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Favoritenstraße9-11,1040Wien,Austria

eiter@kr.tuwien.ac.at

Thomas Lukasiewicz
�

Dipartimentodi InformaticaeSistemistica,
Universit̀adi Roma“La Sapienza”
Via Salaria113,00198Roma,Italy

lukasiewicz@dis.uniroma1.it

Abstract

We analyze the computationalcomplexity of
HalpernandPearl’s (causal)explanationsin the
structural-modelapproach,which are basedon
their notions of weak and actual causality. In
particular, we give a precisepictureof thecom-
plexity of decidingexplanations,� -partialexpla-
nations,and partial explanations,and of com-
puting theexplanatorypower of partialexplana-
tions. Moreover, we analyzethe complexity of
decidingwhetheran explanationor an � -partial
explanationovercertainvariablesexists.Wealso
analyzethecomplexity of decidingexplanations
andpartialexplanationsin thecaseof succinctly
representedcontext sets,and the complexity of
decidingexplanationsin the generalcaseof sit-
uations. All complexity resultsare derived for
the generalcase,as well as for the restriction
to the caseof binary causalmodels, in which
all endogenousvariablesmaytake only two val-
ues. To our knowledge,no complexity results
for explanationsin thestructural-modelapproach
havebeenderivedsofar. Our resultsgive insight
into the computationalstructureof Halpernand
Pearl’s explanations,andpave the way for effi-
cientalgorithmsandimplementations.

1 INTRODUCTION

Theautomaticgenerationof explanationsfor humansis of
crucial importancein areaslike planning,diagnosis,natu-
ral languageprocessing,andprobabilisticinference. No-
tions of explanationshave beenstudiedquite extensively
in the literature,seeespecially[21, 14, 36] for philosoph-
ical work, and [25, 38, 22] for work in AI that is related�
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to Bayesiannetworks. A critical examinationof suchap-
proachesfrom theviewpoint of explanationsin probabilis-
tic systemsis givenin [4].

In a recentpaper[18, 20], HalpernandPearlintroducedan
elegant definition of causalexplanationin the structural-
modelapproach,which is basedon their notionsof weak
andactualcausality[18, 19]. They showedthatthis notion
of causalexplanationmodelswell many problematicexam-
plesin the literature.Note thatHalpernandPearl’s causal
explanationis verydifferentfrom theconceptof causalex-
planationin [28, 29, 15].

The following example from [18, 19, 20] illustratesthe
structural-modelapproach.Seeespecially[1, 13, 31, 32,
17] for moredetailson structuralcausalmodels.

Example 1.1 (arsonists) Suppose two arsonists lit
matchesin differentpartsof a dry forest,andboth cause
treesto startburning. Assumenow eithermatchby itself
suffices to burn down the whole forest. We may model
such a scenario in the structural-modelframework as
follows. We assumetwo binary backgroundvariables���

and
���

, which determinethe motivation andthe state
of mind of the two arsonists,where

���
is 1 if f arsonist	

intendsto starta fire. We thenhave threebinaryvariables
 �
,

 �

, and � , which describethe observablesituation,
where


 �
is 1 if f arsonist 	 dropsthe match,and � is 1

if f thewhole forestburnsdown. Thecausaldependencies
betweenthesevariablesareexpressedby functions,which
say that the valueof


 �
is given by the valueof

� �
, and

that � is � if f either

 �

or

 �

is 1. Thesedependencies
canbegraphicallyrepresentedasin Fig. 1.


 ����
��� 
 � �

Figure1: CausalGraph



While the semantic aspects of explanations in the
structural-modelapproachhavebeenthoroughlystudiedin
[18, 20], an analysisof their computationalpropertiesis
missingso far. In this paper, we fill this gap. Our main
contributionsaresummarizedasfollows:


 We analyzethe computationalcomplexity of Halpern
andPearl’s explanationsin the structural-modelapproach
[18, 20]. In particular, we draw a precisepicture of the
complexity of deciding explanations, � -partial explana-
tions, andpartial explanations,andof computingthe ex-
planatorypowerof partialexplanations.


 We alsoanalyzethecomplexity of thenaturalproblem
of decidingwhetheran explanationor an � -partial expla-
nationovercertainvariablesexists.


 We show thatdecidingexplanationsandpartial expla-
nationshasa highercomplexity in the caseof succinctly
representedcontext sets.Generalizingfrom contextsto sit-
uations,in contrast,doesnot increasethe complexity of
decidingexplanations.


 We alsoshow thatall analyzedproblemshave a lower
complexity in thebinarycase.

Note thatdetailedproofsof all resultsaregiven in theex-
tendedpaper[10].

2 PRELIMINARIES

We assumea finite setof randomvariables. Eachvariable� �
may take on valuesfrom a finite domain ��� � ��� . A

value for a setof variables
������� ����������� ��� �

is a map-
ping !#" ��$ ��� � ���&%('�'�' % �)� ��� � such that !*� � �+�-,��� � ��� (for

�.�0/
, the unique value is the empty map-

ping
/
). The domainof

�
, denoted��� � �

, is the setof
all valuesfor

�
. For 132 � and ! , ��� � �

, denoteby !*4 1
the restrictionof ! to 1 . For setsof variables

� � 1 and
values! , �)� � �5�768, ���91 � , denoteby ! 6 the union of !
and

6
. Weoftenidentify singletons

�:�;�<�
with

���
, andtheir

values! with !*� ��� � .
2.1 CAUSAL MODELS

A causal model = � � � �?>@�BAC� consistsof two disjoint
finite sets

�
and

>
of exogenousand endogenousvari-

ables,respectively, anda set
A ��� A*D 4 � ,C> �

of func-
tions

A*D " ���FEHG DI� $ ��� � �
thatassigna valueof

�
to

eachvalueof theparents EHG D 2 � %J>LK �:���
of
�

.

We focus here on the principal class [18] of recursive
causalmodels = � � � �?>@�BAC� in which a total orderingM on

>
exists such that 1 , EHG D implies 1 M �

, for
all

� � 1 ,N>
. In such models,every assignmentto the

exogenousvariables
����O

determinesa unique value
6

for every set of endogenousvariables 1P2 >
, denoted1-Q0� O � (or simply 1R� O � ). In the sequel, = is reserved

for denotinga recursive causalmodel. For any causal
model = � � � �?>@�BAC� , set of variables

� 2 >
, and ! ,

��� � �
, the causalmodel =�S � � � �?>@�BA S � , where

A S �� AUT 471 ,V>�K �W� % � AXDZY � !X� �0[ � 4 �)[ , ���
, is asubmodel

of = . For 132 > , weabbreviate 1-Q]\^� O � by 1_S_� O � . Wesay= � � � �?>@�BAC� is binary if f 4 ��� � � 4 �0`
for all

� ,a>
.

Example 2.1 (arsonistscontinued) = � � � �B>��bAC� for Ex-
ample 1.1 is given by

�����c� �
,
� � �

,
> �d� 
 ��� 
 �e� � � ,

and
A ��� A*fVg��BAXfHhi�bA*j �

, where
A*fVg �d� �

,
A*fHh �0� �

, andA*j � � if f

 � � � or


 � � � (Fig. 1 shows theparentrela-
tionshipbetweenthevariables).

As for computation,we assumethat in = � � � �B>��bAC� ,
every function

AXD "V����EHG Dk� $ �)� � �
,
� ,C>

, is com-
putablein polynomialtime. Thefollowing is immediate.

Proposition 2.1 For all
� � 1P2 >

and ! , �)� � �
, theval-

ues 1R� O � and 1 S � O � , given
O , ��� � � , are computablein

polynomialtime.

2.2 CAUSALITY

Wenow recallweakcausesfrom[18, 19]. A primitiveevent
is anexpressionof the form 1 � 6

, where 1 is a variable
and

6
is a valuefor 1 . Thesetof eventsis the closureof

thesetof primitive eventsundertheBooleanoperationsl
and m . The truth of an event n in = � � � �?>@�BAC� underO , ��� � � , denoted�F= � O � 4 � n , is inductively definedby:


 �F= � O � 4 � 1 � 6
if f 1 Q � O � � 6

,


 �F= � O � 4 � l�n if f �9= � O � 4 � n doesnothold,


 �F= � O � 4 � nomRp if f �F= � O � 4 � n and �F= � O � 4 � p .

We write n*� O � to abbreviate �F= � O � 4 � n . For
� 2 >

and! , ��� � �
, wewrite n S � O � to abbreviate �9= S � O � 4 � n . For���W��� �:��������� �3qe� 2 >

with rIst� and ! �&, ��� � ��� , we
use

��� ! �*'�'�' ! q to abbreviate
� � � ! � m ����� m �3q@� ! q .

Thefollowing is immediate.

Proposition 2.2 Let
� 2 >

and ! , �)� � �
. Given

O ,
��� � � and an event n , decidingwhether n*� O � and n S_� O �
(given ! ) holdcanbedonein polynomialtime.

Let = � � � �B>��bAC� be a causalmodel. Let
� 2 >

and! , ��� � �
, andlet n be an event. Then,

��� ! is a weak
causeof n under

O
if f thefollowing conditionshold:

AC1.
� � O � � ! and n*� O � .

AC2. Someset of variables uv2 >�K � and somevalues! , ��� � �
, w , �)�9u �

exist with:



(a) l�n S:x � O � , and
(b) n S:xzy{ � O � for all |} 2 >PK � � % u �

and |~ � |} � O � .
Example 2.2 (arsonistscontinued) Considerthe contextO��?� �H� �<� � � � in which both arsonistsintend to start a
fire. Then,


 �X� � , 
 �X� � , and

 ��� �Xm 
 �X� � areweak

causesof � � � . Moreover,

 �V� � (resp.,


 �*� � ) is the
only weakcauseof � � � underthe context

O��?� �X� �7� �b���
(resp.,

O ��� ��� � �&� � � ) in which only arsonist� (resp.,
`
) in-

tendsto starta fire.

The following lemmacharacterizesirrelevant variablesin
weakcauses.

Lemma 2.3 Let = � � � �?>@�BAC� . Let
� 2 >

and ! , ��� � �
,

let n be an event, and let
O , ��� � � . Let

� ��,a>
such

that in the causalnetworkfor = , it holds that
� �

is not
a predecessorof any variable in n , and

� � � O � � !*� � ��� .
Let

� [ ��� K ���;���
and ! [ � !*4 � [

. Then,
�.� ! is a weak

causeof n under
O

iff
� [ � ! [ is a weakcauseof n under

O
.

We recall a result from [11, 12], which shows that decid-
ing weakcauseis completefor ���� (resp.,NP) in thegen-
eral (resp.,binary) case. Note that this result holds also
when the domain ��� � � �d� � ���������7��D � of eachvariable� , � %o>

is specifiedby
� D sd� .

Theorem 2.4 (see [11, 12]) Given = � � � �B>��bAC� , � 2 > ,! , ��� � �
,
O , �)� � � , and an event n , decidingwhether��� ! is a weakcauseof n under

O
is completefor ����

(resp.,NP) in thegeneral (resp.,binary) case.

2.3 EXPLANATION

We now recall the conceptof explanationfrom [18, 20].
Let = � � � �B>��bAC� be a causalmodel. Let

� 2 >
and! , ��� � �

, n be an event, and ��2J��� � � be a setof con-
texts. Then,

��� ! is anexplanationof n relative to � if f
thefollowing conditionshold:

EX1. n*� O � for eachcontext
O , � .

EX2.
��� ! is a weakcauseof n underevery

O , � such
that

� � O � � ! .

EX3.
�

isminimal. Thatis, for every
� [�� �

, some
O , �

exists suchthat
� [ � O � � !*4 � [

and
� [ � !U4 � [

is not a
weakcauseof n under

O
.

EX4.
� � O � � ! for some

O , � , and
� � O [��U�� ! for

some
O [�, � .

Example 2.3 (arsonistscontinued) Consider the set of
contexts � ���:OH��� � � OH��� � � O ��� �:�

. Then, both

 �V� � and
 � � � are explanationsof � � � relative to � , while
 � � �;m 
 � � � is not, as here, the minimality condi-

tion EX3 is violated.

2.4 PARTIAL EXPLANATION AND
EXPLANATORY POWER

We finally recall the notions of partial and � -partial
explanationsand of explanatory power [18, 20]. Let= � � � �?>@�BAC� be a causal model. Let

� 2 >
and! , ��� � �

, let n beanevent,let �t2���� � � suchthat nX� O �
for all

O , � . We usethe expression�V�DZ� S to denotethe
uniquelargestsubset� [ of � suchthat

��� ! is an expla-
nation of n relative to � [ ; it is easyto seethat if sucha
set � [ exists,then ���DZ� S is defined.Let E bea probability
functionon � , anddefine

Eo���V�DZ� S 4 ��� ! �
� �
�e���c��H� \ � D]� ��� � S Eo�

O ��� ��e��� � D]� ��� � S Eo�
O �-�

Then,
��� ! is calledan � -partial explanationof n relative

to ��� � E � if f �V�DZ� S is definedand Eo���V�DZ� S 4 ��� ! � s � .
We say

�.� ! is a partial explanation of n relative
to ��� � E � if f

��� ! is an � -partial explanationof n relative
to ��� � E � for some�R� �

; furthermore,Eo�����DZ� S 4 ��� ! � is
calledits explanatorypower(or goodness).

Example 2.4 (arsonists continued) Let � ����O��?� � � OH��� � �O ��� ���
, and let   be the uniform distribution over � .

Then, both

 �V� � and


 �X� � are 1-partial explanations
of � � � . That is, both


 �V� � and

 �*� � arepartial ex-

planationsof � � � with explanatorypower � .
2.5 COMPLEXITY CLASSES

The complexity classesthat we encounterare shown in
Fig. 2. They are well-known classesfrom the Polyno-
mial Hierarchy (PH), or derived from them. We recall
that ¡8¢ � ��� � , £�¤ - ¡8¢ �)¥ � � , ���q�¦ � � ¡]¢�§&¨© , and

¥ � q �
co-���q , rIs0� , areclassesin PH.Theclassª]�q �d��«�¬o« [ 4« , ���q � « [i, ¥ � q � , rIst� , is the “conjunction” of ���q
and

¥ � q ; in particular, ª]� � is the familiar class ª]� . The

class¢ §&¨©­ , rIst� , containsthedecisionproblemswhichcan

besolvedin polynomialtimewith parallelcallsto a ���q or-

acle; ®*¢ §&¨©­ is theanalogfor functioncomputations.Note

that ¢�¯-�­ � ¢ §&¨ g­ and ®U¢ ¯-�­ � ®U¢ §&¨ g­ . For further back-
groundon thecomplexity classes,seee.g.[23, 24, 30, 41].

3 OVERVIEW OF RESULTS

In this section,we give anoverview on thecomplexity re-
sultsthatwe derive,anddiscusspossibleimplications.



ª]�¢
����

¥ � �
ª]�� ¢ §^¨h­

���°
¥ � °

ª]�° ¢ §&¨±­
���²
¥ �²£5¤ - ¡8¢

¡8¢
¢�¯-�­

Figure2: ContainmentbetweenComplexity Classes

3.1 PROBLEM STATEMENTS

In ouranalysis,wefocusonthefollowing problems,which
aremajortasksin explanation-basedcausalreasoning:

Explanation: Given = � � � �B>��bAC� , � 2 >
, ! , ��� � �

,
an event n , and a set of contexts �o2³�)� � � , decide
whether

��� ! is anexplanationof n relative to � .

Explanation Existence: Given = � � � �?>@�BAC� , � 2 >
,

an event n , anda setof contexts �´2���� � � , decide
whethersome

� [ 2 �
and ! [�, ��� � [µ�

exist suchthat� [ � ! [ is anexplanationof n relative to � .

� -Partial Explanation: Given = � � � �B>��bAC� , � 2 >
,! , �)� � �

, an event n , a set of contexts ��2¶��� � �
suchthat n*� O � for all

O , � , a probability function E
on � , and � s �

, decidewhether
�·� ! is an � -partial

explanationof n relative to ��� �   � .
� -Partial Explanation Existence: Given = � � � �B>��bAC� ,� 2 >

, an event n , a setof contexts ��2¶��� � � such
that n*� O � for all

O , � , a probability function E
on � , and � s �

, decidewhethersome
� [ 2 �

and! [ , ��� �)[ �
exist suchthat

�0[�� ! [ is an � -partialex-
planationof n relative to ��� �   � .

Partial Explanation: Given = � � � �B>��bAC� , � 2 >
, ! ,

��� � �
, an event n , a setof contexts �;2J��� � � such

that nX� O � for all
O , � , a probabilityfunction E on � ,

decidewhether
��� ! is apartialexplanationof n rel-

ative to ��� �   � .
Explanatory Power: Given = � � � �?>@�BAC� , � 2 >

, ! ,
��� � �

, anevent n , �o2¶��� � � , andaprobabilityfunc-
tion E on � , where(i) n*� O � for all

O , � , and(i)
��� !

isapartialexplanationof n relativeto ��� �   � , compute
theexplanatorypowerof

��� ! .

In all problems,the probability function   is assumedto
bepolynomiallycomputable.

Thefirst problem,Explanation,is therecognitionof anex-
planation. It emergesdirectly from the definition of ex-
planation in Section2.3 and capturesits intrinsic com-
plexity. The problemExplanationExistenceis associated
with the important task of finding an explanationfor an
event n . Similar as in other frameworks for explanations

Table1: Complexity of Explanations

Problem generalcase binarycase

Explanation ¸#¹º -complete ¸#¹ -complete

ExplanationExistence » ¹¼ -complete » ¹º -complete½ -PartialExplanation ¾*¿ ¨hÀ -complete ¾XÁ ¹À -complete½ -PartialExplanation
Existence

» ¹¼ -complete » ¹º -complete

PartialExplanation ¾ ¿ ¨ hÀ -complete ¾ Á ¹À -complete

ExplanatoryPower ÂH¾*¿ ¨hÀ -complete ÂH¾ Á ¹À -complete

Table2: Complexity of Explanations:SuccinctContexts

Problem generalcase binarycase

Explanation Ã ¹Ä -complete Ã ¹¼ -complete

PartialExplanation Ã ¹Ä -complete Ã ¹¼ -complete

Table3: Complexity of Explanations:Situations

Problem generalcase binarycase

Explanation ¸ ¹º -complete ¸ ¹ -complete

(e.g. [27, 37]), the set
�

focusesattentionto a subsetof
the variables,in termsof which the explanationmust be
formed.Findingexplanationsiscertainlythecentraltaskof
acausal-reasoningsystembuilt for applicationsin practice,
andthusthisproblemdeservesspecialattention.Theprob-
lems � -Partial/ Partial Explanationand � -Partial Explana-
tion Existencecanbeviewedasrelaxationsof Explanation
andExplanationExistence,respectively, in a probabilistic
context. ExplanatoryPower is the problemof computing
the“goodness”of apartialexplanation

��� ! , givenby the
coverageof thecaseswhere

��� ! is truein thecontexts � .
This informationcanbe usedto rank partial explanations
andsingleout “best” ones.

3.2 MAIN RESULTS

Our maincomplexity resultsarecompactlysummarizedin
Tables1–3. Besidesthe generalcase,they includeresults
for binary causalmodels,and also addresssuccinctcon-
text representation(seeTable2) anda generalizationfrom



contexts to situationsin [20] (seeTable3).

All resultsin Tables1–3show completenessunderstandard
polynomial-timetransformations[24, 30], andthussharply
characterizethecomplexity of theproblems.Fromthere-
sults in Table 1, it appearsthat finding explanationsand� -partialexplanationsis at thethird level of PH.Thus,ex-
planationsareharderto computethanweakcauses,which
lie at thesecondlevel of PH [11]. On theotherhand,rec-
ognizing explanationsand � -partial explanationsis only
mildly harderthanrecognizingweakcauses,which is ���� -
complete.The reasonis that by the latter, conditionEX2
amountsto a conjunctionof a linear numberof problems
in ���� , andEX3 to the negationof sucha problem;EX1
andEX4 areeasilychecked.Thus,by usualtechniques,the
explanationcheckcanbereducedto aconjunctionof prob-
lemsin ���� and

¥ � � . In thecaseof an � -partialexplanation,
we needto know the context �V�DZ� S ; by exploiting a basic
characterizationresult(Lemma4.3),it canbecomputedef-
ficiently with parallelcalls to a ���� oracle. Once � �Dz� S is
known, we needto checkwhether

�·� ! is anexplanation
relative to it, therestis easy. Thus,thecomplexity of this
problem,aswell asof ExplanatoryPower, lies herein the
computationof �V�DZ� S . The ���° upperboundfor Explana-
tion Existenceand � -Partial ExplanationExistenceis then
straightforwardby astandardguessandcheckargument.

The ���° -hardnessof ExplanationExistencestemsfrom a
subtletyin thedefinitionof explanation.Fromsatisfaction
of EX1, EX2, andEX4 for

�.� ! wecannotconcludethat
some

�0[�� ! [ containedin
��� ! existswhich will satisfy

EX1-EX4; if we minimize
��� ! soasto satisfyEX3, the

resulting
� [ � ! [ may violate EX4. It is this interplayof

theconditionswhich makesthis problemdifficult, andthe
proofsof thehardnessresultsnontrivial. The ���° -hardness
of � -Partial ExplanationExistenceis inherited from the
hardnessof ExplanationExistence.

3.3 SUCCINCT CONTEXTS

Table2 showsresultsfor someof theproblemsin a setting
wherecontexts aresuccinctlyrepresented.In fact,Table1
assumesthat thesetof contexts � is enumeratedin the in-
put. However, � maycontainexponentiallymany contexts;
adescriptiverepresentationcanbemuchmorecompactand
desirablein practice. In the succinctrepresentationset-
ting, wethusassumethat � is givenby atractablemember-
ship function Å � � O � . That is, on input of

O , ��� � � , func-
tion Å � � O � reportsin polynomialtimewhether

O , � holds.
This includes,e.g.,descriptionsof � in termsof proposi-
tionalformulasÆ over

�
suchthatthemodelsof Æ describe

the contexts in � . It turnsout that succinctrepresentation
increasesthecomplexity of Explanationand � -Partial Ex-
planationdrastically. Intuitively, in this casecheckinga
propertyfor all contexts in � becomesmuchharder, since

thereseemsno betterway thanguessingthe “right” con-
text witnessingor disproving the property. The complex-
ity increaseby two levels in PH stemsfrom the fact that
conditionEX3 involvestwo nestedchecksof propertiesfor
all contexts in � . This dominatesthe complexity of EX1,
EX2, andEX4 andleadsto

¥ �² complexity. For � -partial
explanations,we have similar effects. Worse,we needto
calculatesumsof probabilitiesover succinctlyrepresented
context sets.This leadsusoutsidePH: It requiresto solve
problemswhich are at least as hard deciding whethera
givenpropositionalCNF Æ has sÇr models,where r is in
theinput. Thisproblemis,asgenerallybelieved,notin PH.
We refrainfrom a detailedanalysisof computing� -partial
explanationshere. For Partial Explanation,we obtainthe
entryshown in thetable.A complexity increasefor Expla-
nationExistenceundersuccinctcontext setsto ���È is plau-
sible,thoughwehavenot analyzedit yet; notethatalready
the

¥ �² -hardnessproof for Explanationis ratherinvolved.

3.4 SITUATIONS

Table 3 shows resultsfor the generalizationof explana-
tionsfrom contextsto situationsdiscussedin [20]. Without
going into the detailshere,in this scenariothe epistemic
stateconsistsof a set É of pairs �9= � O �

calledsituations,
where = is a causalmodeland

O
is a context, ratherthan

a setof contexts. Informally, a situation �9= � O �
encodes

somecausalknowledgein = andsomeknown factsin
O

.
Generalexplanationsarethendefinedaspairs �Êp � �·� ! �
where p is an arbitrary causalformula that restrictsthe
causalmodelsto be considered,and

��� ! is a conjunc-
tion of primitiveevents.Thedefinitionis similar to theone
of explanations,and is too involved to be presentedhere
(see[20]); it coversbasicexplanationsasa specialcase.
Interestingly, generalexplanationsarenot moredifficult to
recognizethanbasicexplanations.

3.5 RESTRICTED CASES

This concludesour expositionof thecomplexity resultsin
the generalcase. Tables1-3 alsoshow resultsfor the re-
striction to binary causalmodels, whereeachendogenous
variablemay take only two values. In this case,the com-
plexity of all consideredproblemsdropsby one level in
PH;thisparallelsthedropof thecomplexity of weakcauses
from ���� to ¡8¢ in the binary case[11]. The membership
partscanbederivedanalogouslyasin thegeneralcase,and
thehardnesspartsby slightadaptationsof theconstructions
in theproofs,wherecertainsubcomponentsfor weakcause
testingaremodularlyreplaced.

Someof ourhardnessresultsremainvalid underfurtherre-
strictions,suchasa boundednessconditionon the causal
model[11, 12]. In particular, all hardnessresultsfrom Ta-
bles1-3 hold for primitive events n ; thus,complex events
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Figure3: SchematicConstructionfor Evaluatingtwo QBFs
Í �

and
Í �

arenot a sourceof complexity. To avoid a proliferationof
results,we do not furtherconsiderrestrictionshere.

3.6 IMPLICATIONS FOR COMPUTATION

For “efficient” algorithms that generateexplanationsor
“best” � -partial explanations,we candraw the following
conclusions.Both mustsolve an inherent ���° -hardprob-
lem, i.e., a problemat the third level of PH; suchprob-
lemsare ratherhard to solve. Informally, the problemis
“triple NP-hard:” even if we could usea subroutinefor
solving ���� -completeproblemsfor free,theproblemwould
beintractable(NP-hard).Similarly, ���� -completeproblems
areintractableeven if we couldusea subroutinefor solv-
ing ¡]¢ -completeproblemsfor free. Thus, computation-
ally speaking,generatingexplanationsis ratherdifficult. In
particular, a simpleNP-stylebacktrackingstrategy thatex-
plores,similar asa simpleDavis-PutnamstyleSAT-solver,
a polynomial-depthsearchtree is infeasible. By similar
arguments,polynomial-timereductionsto a SAT-solver or
a computationallogic systemwhich canhandleproblems
with complexity up to ���� , suchasDLV [9] areinfeasible.

On the other hand,an explanationcan be computedus-
ing anestedbacktrackingprocedure(modelingnestedsub-
routine calls), or using flat backtrackingcalling a sub-
routine for ���� tasks(e.g., calls to DLV). A further pos-
sible perspective are translationsto QBF-solvers, which
provedvaluablein otherapplications[33]. Wecancompute
an � -partial explanationsimilarly. Computinga bestone
amountsto anoptimizationproblem,which canbesolved
by binarysearchovertherange[0,1] of � , andthusin poly-
nomial time with a � � ° oracle.A substantiallyfasteralgo-
rithm seemsunlikely to exist.

4 DERIVATION OF RESULTS

We now sketchhow someof our complexity resultscanbe
formally derived. More detailedproofs are given in Ap-

pendixA. Detailedproofsof all resultsaregiven in [10].
Many of theseproofsaretechnicallyquiteinvolved.

4.1 EXPLANATION

Theorem 4.1 Explanationis ª]�� -complete.

Proof (sketch). As for membershipin ª8�� , recall that��� ! is an explanationof n relative to � if f EX1–EX4
hold. Decidingin EX1 whethern*� O � for every

O , � andin
EX4 whether

� � O � � ! and
� � O [ß�*�� ! for some

O � O [c, �
is polynomial. In EX2, the set � [ of all

O , � suchthat� � O � � ! is polynomially computable. By Theorem2.4
and as ���� is closedunder polynomially many conjunc-
tions,decidingwhether

�.� ! is a weakcauseof n under
every

O , � [ is in ���� . In EX3, guessingsome
� [�� �

and
checkingthat

� [ � !U4 � [
is a weakcauseof n underev-

ery
O , � suchthat

� [ � O � � !*4 � [
is in ���� . Thus,deciding

EX3 is in
¥ � � . In summary, decidingwhether

��� ! is an
explanationof n relative to � is in ª]�� .

Hardnessfor ª8�� is shown by a reduction from de-
ciding, given a pair � ÍÎ� � Íz� � of QBFs

Íz�e�tà 
 ��á � � Ë �
with 	 , � � � `Õ� , where each Ë � is a propositional
formula on the variables


 ����� 
 ��� � �������5� 
 �Ê� âZã?�
and� �e�W� � ��� � �������5� � �Ê� � ã?� , whether

ÍÎ�
is valid and

Íz�
is

not valid. We build = � � � �?>@�BAC� , � 2 >
, ! , ��� � �

,��2¶��� � � , and n as requiredsuch that
��� ! is an ex-

planation of n relative to � if f
Í �

is valid and
Í �

is
not valid. Roughly, the main idea behindthis construc-
tion is as follows. We construct = � � � � �B>-���BAU��� and= �X� � � �B> � �BA � � and two events n � and n � suchthat (i)> ��ä > �*��� Ü �

, and(ii) for every
O , ��� � � , it holds thatÜ � �

is a weakcauseof n � under
O

in = �
if f

Íz�
is valid

(seeFig. 3, left side). The causalmodel = is the union
of = �

and = �
, enlargedby additionalendogenousvari-

ables(seeFig. 3, right side). We then construct n andO�� � O-� , ��� � � suchthat n is under
OH�

and
O-�

equivalent
to n � and n � , respectively. Finally, the constructionis



suchthat
Ü � � m Ü [ � �

is an explanationof n relative
to � �W�:OH� � O ���

in = , if f (a)
Ü � �

is a weakcauseof n �
under

O��
in = �

, and(b)
Ü � �

is not a weakcauseof n �
under

O-�
in = �

, where(a) (resp.,(b)) is encodedin EX2
(resp.,EX3). Thatis,

Ü � � m Ü [ � �
is anexplanationof n

relative to � in = , if f
ÍÎ�

is valid and
Íz�

is not valid.

Theorem 4.2 ExplanationExistenceis ���° -complete.

Proof (sketch). We guesssome
� [ 2 � and ! [i, ��� � [ß�

,
andverify that

� [ � ! [ is anexplanationof n relative to � .
By Theorem4.1,this canbedonein polynomialtime with
two callsto a � � � -oracle.Thus,theproblemis in � � ° .

���° -hardnessis shown by a reduction from deciding
whethera givenQBF

ÍÎ�kà � á Ì à � Ë is valid, whereË is a
propositionalformulaonthevariables� % Ì % � . Wecon-
struct = � � � �B>��bAC� , � 2 >

, ��2¶��� � � , and n suchthatÍ
is valid if f some

� [ 2 �
and ! [�, ��� � [ß�

exist suchthat� [ � ! [ is an explanationof n relative to � . Roughly, the
mainideais to encodethequantor“

à � ” in guessingsome� [ 2 �
, and“

á Ì à � Ë ” in checkingthecomplementof a
weakcausein EX3. Note that the constructionis techni-
cally involved. å
4.2 PARTIAL EXPLANATION AND

EXPLANATORY POWER

Wenow focuson thecomplexity of decidingpartialand � -
partial explanations.The following lemmagivesa useful
characterizationof theset �V�DZ� S , which is usedbelow.

Lemma 4.3 Let = � � � �B>��bAC� be a causal model. Let� 2 >
and ! , ��� � �

, andlet n beanevent.Let ��2¶��� � �
such that n*� O � for all

O , � . Then, �V�DZ� S is thesetof allO , � such that either(i)
� � O �k�� ! , or (ii)

� � O � � ! and��� ! is a weakcauseof n under
O

.

Theorem 4.4 � -Partial Explanationis ¢ §&¨h­ -complete.

Proof (sketch). We first prove membershipin ¢ §&¨h­ . Re-
call that

��� ! is an � -partial explanationof n relative to��� �   � if f (a)
��� ! is anexplanationof n relativeto �V�Dz� S ,

and (b) Eo���V�DZ� S 4 �.� ! � s � . By Lemma4.3, ���DZ� S is
the set of all

O , � suchthat either (i)
� � O �*�� ! , or (ii)� � O � � ! and

��� ! is a weak causeof n under
O
. As

deciding(i) is polynomial,anddeciding(ii) is in � � � , by

Theorem2.4, computing �V�DZ� S is in ®U¢ §&¨h­ . Once �V�DZ� S
is given,deciding(a) is possiblewith two ���� -oraclecalls,
by Theorem4.1,anddeciding(b) is polynomial. It is now
well-known that two roundsof parallel ���� -oraclequeries
in apolynomial-timecomputationcanbereplacedby asin-

gleone[2]. Hence,theproblemis in ¢ §&¨h­ .

Í qÍÎ� ...

n
Þ

�R� � q
Þ qÞ]�

Ý
Figure4: SchematicConstructionfor Evaluating r QBFsÍ ����������� ÍZq

Hardnessfor ¢ §&¨h­ is shown by a reductionfrom decid-
ing, given r QBFs

Í � �tà 
 � á � � Ë � with 	 , � � �������5� r � ,
where each Ë � is a propositional formula on the vari-
ables


 ���C� 
 ��� � �������
,

 ��� âZã?�

and � �e�W� � �Ê� � ��������� � ��� � ã�� ,
whetherthe numberof valid formulasamong

ÍÎ� �������
,
Í q

is even. W.l.o.g.,

 � % � � ��������� 
 q % � q arepairwisedis-

joint,
ÍÎ�

is valid, and for each æ , �c` ��������� r � , the valid-
ity of

Í@ç
implies the validity of

Í@ç5èH�
[41]. We create= � � � �?>@�BAC� , � 2 >

, ! , �)� � �
, n , ��2¶��� � � , E , and �

suchthat
��� ! is an � -partialexplanationof n relative to��� �   � if f thenumberof valid formulasamong

ÍÎ� �������5� Í q
is even. Roughly, themainideabehindthis constructionis
asfollows. For each

Í �
, we constructaninstanceof weak

cause,that is, = � � � � �b�B>_�b�bA*�F� , � � 2 >_�
, ! �^, �)� � �F� ,O �Õ, ��� � �F� andan event n � , suchthat

� � � ! � is a weak
causeof n � under

O �
in = �

if f
Í �

is valid. Then, = is the
unionof all = �

, enlargedby additionalvariables(seeFig.
4), andwedefine

���¶�R� %o'�'�'+% � q
and ! � ! � ����� ! q . By

setting  to theuniformdistributionover � and � � � � 4 ��4 ,
we obtainthat

��� ! is an � -partial explanationof n rel-
ative to ��� �   � , if f

�.� ! is an explanationof n relative
to � �DZ� S . Thelatteris madeto hold if f thenumberof valid
formulasamongthe

Íz�
’s is even.In detail,EX3 is violated,

if f 	 is even,
Íz�

is not valid, and
Íz�ÊèH�

is valid. å
Theorem 4.5 � -Partial Explanation Existence is ���° -
complete.

Proof. As for membershipin ���° , by Theorem4.4,decid-
ing whether

� [ � ! [ is an � -partial explanationof n rela-

tive to ��� �   � is in ¢ §&¨h­ . Thus,guessingsome
� [ 2 �

and
! [e, ��� � [ß�

, anddecidingwhether
� [ � ! [ is an � -partial

explanationof n relative to ��� �   � is in ���° .

���° -hardnessis shownby areductionfrom ExplanationEx-
istence.Givenan instanceof it, let   be the uniform dis-
tribution on � , andlet � � � . Then,

� [ � ! [ is an � -partial
explanationof n relative to ��� �   � if f

� [ � ! [ is anexpla-
nationof n relative to � . å



Theorem 4.6 Partial Explanationis ¢ §^¨h­ -complete.

Proof (sketch). Themembershippart canbeprovedsim-
ilarly as in the proof of Theorem4.4. The hardnesspart
followseasilyfrom thehardnessresultin Theorem4.4. å
Theorem 4.7 ExplanatoryPoweris ®U¢ §^¨h­ -complete.

Proof (sketch). We compute first �V�Dz� S and then
Eo���V�DZ� S 4 �.� ! � . By theproofof Theorem4.4,theformer

is in ®U¢ §&¨h­ , while thelattercanclearlybedonein polyno-
mial time. In summary, computingtheexplanatorypower

is in ®U¢ §^¨h­ .

®U¢ §^¨h­ -hardnessis shown by a reduction from comput-
ing, given r QBFs

Íz�Û�)à 
 ��á � � Ë � with 	 , � � �������5� r � ,
whereeach Ë � is a propositionalformula on the variables
 �Û�d� 
 �Ê� � ��������� 
 ��� âZã?�

and � ����� � �Ê� � ��������� � ��� � ãB� , the
vector �Êé �c�������5� é q �H, � �&� � � q suchthat é � � � if f

Í �
is valid,

for all 	 , � � �������5� r � . W.l.o.g.,

 �@% � ����������� 
 q % � q are

pairwisedisjoint, and
Í �

is valid. Roughly, themain idea
is to constructa probleminstancesuchthat �Êé �c��������� é q �
is the bitvector representationof the explanatorypower
of

�.� ! . For each
Íz�

, we construct = �e� � �@� �?> � �bA � � ,��� 2 > �
, ! � , ��� ��� � , O-� , ��� ��� � , and an event n � such

that
����� ! � is a weakcauseof n � under

O �
in = �

if f
Íz�

is
valid. Thesemodelsare then combinedin = suchthatO-� , ���DZ� S if f

Íz�
is valid. Defining  �� O-� � �t` �ÊèH�

for all	 , � � ��������� r � completesthereduction. å
4.3 SUCCINCT REPRESENTATION

Theorem 4.8 Explanationis
¥ �² -completein the caseof

succinctcontext sets.

Proof (sketch). Recall that
��� ! is an explanationof n

relative to � if f EX1–EX4 hold. Under succinctcontext
sets, in EX1, deciding nX� O � for all

O , � is in co-NP.
In EX4, decidingwhether

� � O � � ! and
� � O [ß�*�� ! hold

for some
O � O [ , � is in NP. By Theorem2.4, deciding

whether
��� ! is a weak causeof n under every

O , �
with

� � O � � ! in EX2 is in
¥ � ° . Thus,decidingwhether

some
� [�� �

exists suchthat
� [ � !U4 � [

is a weakcause
of n underevery

O , � with
� [ � O � � !U4 � [

is in ���² . That
is, decidingEX3 is in

¥ �² . In summary, decidingwhether
EX1–EX4hold is in

¥ �² undersuccinctcontext sets.

Hardnessfor
¥ �² is shown by a reductionfrom deciding

whetheragivenQBF
Íê�ëá 
 à � á Ì à � Ë is valid, whereË

is apropositionalformulaon thevariables

 % � % Ì % � .

Roughlyspeaking,the main idea is to encode
Í

in EX3,
wherethe quantor“

á 

” is representedby consideringall� [c� �

, the quantor“
à � ” is expressedby finding some

O , ��� � � , and
á Ì à � Ë is expressedby checkingthecom-

plementof a weakcause.å
Theorem 4.9 Partial Explanationis

¥ �² -completein the
caseof succinctcontext sets.

Proof (sketch). Membership in
¥ �² follows from

Lemma4.3 and Theorem2.4. Hardnessfor
¥ �² can be

provedsimilarly asin theproof of Theorem4.8. å
5 RELATED WORK AND CONCLUSION

There is quite somework on algorithmsand complexity
of finding abductive explanations(e.g.[3, 6, 7, 8, 35, 37])
which play animportantrole in many AI problemsinclud-
ing diagnosis,planning, or natural languageprocessing.
Roughly, a set of facts

Þ
is an abductive explanationof

an observation ì on somebackgroundtheory í , if
Þ

is
compatiblewith í andentails ì ; further minimality con-
ditionsareusuallyimposedon

Þ
. While causalandabduc-

tiveexplanations(in astandardlogicalsetting[27, 37]) are
apparentlydifferentconcepts,they have similar complex-
ity. In particular, decidingtheexistenceof anabductiveex-
planationis ���� -completein the propositionalcontext [8];
this matchesour respective result on causalexplanations
for binary causalmodels. Computingcausaland abduc-
tive explanationsis polynomially intertranslatablein this
case,while causalexplanationsfrom generalcausalmodels
areharderto compute.Efficient transformationsof causal
into abductive explanations,andvice versa,is an interest-
ing subjectfor furtherwork.

Ratherweakly relatedto ours are complexity resultson
maximum a posteriori explanations(MAPs, alias most
probableexplanations[25, 26]), which are a dominating
notion of explanation in the probabilistic AI literature.
Computinga MAP in a Bayesianbelief network, i.e., an
assignmentto all variablesgivena partialassignmentsuch
thatits probabilityis maximum,is NP-hard[39] but is fea-
sible in polynomialtime with anNP oracle. This result is
quite different from our resultson � -partial explanations,
for two reasons:firstly, MAPsarecomputedfrom thesetof
all contexts, which is not partof the input. In this setting,� -partial explanationshave highercomplexity. Secondly,
MAPsaresinglecontextswhichmaximizeprobabilityfor a
givenevidence,while � -partialexplanationssingleoutsub-
setsof contextswhichsensiblyrespectrelevantinformation
[20]. Computationally, it is moresuitableto comparede-
ciding  �� ��� ! � � �

in a belief network with ourproblem
Partial Explanationundersuccinctcontext sets,where �
containsall possiblecontexts and   emergesfrom inde-
pendentexogenousvariables. However, the former prob-
lem is ¡]¢ -complete[5], while the latter is, by our results,¥ �² -completeandthusmuchharder. Wemayexpectasim-
ilar relationshipfor computingthe explanatorypower vs



the probability  �� ��� ! � in a belief network, which can
bedonein polynomialtimewith a #Poracle[34].

Our work on causalexplanationscontinuesand extends
[11], and contributes in paving the way for efficient al-
gorithmsandimplementationsof the structural-modelap-
proachby HalpernandPearl.Our resultsgive a pictureof
thecomplexity of explanationsin thegeneralandthebinary
case.However, it remainsto identify casesof lower com-
plexity, andin particularislandsof tractability. Meaningful
restrictionsmustbefoundthateliminateseveralsourcesof
complexity, which is notstraightforward.Thisandrefining
thecomplexity pictureis partof ourongoingwork.

A APPENDIX: SELECTED PROOFS AND
PROOF SKETCHES

A.1 PROOFS FOR SECTION 2

Proof of Lemma 2.3. ��î �
Assumethat

��� ! is a weak
causeof n under

O
. That is, (AC1)

� � O � � ! and nX� O � ,
and (AC2) some uï2 >ëK �

, ! , ��� � �
, w , ���9u �

exist such that (a) l�n S�x � O � and (b) n S:xZy{ � O � for all|} 2 >PK � � % u �
and |~ � |} � O � . In particular,

� [ � O � � ! [
and n*� O � . Moreover, as

�;�
is no predecessorof any vari-

ablein n , it follows that (a) l�n S Y x Y � O � and(b) n_S Y x Y y{ � O �
for all |} 2 >PK � � % u �

and |~ � |} � O � , where ! [:� !�4 � [
,w [ � w8! � , and ! �*� !X� �;� � . This shows that

� [ � ! [ is a
weakcauseof n under

O
.

�Fð �
Assumethat

� [ � ! [ is a weakcauseof n under
O

.
That is, (AC1)

� [ � O � � ! [ and nX� O � , and (AC2) someuï2 >ñK � [
, ! [ , �)� � [µ�

, w , ���9u �
exist suchthat (a)l�n S Y x � O � , and (b) n S Y xZy{ � O � for all |} 2 >ëK � � [:% u �

and |~ � |} � O � . As
� � � O � � !*� � ��� , it holds

� � O � � !
and n*� O � . Moreover, as

� �
is no predecessorof

any variable in n , it follows that (a) l�n S Y S:ò7x Y � O � and
(b) n S Y S ò x Y y{ � O � for all |} 2 >PK � � % u �

and |~ � |} � O � ,
where w [ � w�4ó�Fu K ���;�c� �

, and ! �U� !X� �;� � . Hence,��� ! is aweakcauseof n under
O

. å
A.2 SELECTED PROOFS FOR SECTION 4

Proof of Theorem 4.1 (continued). For every 	 , � � � `Õ� ,
the causalmodel = � � � � �B>_�7�BAX��� is definedby

�t�W��Þ;�
and

> �Û� 
 � % � � % � Ü � Ì �<�
, where ���Fô � ��� �&� � � `Û� for

all ô , � � , and ���Fô � �W� �^� � � for all ô , ��� %t> � K � � .
Moreover, we define

n �3� � Ë [� möõ÷ � j ã ô ��t` �Hø � Ì �Û� ���
ø � Ü � ��m Ì � � ��múù÷ � jHã ô ��0` �-�

whereË [� is obtainedfrom Ë � by replacingeachô , 
 � % � �
by “ ô � � ”. The functions in

A ���û� A �÷ 4kô ,C> �7�
are

definedasfollows:


 A �÷ � �
for all ô , 
 � % � Ü � Ì �<�

,


 A �÷ � ÜñüêÌ �
for all ô , � � .

As shown in [11, 12], for every 	 , � � � `Û� and
O , ��� � � , it

holdsthat
Ü � �

is aweakcauseof n � under
O

in = �
if f

Í �
is valid.

The causalmodel = � � � �?>@�BAC� is now definedby
> �> � %;> � % � Ü [Ê� Ýd�

and
A � A � %oA � % � A*ý Y �)Þ �^A*þ � �

if f � Þÿ� � mJn � ��ø � Þÿ� ��m¶n � � is true
�
. Let n bedefined

as
Ý�� � , andlet

OH� � O-� , ��� � � bedefinedby
O�� � Þ � � �

and
O-� � Þ � � � . Observethat n is primitive.

For every 	 , � � � `Û� and
O , ��� � � , it holdsthat

Ü � �
is a

weakcauseof n � under
O

in = if f
Íz�

is valid. Hence,for
every 	 , � � � `Û� ,
(i)

Ü � �
is a weakcauseof n under

O �
in = if fÍz�

is valid.

By Lemma2.3,thefollowing statementshold:

(ii)
Ü � �

is a weakcauseof n under
O �

in = if fÜ � � m Ü [ � �
is aweakcauseof n under

O �
in = .

(iii)
Ü [�� �

is not a weakcauseof n under
O �

in = .

Using theseresults,we now show that
Ü � � m Ü [:� �

is
anexplanationof n relative to � ����O�� � O ���

if f
ÍÎ�

is valid
and

Íz�
is not valid.

�Fî �
Assumethat

Ü � � m Ü [ � �
is an explanationof n

relative to � . In particular, by EX2,
Ü � � m Ü [ � �

is a
weakcauseof n under

O �
. Moreover, by EX3,

Ü � �
is

eithernot a weakcauseof n under
O �

, or not aweakcause
of n under

O �
. By (ii),

Ü � �
is aweakcauseof n under

O �
.

Hence,
Ü � �

is not a weakcauseof n under
O-�

. By (i),ÍÎ�
is valid, and

Íz�
is not valid.

�Fð �
Assumethat

ÍÎ�
is valid and

Íz�
is not valid. We first

show that EX1 holds. As
Ì � � O � � �

for all 	 , � � � `Õ� andO , � , we get n � � O � for all 	 , � � � `Û� and
O , � . Thus,n*� O � for all

O , � . To seethat EX4 holds, observe thatÜ � O�� � � Ü [ � O�� � � �
, while

Ü � O-� � � �
and

Ü [ � O-� � � � . We
next show that EX2 holds. By (i),

Ü � �
is a weakcause

of n under
O �

. By (ii), it follows that
Ü � � m Ü [ � �

is a
weakcauseof n under

O �
. We now show thatEX3 holds.

By (i),
Ü � �

is not a weakcauseof n under
O �

. By (iii),Ü [ � �
is not a weakcauseof n under

O �
. å

Proof of Theorem 4.2 (continued). Hardnessfor ���° is
shown by a reductionfrom decidingwhethera givenQBFÍJ�)à � á Ì à � Ë is valid, where Ë is a propositionalfor-
mula on the variables � ��� � � ��������� ��� � , Ì �d� Ì � ���������



Ì â �
, and � ��� � �:��������� � � � . We build = � � � �B>��bAC� ,� 2 >

, �;2J��� � � , and n asrequiredsuchthat
Í

is valid
if f some

� [ 2 �
and ! [e, ��� � [ß�

exist suchthat
� [ � ! [ is

anexplanationof n relative to � .

We define
�d�W��� � ��� � ��� [ ��������� � q � � q [ �

, where ��� � � �� �^�������5��� ü � � and ���Fô � � � �&� � � for all ô , � K ���^�
.

Let � �d�:O_� � O_� [Ê�������
,
O � � O � [9� O � ¦ ��� , where

O-�
(resp.,

O � [
)

is the unique
O , ��� � � such that � � � O � (resp., � � [ � O � )

holds,and � � (resp.,� � [ ) for every 	 , � �&������� , � ü � � (resp.,	 , � �&����������� � ) is definedby:

� � ����� 	 m � � � � m � � [ � �
m �õ� � � � �@�e� � m �@� [ � ���-�

� �9[ ����� 	 m � � � � m � � [ � �
m �õ� � � � � � � � m � � [ � ���-�

Define = � � � �B>��bAC� as follows. Let
> � � % � [Z%Ì % � % ���;� � �o� [ � Þ � Þ [Ê� 1 � , where� [ �d� � � [ ��������� ��� [ � ,���Fô � �W� �^� � � `Û� for all ô , � , and �)�9ô � �W� �&� � � for

all ô ,a>3K � . Let

� � �Fl Ë [ m õ÷ �	� ô ��0` ��ø � Þê� �e�
ø � �;�*� ��m Þÿ� ��m ù÷ �	� ô ��t` �H�

n [ � � �
� � ø � � [ $ � �;�*� � m �õ� � � � � �� � � [ �
ø � �ù� � � �9� � � ��m³� � [ � � �7��ø Þ [ � ���-�

n [� � �õ� � � ��� � ø � � [ $ � ��� �#ø � � [ � �e�-�

n [° � �
� � ¦ � $ � � m �õ� � � � �-�� � � [ �
ø � �ù� � � �9� �Û� ��m³� � [ � � �7��ø Þ [ � ���-�

where Ë [ is obtainedfrom Ë by replacingeach ô , � %Ì % � by “ ô � � ”. We arenow readyto definethe func-
tions

A �Ç� A ÷ 4�ô ,C> �
asfollows:


 A*j ãÕ�d� �
and

A jHã Ye�t� � [
for all 	 , � � ����������� � ,


 A D ò �L� �
and

A D ò YV�(� � [
,


 A ÷ � �
for all ô , Ì % �:Þ � Þ [ �

,


 A ÷ ���o� ü Þ
for all ô , � ,


 AUT � � if f n [ � ø n [� ø n [° is true.

Define
��� � % � [�% �:� ��� � � [ �

, andlet n be 1 � � . No-
tice that n is primitive.

For every truth assignment� to the variablesin � , we
use 
 � � ���Ê� ��� to denotethe substitution 
 � � � ���Ê� � �5������������ � ���Ê��� ��� , and we define ��� � � 
 � � ���9� ��� . Define! ��� �

, andlet
O , ��� � � with

�;� � O � � ! � . Then,
�;�*� ! �

is a weakcauseof ��� under
O

if f
à Ì á �ñl Ë 
 � � ���Ê� ��� is

valid [11, 12]. That is,
�;�*� ! � is not a weakcauseof ���

under
O

if f
á Ì à � Ë 
 � � ���Ê� ��� is valid. Thus,Lemma2.3

impliesthefollowing fact:

( � ) For every
� [ 2P� % � [:% ��� ��� � � [ � with

� �@, � [
, it

holdsthat
� [ �)� [ � O � is notaweakcauseof ��� underO

if f
á Ì à � Ë 
 � � ���9� ��� is valid.

Using this result, it canbe shown that
Í

is valid if f some� [ 2 �
and ! [e, ��� � [ß�

exist suchthat
� [ � ! [ is an ex-

planationof n relative to � (see[10] for details). å
Proof of Lemma 4.3. Clearly, ���DZ� S doesnot containanyO , � suchthat

� � O � � ! andthat
�·� ! isnotaweakcause

of n under
O
, asotherwiseEX2 would beviolated.Hence,�V�DZ� S is asubsetof thesetof all

O , � suchthateither(i) or
(ii). Assumenow thatsome

O [i, � with
� � O [ß�*�� ! doesnot

belongto ���DZ� S . Then,
�.� ! is anexplanationof n rela-

tive to � [ � �V�Dz� S % ��O [ �
. But this contradicts���DZ� S being

the largestsuch � [ . Assumenext that some
O [i, � such

that
� � O [�� � ! andthat

�·� ! is a weakcauseof n underO [
doesnot belongto �V�DZ� S . Then,

��� ! is an explana-
tion of n relative to � [ � �V�DZ� S % ��O [ � . But this contradicts
again�V�DZ� S beingthe largestsuch � [ . Hence,�V�DZ� S is the
setof all

O , � suchthateither(i) or (ii). å
Proof of Theorem 4.4 (continued). We construct= � � � �?>@�BAC� , � 2 >

, ! , �)� � �
, n , ��2¶��� � � , E , and �

asrequired,suchthat
�.� ! isan � -partialexplanationof n

relative to ��� �   � if f the numberof valid formulasamongÍ ����������� ÍZq
is even.

For 	 , � � ��������� r � , define the causalmodels = � � � � �7�>_�7�BAX���
as follows. The exogenousandendogenousvari-

ablesaredefinedby
� � �W��Þ � �

and
>_� � 
 �+% � �<% � Ì �b� Ü � � ,

respectively. Define ���Fô � ��� �^� � � `Û� for all ô , � � , and���Fô � �´� �&� � � for all ô , ��� %J> � K � � . We define

n �R� � Ë [� m õ÷ � jHã ô ��0` �Hø � Ì ��� ���
ø � Ü � � �@m Ì � � ��m ù÷ � jHã ô ��t` �-�

whereË [� is obtainedfrom Ë � by replacingeachô , 
 � % � �
by “ ô � � ”. The functions in

A ���û� A �÷ 4kô ,C> �7�
are

definedasfollows:


 A �ý ã ��Þ#�
,




 A �÷ � �
for all ô , � Ì � � % 
 �

,


 A �÷ � Ü � üêÌ �
for all ô , � � ,

For each 	 , � � ��������� r � , let
�;����� Ü �+�

, and define ! � ,
��� �;� � and

O-� , ��� �@� � by ! � � Ü � � � �
and

O-� � Þ#� � � �
.

Then, for every 	 , � � �������5� r � , ���e� ! � is a weak cause
of n � under

O-�
in = �

if f
Íz�

is valid (theconstructionis sim-
ilar asin the proof of Theorem4.1, the only differenceis
thatwe have

A �ý ã �0Þ#�
here,insteadof

A �ý ã � �
). Observe

alsothat n � � O � holdsfor all
O , �)� � ��� .

Definethecausalmodel = � � � �?>@�BAC� by
���0� �U%¶'�'�'�%�@q % ��Þ;�

, where�)� Þ � �Ç� �^��������� r � , > � > � %3'�'�'7%�> q %�:Ý��
, and

A � A���%)'�'�':%³A q % � A þ �
, where

A þ � � if f

� õ� ��� ���������Ó� q�� � �*$ n � � m0� õ� ��� �?�������Ó� q�� �F� even
� [� $ n �ÊèH� �

m�� õ� ��� ���������Ó� q�� �9� odd
� [� $�� �

is true,and � � and � [� aredefinedasfollows for every 	 ,� � �������5� r � :
� � � � Þê� 	 � m0� õç ��� �?�������Ó� q�� � ÞzçU� ���7�-�

� [� � � Þê� �e� mt� Þ8��� � � mt� õç ��� ��������� � q�� è � � � � ÞzçU� �e�7�H�

For every 	 , � � ��������� r � , let
O �

(resp.,
O [�

) be the uniqueO , ��� � � suchthat � � � O � (resp.,� [� � O � ). Let 1 �d��Ýd�
, and

let n be 1 � � . We define � ����O�� ��������� O q � O [ � �������5� O [ q � ,Eo� O � � � � ` r for all
O , � , and � � � � ` r . Define

� �� Ü � ��������� Ü q �
and ! � ! � '�'�' ! q (

� �Î'�'�'7�
).

Observe that n is primitive, E is the uniform distribution
over � , and n*� O � for all

O , � . By Lemma2.3, thefollow-
ing holdsfor all 	 , � � �������5� r � , all

� [ 2 �
, and! [ � !*4 � [

:

(i) If
� � 2 � [

, then
� [ � ! [ is a weakcauseof n un-

der
O �

if f
Í �

is valid.

(ii) If 	 is even and
� ��è�� 2 � [

, then
� [ � ! [ is a weak

causeof n under
O [�

if f
Í ��è��

is valid.

(iii) If 	 is odd,then
� [ � ! [ is not a weakcauseof n un-

der
O [�

.

(iv) If
� �J�2 � [

, then
� [ � ! [ is not a weakcauseof n

under
O �

.

By Lemma4.3, �V�DZ� S is the setof all
O , � suchthat ei-

ther (a)
� � O �*�� ! , or (b)

� � O � � ! and
�.� ! is a weak

causeof n under
O

. By (i), �V�DZ� S ����O-[� �������
,
O-[q � % ��O-� 4	 , � � ��������� r � , Íz�

is valid
�
. It can now be shown that��� ! is an � -partial explanationof n relative to ��� � E �

if f thenumberof valid formulasamong
Í ����������� ÍZq

is even
(see[10] for details). å
Proof of Theorem 4.8 (continued). Hardnessfor

¥ �² is
shown by a reductionfrom the

¥ �² -completeproblemof
decidingwhethera given QBF

Í � á 
 à � á Ì à � Ë is
valid, where Ë is a propositionalformula on the variables
 �W� 
 � ��������� 
 q �

, � �d� � � �������5� ��� � , Ì �W� Ì � �������
,Ì â �

, and � ��� � �:��������� � � � . We build = � � � �B>��bAC� ,� 2 >
, ! , ��� � �

, �;2J��� � � , and n asin thestatementof
thetheoremsuchthat

�·� ! is anexplanationof n relative
to � if f

Í
is valid.

We definethe exogenousvariablesby
��� � % ��� ��� � ������ [ ��������� � q � � q [ �

, where ���Fô � �W� �^� � � for all ô , �
.

Define the set of contexts by � ����O , ��� � � 4���� � ø� � ø � � � � O � � , where:

� �W� ����� � m
q
õ� � � � ���+� � m �@� [ � �e�-�

� �t� ����� � m
q
ù� � � �b�7� ���+� ��m �@� [ � �e��ø � ����� � m �@� [ � � �b�

m õç ��� �?�������Ó� q�� è � � � � �*ç�� � m �*ç [ � ���7�-�

� ��� ����� � ø
q
ù� � � � ���+� ��m �@� [ � � �-�

We define = � � � �?>@�BAC� as follows. Define
> � 
 %
 [ % Ì % � % �:�o� � Þ �BAZ� 1 � , where


 [��W� 
 � [ �������5� 
 q [ �
,���Fô � �W� �^� � � `Û� for all ô , � , and �)�9ô � �W� �&� � � for

all ô ,a>ñK � . Let

� � �9l Ë [ m õ÷ �	� ô ��t` �Hø � Þÿ� �e�
ø � � � � ��m Þÿ� ��mñù÷ �	� ô ��0` �-�

n [ � ��� �*$��o�U� ��� m0�
� �X$�� �
m �
� ��$ � � m

q
õ� � � 
 � �� 
 � [ �

ø �
q
ù� � � � 
 �Û� ��m 
 � [ � � �b��ø³A � ���-�

whereË [ is obtainedfrom Ë by replacingeachô , 
 % � %Ì % � by “ ô � � ”. We arenow readyto definethe func-
tions

A �Ç� A ÷ 4�ô ,C> �
asfollows:


 A*f ãÕ�d� �
and

A fHã Yi�d� � [
for all 	 , � � �������5� r � ,


 A D ò �L� �
, and

A ÷ � �
for all ô , Ì % �:Þ �BA �

,


 A ÷ ���o� ü Þ
for all ô , � ,


 AUT � � if f n [ is true.



Let
�·� 
 % 
 [�% ��� � �

, and let ! , ��� � �
be given by!X�Fô � � �

for all ô , �
. Let n be 1 � � . Notice that n

is primitive. It cannow beshown that
Í

is valid if f
��� !

is anexplanationof n relative to � (see[10] for details). å
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