 Partial Explanationis TI¥ -completein the
caseof succinctcontext sets.

Proof (sketch). Membership in II} follows from
Lemma4.3 and Theorem2.4. Hardnessfor IIY can be
provedsimilarly asin theproof of Theorem4.8.0

5 RELATED WORK AND CONCLUSION

Thereis quite somework on algorithmsand compleity
of finding abductve explanationge.g.[3, 6, 7, 8, 35, 37])
which play animportantrole in mary Al problemsinclud-
ing diagnosis,planning, or natural languageprocessing.
Roughly a setof facts E is an abductve explanationof
an obsenation O on somebackgroundtheory T, if E is
compatiblewith T" andentailsO; further minimality con-
ditionsareusuallyimposedon E. While causabndabduc-
tive explanationgin astandardogical setting[27, 37]) are
apparentlydifferentconceptsthey have similar comple-
ity. In particular decidingthe existenceof anabductve ex-
planationis ¥ -completein the propositionalcontext [8];
this matchesour respectie resulton causalexplanations
for binary causalmodels. Computingcausaland abduc-
tive explanationsis polynomially intertranslatablen this
casewhile causakxplanationdrom generatausamodels
areharderto compute.Efficient transformation®f causal
into abductve explanationsandvice versa,is aninterest-
ing subjectfor furtherwork.

Ratherweakly relatedto ours are complexity resultson

maximum a posteriori explanations(MAPs, alias most
probableexplanations[25, 26]), which are a dominating
notion of explanationin the probabilistic Al literature.
Computinga MAP in a Bayesianbelief network, i.e., an
assignmento all variablesgivena partialassignmensuch
thatits probabilityis maximum,is NP-hard[39] but is fea-
sible in polynomialtime with an NP oracle. This resultis

quite differentfrom our resultson a-partial explanations,
for two reasonsfirstly, MAPs arecomputedrom the setof

all contexts, which is not part of theinput. In this setting,
a-partial explanationshave higher compleity. Secondly
MAPs aresinglecontextswhichmaximizeprobabilityfor a
givenevidencewhile a-partialexplanationsingleoutsub-
setsof contextswhich sensiblyrespectelevantinformation
[20]. Computationallyit is more suitableto comparede-
ciding P(X =z) > 0 in abelief network with our problem
Partial Explanationunder succinctcontet sets,whereC

containsall possiblecontets and P emepgesfrom inde-
pendentexogenousvariables. However, the former prob-
lemis NP-complete[5], while thelatteris, by our results,
¥ -completeandthusmuchharder We may expecta sim-

ilar relationshipfor computingthe explanatorypower vs



the probability P(X = z) in a belief network, which can
be donein polynomialtime with a#P oracle[34].

Our work on causalexplanationscontinuesand extends
[11], and contributesin paving the way for efficient al-
gorithmsandimplementation®f the structural-modebp-
proachby HalpernandPearl. Our resultsgive a picture of
thecompleity of explanationsn thegenerabndthebinary
case.However, it remainsto identify casesof lower com-
plexity, andin particularislandsof tractability Meaningful
restrictionamustbe foundthateliminateseveralsourceof
compleity, whichis notstraightforvard. This andrefining
thecompleity pictureis partof our ongoingwork.

A APPENDIX: SELECTED PROOFSAND
PROOF SKETCHES

A.1 PROOFSFOR SECTION 2

Proof of Lemma 2.3. (=) Assumethat X =z is aweak
causeof ¢ underu. Thatis, (AC1) X (u) ==z and ¢(u),
and (AC2) some WCV - X, 7€ D(X), we D(W)
exist such that (a) —¢zw(u) and (b) ¢gwz(u) for all
ZCV —(XUW)andz = Z(u). In particular X' (u) = «’
and¢(u). Moreover, as X is no predecessoof ary vari-
ablein ¢, it follows that (a) ¢z (u) and(b) ¢grqrz(u)
forall ZCV — (X UW) andz = Z(u), wherez' = | X',
w' =wzxg, andzg = x(X,). Thisshavsthat X' =z’ is a
weakcauseof ¢ underu.

(«) Assumethat X' =z’ is a weak causeof ¢ underu.

That is, (AC1) X'(u)=2' and ¢(u), and (AC2) some
WCV -X' 7 eD(X'"), we D(W) exist suchthat (a)
¢z (u), and (b) ¢guz(u) for all ZCV — (X'UW)

and 2=Z(u). As Xo(u) =z(Xp), it holds X (u) =z

and ¢(u). Moreover, as X, is no predecessorof

ary variablein ¢, it follows that () = ¢z 0. (u) and
(b) ¢arapwz(w) for all ZCV —(XUW) and 2= Z(u),

where w' =w|(W — {Xo}), and zo=z(Xo). Hence,
X =z isaweakcauseof ¢ underu. O

A.2 SELECTED PROOFSFOR SECTION 4

Proof of Theorem 4.1 (continued). For everyi € {1, 2},
the causalmodel M; = (U, V;, F;) is definedby U = { E'}
andV; =A; U B; U {G, C;}, whereD(S) ={0,1,2} for
all Se B;,andD(S)={0,1} forall S € U; UV; — B;.
Moreover, we define

i = (in N S#2)Vv(Ci=0)

SEB;

V(G=1ACi=1A \ S#2),
SeB;

wherey; is obtainedrom +; by replacingeachS € A; U B;
by “S=1". The functionsin F; = {Fi | SeV;} are

definedasfollows:

e Fi=0 forall Se 4; U{G,C;},
e Fi=G + C; forall S€B;.

As shavnin [11, 12, for everyi € {1,2} andu € D(U), it
holdsthatG = 0 is aweakcauseof ¢; underu in M; iff @,
is valid.

The causalmodel M = (U, V, F) is now definedby V =
Vi U‘/QU{GI,H} and F=F UFQU{FGI =FE Fg=1
iff (E=0A¢1)V (E=1A ¢9) istrue}. Let ¢ bedefined
asH =1, andlet uy,uz € D(U) bedefinedby u; (E) =0
andus(E) =1. Obsenethat¢ is primitive.

For everyi € {1,2} andu € D(U), it holdsthatG =0 is a
weakcauseof ¢; underu in M iff ®; is valid. Hence for
everyie€ {1,2},

(i) G=0isaweakcauseof ¢ underu; in M iff
®; is valid.

By Lemmaz2.3,thefollowing statementold:

(i) G=0Iisaweakcauseof ¢ underu; in M iff
G =0 A G'=0is aweakcauseof ¢ underu, in M.

(i) G'=0is notaweakcauseof ¢ underu; in M.

Using theseresults,we now shav thatG=0A G' =0 is
anexplanationof ¢ relative to C = {u1, us} iff ®; is valid
and®, is notvalid.

(=) Assumethat G=0 A G’ =0 is an explanationof ¢

relative to C. In particular by EX2, G=0AG'=0isa
weak causeof ¢ underu;. Moreover, by EX3, G=0is

eithernotaweakcauseof ¢ underuy, or notaweakcause
of ¢ underu,. By (i), G = 0 is aweakcauseof ¢ underu; .

Hence,G =0 is not a weak causeof ¢ underus. By (i),

®, isvalid, and® is notvalid.

(<) Assumethat @, is valid and®- is not valid. We first
shav that EX1 holds. As C;(u) =0 for all i € {1,2} and
u€eC, we get ¢;(u) for all i€ {1,2} andueC. Thus,
¢(u) for all weC. To seethat EX4 holds, obsene that
G(u1) =G'(u1) =0, while G(u2) =0 andG’ (uz) = 1. We
next show thatEX2 holds. By (i), G =0 is a weakcause
of ¢ underu;. By (ii), it followsthatG=0A G =0isa
weakcauseof ¢ underu;. We now shav that EX3 holds.
By (i), G =0 is nota weakcauseof ¢ underus. By (iii),
G' =0 is notaweakcauseof ¢ underu;. O

Proof of Theorem 4.2 (continued). Hardnessor ¥ is
shavn by a reductionfrom decidingwhethera given QBF
& =3BVC 3D« is valid, where~ is a propositionalfor-
mula on the variablesB={By,...,B;}, C={C1,...,



Cm}, and D ={D,,...,D,}. We build M =(U,V, F),
X CV,CCD(U), and¢ asrequiredsuchthat ® is valid
iff someX’ C X andz’ € D(X') existsuchthatX' =z is
anexplanationof ¢ relativeto C.

We defineU = {I,Uy, Uy, ...,Us, U'}, where D(I) =
{0,...,1 + 1} and D(S) = {0,1} for all SeU — {I}.
Let C ={ug,uo’,-- ., u,w', w41}, Wherew; (resp.,u;’)
is the unigue uw € D(U) such that e;(u) (resp., &;'(u))
holds,ande; (resp.g;') for everyi € {0, ..., 1 + 1} (resp.,
i€{0,...,1}) is definedby:

g = I=iANUs=0AT'=1
l
A /\(UiZO/\UiIZO),
i=1
Eil = IZ’iAUOZOAUOIZO
l

A /\(UiZO/\UiIIO).
i=1

Define M =(U,V, F) asfollows. Let V=B U B' U
CuUuDU{X,,X,,E,E"Y},whereB'={B,',..., B/},
D(S)={0,1,2} for all SeD, and D(S)={0,1} for
all SeV—-D. Let

a = (Y AN\S#2)V(E=0)
SeD

V (Xo=1AE=1AV S#£2),
SeD

l
¢’1 = (60 VEOI—)(X():O/\ /\ BZ#B/)
Y

K2

v (\I/(Bizl/\Bi’:l))vE':O),

i=1

l
¢I2 = /\(Ez’VE,‘I—>B,‘=0VBiI=0),
i=1

¢3 = (e141— (@A '/_l\l B;# B;')

i=1

where~' is obtainedfrom ~ by replacingeachS € B U
CUD by*“S=1". We arenow readyto definethe func-
tionsF = {Fs | S € V} asfollows:

e Fg,=U;andFp, =U; forallie{1,...,1},

L] FXo =0 andFXO’ = Uol,

Fs=0forall Se CU{E,E'},

Fs=Xo+ Eforall SeD,

Fy =1iff ¢ Vv ¢4y v ¢ istrue.

DefineX = BUB'U{X,, Xo'}, andlet ¢ beY =1. No-
ticethatg is primitive.

For every truth assignmentr to the variablesin B, we
use[B/7(B)] to denotethe substitution[B; /7(B1),. ..,
B;/7(By)], and we define o” =a[B/7(B)]. Define
zo =0, andletu € D(U) with Xo(u) = zo. Then, X =z
is aweakcauseof o” underu iff 3CVD —y[B/7(B)] is
valid [11, 12]. Thatis, Xo = z¢ is nota weakcauseof o™
undery iff VC' 3D v [B/7(B)] is valid. Thus,Lemma2.3
impliesthefollowing fact:

(*) Forevery X' C BUB'U{Xo, Xo'} with X¢ € X', it
holdsthat X' = X'(u) is notaweakcauseof o™ under
u iff VO 3D v [B/7(B)] is valid.

Using this result,it canbe shovn that @ is valid iff some
X'C X andz' € D(X') exist suchthat X' =2/ is an ex-
planationof ¢ relativeto C (see[10] for details).O

Proof of Lemma 4.3. Clearly, Cf}:z doesnot containary

u€C suchthatX (u) =z andthatX = z isnotaweakcause
of ¢ underu, asotherwiseEX2 would beviolated.Hence,
C?}:ac is asubsebdf thesetof all u € C suchthateither(i) or

(i). Assumenow thatsomeu' € C with X (u') # & doesnot

belongto C%_,,. Then,X =z is an explanationof ¢ rela-

tiveto C' =C%_, U {u'}. Butthis contradict<%_, being

the largestsuch(C’. Assumenext that somewu’ € C such
that X (u') = 2 andthat X = z is aweakcauseof ¢ under
u' doesnot belongto C?}:z. Then, X =z is anexplana-
tion of ¢ relativeto C' = C?}:z U {u'}. But this contradicts
againC%__ beingthe largestsuchC’. HenceC%__ is the

setof all u € C suchthateither(i) or (ii). O

Proof of Theorem 4.4 (continued). We construct
M=UV,F),XCV,zeD(X),¢,CCD(U), P,anda

asrequired suchthat X = x is ana-partialexplanationof ¢

relative to (C, P) iff the numberof valid formulasamong
®y,...,P iseven.

For i€ {1,...,k}, definethe causalmodels M; = (U;
Vi, F;) asfollows. The exogenousand endogenouvari-
ablesaredefinedby U; = { E; } andV; = A,UB,U{C;, G;},
respectiely. Define D(S)={0,1,2} for all S € B;, and
D(S) ={0,1} forall S € U; UV; — B;. We define

¢ = (iA N S#2)V(C;=0)

SeB;

V (Gi=1AC;=1A\ S#2),
SeB;

wherey; is obtainedrom ; by replacingeachS € A; U B;
by “S=1". The functionsin F; = {Fi | SeV;} are
definedasfollows:

[ ] F&,1 = Ei’



o Fi=0forall Se{C;}UA,,
° Fg:Gl—FCZ fOI’a||S€B,~,

For eachie {1,...,k}, let X; ={G;}, anddefinez; €

D(Xz) and u; € D(U,) by xz(Gz) =0 and uz(Ez) =0.

Then, for every i€ {1,...,k}, X; =z, is a weak cause
of ¢; underu; in M; iff ®; is valid (theconstructioris sim-

ilar asin the proof of Theorem4.1, the only differenceis

thatwe have F;. = E; here,insteadof F;, =0). Obsere
alsothat¢;(u) holdsfor all uw € D(U;).

Definethe causamodelM = (U, V,F)byU=U; U---U
U,U{E}, whereD(E) = {0,...,k}, V=V U---UV,U
{H},andF = F; U---U F}, U {Fg}, whereFg = 1iff

(A =) ( A g — $i1)
i€{l,....k} i€{1,...,k},ieven
A ( A e, —>T)

i€{1,...,k}, i odd

is true, ande; ande] aredefinedasfollows for every i €

{1,...,k}:

g = (E=9)A( A (Ej=0),
je{l,...,k}

ei = (E=0)A(Ei=1)A( (E;=0))
JE{L,mk}—{i}

For everyie{1,...,k}, let u; (resp.,u}) be the unique
u € D(U) suchthate;(u) (resp.£5(u)). LetY ={H}, and
let $ beY =1. We defineC = {uy,...,uk,ui,...,u}},
P(u)=1/2kforallueC, anda=1/2k. DefineX =
{G1,...,Gr}andz =z ---z; (= 0---0).

Obsene that ¢ is primitive, P is the uniform distribution
overC, and¢(u) for all u € C. By Lemma2.3, thefollow-
ingholdsforalli € {1,...,k},all X' C X,andz’ = z|X":

() If X; C X', thenX'=2'is a weakcauseof ¢ un-
derw; iff ®; is valid.

(i) If iisevenand X; 1CX’, then X' =2’ is a weak
causeof ¢ underu iff ®;_; is valid.

(iii) If ¢ isodd,thenX’=2'is notaweakcauseof ¢ un-
deru;.

(iv) If X; ¢ X', thenX'=2'is not a weak causeof ¢
underu;.

By Lemma4.3,C% —, is the setof all 4 € C suchthat ei-
ther (@) X (u) #z, or (b) X (u) =z and X =z is a weak
causeof ¢ underu. By (i), C?}:z ={ul,..., up} U {u; |
ie{l,...,k}, ®;isvalid}. It cannow be shovn that
X =z is an a-partial explanationof ¢ relative to (C, P)

iff thenumberof valid formulasamong®,, . . ., ®; iseven
(se€[10] for details).O

Proof of Theorem 4.8 (continued). Hardnesdor I} is

shown by a reductionfrom the I} -completeproblem of

decidingwhethera given QBF & = VA3IBVYC 3D~ is

valid, where~ is a propositionalformula on the variables
A={A4,..., A}, B={B,...,B}, C={C,...,

Cn}, andD ={Dy,...,D,}. We build M =(U,V, F),

X CV,zeD(X),CCD(U), and¢ asin thestatemenof

thetheoremsuchthat X = z is anexplanationof ¢ relative
to C iff @ isvalid.

We definethe exogenousvariablesby U = B U {Uy, Uy,
Uy,...,Ux,U'}, where D(S)={0,1} for all SeU.
Define the set of contexts by C={ueD(U)|(goV
€1 Veg)(uw)}, where:

k
go = Up=0A /\ (Ui:(] A UiIZO) R
i=1

g1 = Up=0A V ((Uz;=1 A Uil=0)V(Ui=0 A Uil=1))
A A (U=0AT;'=0)),
JE{1, k) —{i}

k
=1

k
gy = Up=1V V (Ui=1A Uil=1) .

=1

We define M = (U,V, F) as follows. DefineV =AU
A'UCUDU{X,,E,F,Y}, whereA' = {A,',..., A"},
D(S)={0,1,2} for all SeD, and D(S)={0,1} for
allSeV —D. Let
a = ("YAANS#2)V(E=0)
SeD

V (Xo=1AE=1A\ S#2),
SeD

¢ = (60> Xo=0)A(e2—>T)

A (61 —)(OL/\ ;c\ Az;éA,I)
=1

% (\k/(Aizl/\Ai'=1))vF=0),

i=1

wherey' is obtainedrom « by replacingeachS € AU BU
CuUD by*S=1". We arenow readyto definethe func-
tionsF = {Fs | S € V'} asfollows:

. FAi:Uz-andFAi’:Ui’forallie{l,...,k},
e Fx,=Uy,andFs=0forall Se CU{E, F},
e Fs=Xo+ Eforall Se D,

o Fy =1iff ¢' istrue.



Let X =AU A'"U{X,}, andlet z € D(X) be given by
z(S)=0 for all Se X. Let ¢ beY =1. Notice that ¢
is primitive. It cannow beshovn that ® is valid iff X =z
is anexplanationof ¢ relativeto C (see[10] for details).O
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