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Abstract

We consider the computation of all respectively a polynomial
subset of the explanations of an abductive query from a Horn
theory, and pay particular attention to whether the query is
a positive or negative letter, the explanation is based on lit-
erals from an assumption set, and the Horn theory is rep-
resented in terms of formulas or characteristic models. We
derive tractability results, one of which refutes a conjecture
by Selman and Levesque, as well as intractability results, and
furthermore also semi-tractability results in terms of solvabil-
ity in quasi-polynomial time. Our results complement previ-
ous results in the literature, and elucidate the computational
complexity of generating the set of explanations.

Introduction
Abduction is a fundamental mode of reasoning, which has

been recognized as an important principle of common-sense

reasoning (see e.g. (Brewka, Dix, & Konolige 1997)). It has
applications in many areas of Al including diagnosis, plan-

ning, learning, natural language understanding and many

others (see e.qg. references in (Eiter & Gottlob 1995)). In
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it is in this case of interest whether the computation is pos-
sible in polynomial total time(or output-polynomial timg

i.e., in time polynomial in the combined size of the input
and the output. Furthermore, if exponential space is pro-
hibitive, it is of interest to know whether a few explanations
(e.g., polynomially many) can be generated in polynomial
time, as studied by Selman and Levesque (1996).

e We contrast formula-based (syntactic) with model-based
(semantic) representation of Horn theories. The latter form
of representation, where a Horn theory is represented by the
characteristic modelsvas advocated by Kauét al. (1993).

As they showed, important inference problems are tractable
in the model-based setting. Namely, whether a Horn theory
Y implies a CNFp, and whether a query has an explana-
tion w.r.t. an assumption s, the latter is intractable under
formula-based representation. Similar results were shown
for other theories by Khardon and Roth (1996).

¢ We investigate the role of syntax for computing abductive
queries. In the framework of (Selman & Levesque 1996;
Kautz, Kearns, & Selman 1993), the query is a positive let-

a logic-based setting, abduction can be defined as the task,ter ¢. However, it is of equal interest to consideegative

given a set of formulaX (the background theory) and a for-
mula (thequery), to find a smallest set of formulds (an
explanation from a set of hypotheses such thaplus F is
satisfiable and logically entailg. For use in practice, the
computation of abductive explanations is an important prob-
lem, for which well-known early systems such as Theorist
(Poole 1989) or ATMS solvers have been devised. Since
then, there has been a vastly growing literature on this sub-
ject, indicating the need for efficient abductive procedures.

Main problems considered In this paper, we consider
computing a set of explanations for queries from Horn theo-
ries. More precisely, we address the following problems:

e Computingall explanations of a query given by a letter

q, with and without a set of assumption literalrom which
explanationsF must be formed, similar as in (Poole 1989;
Selman & Levesque 1996). Note that the logical disjunc-
tion of all explanations is a weakest disjunctive form over
the hypotheses explaining It is easy to see that in general,
there might be exponentially many explanations, and com-
puting all explanations is inevitably exponential. However,
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gueriesas well, i.e., to explain the complemenof an atom

g. Since the Horn property imposes semantic restrictions on
theories, it is not straightforward to express such negative
gueries in terms of positive queries.

e Finally, we consider as a meaningful generalization the
computation ofjoint explanations That is, given a back-
ground theoryX¥ and observation®;, o0s,..., o;, where

[ > 2, compute asingle explanationZ which is good for
eacho;. Joint explanations are relevant, e.g., in diagnostic
reasoning. We may want to know whether different observa-
tions allow to come up with the same diagnosis, given by an
abductive explanation, about a system malfunctioning. Such
a diagnosis is particularly strong, as it is backed up by sev-
eral cases.

Main results. Our main results are summarized as follows.

¢ \We refute Selman and Leveque’s belief (1996, p. 266), that
given a Horn theory: and a query letteg, it is hard to list

all explanations of; from X even if we areguaranteedhat
there are only few explanations. More precisely, we disprove
their conjecture that generatirig(n) many explanations of

q is NP-hard, where: is the number of propositional letters

in the language. This is a consequence of our result that



generatingll nontrivial explanations of is possible irtotal
polynomial timgTheorem 1).

e We give a detailed characterization of computing all ex-
planations of a query from Horn theory in the formula- vs
model-based setting, for both general explanations and ex-
planations w.r.t. a set of assumption literals. In a nutshell,
we obtain three kinds of results:

(1) A procedure which enumerates all nontrivial explana-
tions of a query letteg from a Horn theory: with incremen-
tal polynomial delay. This is a positive result and trivially
implies that all explanations can be found in polynomial to-
tal time. Moreover, it means that any polynomial number of
explanations can be generated in polynomial time in the size
of the input (Corollary 1).

(2) Intractability results for generating all explanations for
a negative query from a Horn theory: contained in a set of
assumption literalsl; this complements a similar result for
positive queries in (Selman & Levesque 1996). Both results
emerge from the fact that the associated problems of recog-
nizing the correct output are co-NP-complete. Since some
hard instances have only small (polynomial-size) output,
they also imply that computing few (polynomially many)
explanations is intractable.

(3) Under model-based representation, generating all ex-
planations is polynomial-time equivalent to the well-known
problem of dualizing a positive CNF (IALIZATION), i.e.,
given a CNF¢ in which no negative literal occurs, com-
pute the (unique) prime DNF op. DUALIZATION is a
well-known open problem in NP-completeness, cf. (Bioch
& Ibaraki 1995; Fredman & Khachiyan 1996); it is known
to be solvable imuasi-polynomiatotal time, i.e., in time
NeUoeN) where N denotes the combined size of the in-
put and output (Fredman & Khachiyan 1996); furthermore,
polynomial total time algorithms are known for many spe-
cial cases, and as recently shown, the decisional variant of
recognizing the prime DNF op is solvable with limited
nondeterminism, i.e., in polynomial time witR(log® N)
many guesses (Eiter, Gottlob, & Makino 2002). Since-D
ALIZATION is strongly believed not to be co-NP-hard, our

1 (true) or0 (false). Negated atoms are denotedibyand
the opposite of a literaf by ¢. Furthermore, we usd =
{l| ¢ € A} for any set of literalsA and setLit = P U P.

A clause is a disjunction = \/ . oy PV Vpen(e) P Of
literals, whereP(c) andN (c) are the sets of atoms occurring
positive and negated inand P(c) N N(c) = @. Dually, a
term is conjunctiort = A cp) P A Apen) P Of literals,
where P(t) and N(¢) are similarly defined. We also view
clauses and terms as sets of litet&(g:) U N (c) and P (t) U
N(t), respectively. A clauseis Horn, if |P(c)| < 1,and a
CNF isHorn, if it contains only Horn clauses. theoryY. is
any set of formulas; it iglorn, if it is a set of Horn clauses.
As usual, we identifys with o = A 5, ¢, and writec € ¢
etc.

Definition 1 Given a (Horn) theory’, called the back-
ground theory, a lettey (called query), and a set of literals
A C Lit, anexplanation ofg w.r.t. A is a minimal set of
literals E' over A such that

() TUFE =4, and
(i) X U E'is satisfiable.
If A= Lit, then we callE' simply anexplanation of;.

Observe that the above definition is slightly more gen-
eral than theassumption-based explanatiook(Selman &

Levesque 1996), which emerge ds = P’ U P’ where

P’ C P (i.e., A contains all literals over a subskt of the
letters). Furthermore, in some texts explanations must be
sets of positive literals. As for Horn theories, the following
is known, cf. (Khardon & Roth 1996):

Proposition 1 Let E be any explanation afw.rt. A C Lit.
ThenE C P, i.e., E contains only positive literals.

Example 1 Consider a theoryo = {Z; V T4, T4 V T3,
Ty V o, T4 V Ts V o1 }. SUppose we want to explain= o
from A = {z1,24}. Then, we find thal® = {z,} is an ex-
planation. Indeedy. U {z1} |= =2, andX U {z; } is satisfi-
able; moreoverE is minimal. On the other handy’ = {z1,
T, } satisfies (i) and (i) fog = x5, but is not minimal. O

result thus provides strong evidence that under model-based Horn theories have a well-known semantic characteriza-
representation, computing all explanations is not co-NP- tion. Amodelis a vector € {0, 1}", whosei-th component
hard. Interestingly, the equivalence result holds for both is denoted byy;. For B C {1,...,n}, we letz” be the
positive and negative queries, and whether arbitrary or ex- modelv such thaw; = 1, if i € B andv; =0, if i ¢ B, for
planations over a set of assumption literdlsre admitted. i€{1,...,n}. The set of models of formula (resp. theory
This means that, in a sense, model-based representation, inX), denoted bynod(y) (resp.mod(X)), is defined as usual.
contrast to formula-based representation, is not sensitive to  For modelsv, w, we denote by < w the usual com-
these aspects. Furthermore, by resorting to respective algo-ponentwise ordering, i.ey, < w; foralli = 1,2,...,n,
rithms for dualization, the result provides us with algorithms where0 < 1; v < w meansy # w andv < w. For any set
for enumerating all or polynomially many explanations with  of modelsM, we denote bynax(M), (resp.,min(M)) the
guasi-polynomial time delay between outputs. set of all maximal (resp., minimal) models M. Denote by
 We show that deciding the existence of a joint explanation v A w componentwise AND of vectors w € {0,1}", and
is intractable, for both formula- and model-based represen- by Ci4(S) the closure of5 C {0, 1}" underA. Then, a the-
tation. Thus, the positive results for ordinary explanations Ory ¥ is Horn representable, ifhod(X) = Cla(mod(X)).

do not extend to joint explanations.
Proofs of all results are given in (Eiter & Makino 2002).

Preliminaries

We assume a standard propositional language with letters
r1,Zo,...,2, fromasetP, where each; takes either value

Example 2 ConsiderM; = {(0101), (1001), (1000) } and
My = {(0101), (1001), (1000), (0001), (0000)}. Then,
for v = (0101), w = (1000), we havew,v € M;, while
vAw = (0000) ¢ M;; henceM; is not the set of models
of a Horn theory. On the other han@], (Ms) = M, thus
My = mod(X) for some Horn theor.



As discussed by Kautet al. (1993), a Horn theory is

Clausec is a prime implicate of, and thusF; = {z3, 25}

semantically represented by its characteristic models, where is output and added t6. Furthermore( is updated.

v € mod(X) is calledcharacteristic(or extremgDechter &
Pearl 1992)), ifv & Cl(mod(X)\ {v}). The set of all such
models, thecharacteristic set ok, is denoted byhar(X).
Note thatchar(X) is unique. E.g.(0101) € char(3s),
while (0000) ¢ char(Xz); we havechar(3s) = M.

Generating Explanations

In this section, we consider the generation of all explana-

tions for an atomy. We exclude in our considerations the
trivial explanationE = {q}, which always exists if; be-
longs to the assumption literals ¥ U {q} is satisfiable and

¥ £ ¢. These conditions can be efficiently checked under

both formula- and model-based representations.

Recall that a prime implicate (res., prime implicant) of a

theoryY is a smallest (w.r.t. inclusion) clausdresp., term
t) such thatt |= ¢ (resp.t = X). As well-known, explana-
tions can be characterized by prime implicates as follows.

Proposition 2 For atheoryX, E is a nontrivial explanation
of g w.rt. A C Lit if and only if the clause = \/peEﬁ Vg
is a prime implicate o such thatty C A.

We start with the generation of all nontrivial explanations
under formula-based representation. For this problem, we

present the following algorithm.

Algorithm EXPLANATIONS
Input: A Horn CNF ¢ and a positive letteg.
Output: All nontrivial explanations of; from .

Step 1. ¢* :=0, S := 0, andO := 0;
Step 2. for eache € ¢ do
add any prime implicate’ C c of ¢ to ¢*;
for eachc’ € ¢* with P(¢') = {q} andN(c’) ¢ S do
begin outputN(c'); S := SU{N(c)};
0 :=0U{(c,c) | c€p*}
end;
Step 3. whilesome(cy, ¢2) € O existsdo
begin O := 0\ {(c1,c2)};
if (1) q & N(c1), (2) P(c1) = {r} € N(c2) and
(3) " UN(c1) UN(e2) \ P(cr) is satisfiable
then begin ¢ := resolvent ofc; andcs;
compute any prime implicai€ C c of ;
if N(c') ¢ Sthen
begin outputN(c'); S := SU{N(c)};
O :=0U{(c,c') | c€ ¢}
end
end
end. |

Example 3 We consider algorithm EPLANATION on input
Ofgﬁ = (fl\/fgl)(le\/fg)(fl\/lCQ)(fg\/fg,\/(El), andq = 2.
As easily seen, each clausednis a prime implicate, and
thus after Step 2p* = ¢ andS = {{z1}}. Furthermore,
the explanatior; = {z;} was output.

In Step 3,(c1,c2), Wheree; = T3 V T5 V 21 andeg =
T1 V xa, is the only pair inD satisfying (2)P(c2) = {z1} C
N(eo)(= {1}); moreover, (1)g ¢ N(ci)(= {e3,25})
holds and (3)p* U {z3, x5} is satisfiable. Thus, in the body
of the while-loop, its resolvenrt= T3 VZ5 Vx4 is computed.

In the next iterations, no pair, c2) € O is found which
satisfies condition (2), and thus the algorithm halts. Note
that £, and E» are the nontrivial explanations gf=z,. O

The following result states that our algorithm works as
desired. For any formula, denote byl|p| its length, i.e.,
the number of literal occurrences in it.

Theorem 1 Algorithm EXPLANATIONS incrementally out-
puts, without duplicates, all nontrivial explanations @f
from . Moreover, the next output resp. termination occurs
within O(e-m - n - ||¢]|) time, wherem is the number of
clauses inp, n the number of atoms, andthe number of
explanations output so far.

Proof. (Sketch) Only pairgc, ¢’) are added t@ such that
¢’ is a prime implicate ofo. Furthermore, by condition (3)
in Step 3, each sucH must haveP(¢') = {q}. Thus, by
Props. 1 and 2, algorithm¥®LANATIONS outputs only non-
trivial (clearly different) explanation&’;, Es, . .., E}, for q.
To show that it outputs all nontrivial explanatiofsfor
¢, assume that such ah is not output, i.e.F # E; i =
1,...,k. Letyy be the CNF of all negative prime impli-
cates ofp, andlety’ = onU{V cp, PVa | i€{L,... . k}}.
Sincec = \/ . p PV ¢ is a prime implicate of andc ¢ ¢/,
there exists a model € mod(¢’) such that(v) = 0. Letw
be a maximal such model, i.e., no modeb> w) exists such
thatu € mod(y’) andc(u) = 0. Sincec(w) = 0 implies
w € mod(y), there exists a prime implicate in ¢* (when
Step 2 is finished) such that(w) = 0. Clearlye; ¢ ¢,
i.e.,cy is of forme; = VpeN(cl)ﬁ V z; such thatr; # q.
Moreover, we have ¢ N(c1) by ¢(w) = ¢1(w) = 0. Con-
sider now the model’ defined byw; = 1 andw) = wj,
for all j # . Note thatc(w’) = 0, and by the maximality of
w, there is a prime implicate, € ¢’ such thats(w’) = 0.
Sincece(w) = 1 andex(w’) = 0, we havexr; € N(c).
Sinceq ¢ N(c1), a resolvent* of ¢; andc, thus exists. It
can be shown (Eiter & Makino 2002) that creates a new
prime implicater’ = \/peN(c,)ﬁVq C c*ofpinStep 3, i.e.,
N(c) # E;,i =1,...,k. This contradicts our assumption.
Thus, EXPLANATION is correct, and it remains to verify
the time bound. Computing a prime implicateC ¢ of ¢
in Steps 2 and 3 is feasible in tim@(n - ||¢||), and thus
the outputs in Step 2 occur with(m - n - ||¢||) delay. As
for Step 3, note the contains only pairgc;, c2) where
c1 € p* andca = N(c2) U {q} such thatV(c;) was output,
and each such pairs is addedmnly once. Thus, the next
output or termination follows withim - m runs of the while-
loop, wheree is the number of solutions output so far. The
body of the loop can be done, using proper data structures,
in O(n - ||¢]|) time (for checkingV (c;) ¢ S efficiently, we
may storeS in a prefix tree). Thus, the time until the next
output resp. termination is bounded ®ye - m - n - ||¢||). O

From this result, we obtain the following corollary.

Corollary 1 Given a Horn CNFp and a queryg, comput-
ing O(n*) many explanations af, wherek is a constant, is
possible in polynomial time.



This corollary implies that Selman and Leveque’s con-

jecture (1996, p. 266) that generatidyn) many expla-
nations ofg is NP-hard, where: is the number of propo-

to computing all explanations as follows. Letbe a fresh
letter (for component + 1), and defineM = {(v,0) | v €
max({w | p(w) = 0} U {(11---1)} andA = P; note

sitional letters in the language, is not true (unless P=NP).
Note, however, that by the results of (Selman & Levesque
1996), computing)(n) many or all assumption-based ex-
planations from a Horx is not possible in total polynomial
time unles = NP.

Let us now consider computing all explanations in the
model-based setting.

Theorem 2 Given the characteristic se¥! = char(X) C
{0,1}" of a Horn theoryX:, a queryq, and A C Lit, com-

thatmax({w | ¢(w) = 0}) is easily computed fromp. O

Example 4 Let M ={(11011), (11010), (10101), (01010),
(00001)}, and suppose we want all explanations;cf z;
w.r.t. A = {x3, x4, z5}. According to above, we obtain:

(1) My = {(01010), (00001)} and M; = {(11011),
(11010), (10101)}, thusmax(M; ) = {(11011), (10101)}.

(2) We have two vectors") = (11011) andv(? = (10101):

puting the set of all explanations far from X w.rt. A4 is Fo = max ({(11011)/\(00111)/\(01010),})
polynomial-time equivalent to dualizing a positive CNF. 11011) A (00111) A (00001)
Here, polynomial-time equivalence means mutual poly- = {(00010), (00001)},

nomial-time transformability between deterministic func-
tions, i.e., A reduces taB, if there a polynomial functions
f,g s.t. for any input/ of A, f(I)is an input of B, and if

O is the output forf(I), theng(O) is the output off, cf. = {(00001)}.

(Papadimitriou 1994); we also request thahas size poly- Thus, P,oy = {z4,75} and f,o)(w) = 0 iff w € {(10),
nomial in the size of the output far (if not, trivial reduc- (01), (00)}, and P, = {x3,25} and f e (w) = 0 iff
tions may exist). In our reduction, explanations correspond , {(01), (00)}.

to clauses of the dual prime CNF and vice versa. (3) We obtains() = 24 Az andy® = a5 The respective
Proof. (Sketch) By Props. 1 and 2, we need only compute prime dual CNFs areé!) = z, Vv z5 andy(® = 3.
all nontrivial explanations® C A corresponding to prime )

Thus, the explanations afw.r.t. A are £y = {z4,z5}

implicatesc of ¥ s.t. P(c) = {¢} andN(¢) = E C AN P. art
We describe how the problem can be transformed to dual- andE, = {z3}. It can be seen that this is the correct result.

ization of polynomially many positive CNEs;,. . . ¢k, such
that the clauses of the dual prime CNEdor (,; correspond
to the explanations of w.r.t. A N P (equivalently, w.r.t.A).
Thus, the problem is polynomially reducible to dualizing (in
parallel) several positive CNFks;. By simple methods, we
can combinep,. .. . into a single CNFy (using further
variables) such that the clauses of the dual prime CNkfor
correspond to the explanationsqiv.r.t. A. (This step is of
less interest in practice, since dualization of the individual
; is at the core of the computation.)

To construct thep;, we proceed as follows. Let= ;.

(1) DefineM; = {v e M |v; =i},i € {0,1}.
(2) For every modedb € max(M,), let
y = max({v Az Aw | w € max(Mo)}).

Foo =

(
)
({(10101)A(00111)/\(01010),}>
A1 (10101) A(00111) A(00001)
)

Negative Queries

So far, we considered Horn theorigsand queries given
by a letterq. In a general setting, we might allow that the
formulas inX and the query are any propositional formulas.
As for computation, we can introduce for a query, given by
any formulay, a fresh letterg, add implications; — ¥,
x — ¢ in X, and then ask for a nontrivial explanationgf
Thus, positive letter queries do not constrain the expressivity
of the framework. However, this technique does not work
for Horn theories, if one of the implications— x, x — ¢
is not Horn. In the simplest casg,is a negative literag.

The next result tells us that already in this case, abduction
from a Horn CNF is intractable. Recall that a Horn CNF
is acyclig if the graph onP with arcs fromz; € N(c) to
x; € P(c), ¢ € o, has no directed cycle.

Theorem 3 Given a Horn CNFy, a general queryy in
CNF, andA C Lit, deciding ify has a nontrivial explana-
tion w.r.t. A is NP-complete. Hardness holds even it g,
¢ is acyclic, and either ()4 = P or (i) A = P'UP for
someP’ C P.

Proof. (Sketch) The problem is in NP, since clearly an ex-

planationE exists if some sek’ C A exists such that U £/

is satisfiable an& U E' |= x; such anF can be guessed and

the conditions can be checked in polynomial time.
Hardness is shown by a reduction from 3SAT. het=

c1 A+ Aey, be a 3CNF over atoms,, . . ., z,, Wherec; =

4;1 V{2V L 3. We introduce for each clausga new atom

y;, for eachz; a new atonw’;, and a special atom. The

Horn CNF contains the folfowing clauses:

We associate witlt,, a monotone Boolean functigf), on
the variablesP, = AN {x; | v; = 1} such thatf, (w) =
0 & w < s for some vectos in the projection ofF;, on
P,. That is,F, describes the maximal false pointsff

(3) Finally, define for every € max(M;)
po={c|N(c) =0, P(c) = P,\ S, 2° € F,}.
Note thaty, is a prime CNF forf,.

It can be shown (Eiter & Makino 2002) that the nontrivial
explanations of w.r.t. A are given by the clauses in all dual
prime CNFsy, for ¢, wherev € max(M;) (equivalently,
by all prime implicantg, i.e., a prime DNF representation of
fv, v € max(My)). This proves one direction of the result.

For the converse, we show that, given a positive GINiA
atomsP, computing an equivalent prime DNFis reducible



o 7,V foralli=1,...,n;
* ZVu

° gl \/Ziﬂ' \_/yi-i—l if E%,j is positive andji V%\/yi+1 if éi,j
is negative, forali =1,....m—1andj =1,2,3;

® Y, V b if £ ; is positive andj,,, v £, ; if £; ; is neg-
ative, forj = 1,2, 3. '

As easily seenyp is acyclic Horn. It can be shown (Eiter

& Makino 2002) that the query = —z has a nontrivial ex-

planationE consisting of positive literals iffy is satisfiable,

which proves NP-hardness under restriction (i). For (i), we

use a similar construction. m|

Note that this result contrasts the tractability result that a
nontrivial explanation® C P for a positive query can be
computed in polynomial time (Selman & Levesque 1996).
Thus, the framework of Horn abduction is sensitive with re-

spect to query representation. We also remark that we can

find an arbitrary explanatio’ for a queryg (which may
contain negative literals), in polynomial time.

In the model-based setting, we obtain for computing all
explanations for a negative query a similar result as for a
positive query.

Theorem 4 Given the characteristic se¥t = char(X) C
{0,1}" of a Horn theoryY:, a negative query, and A C
Lit, computing all explanations fog from X w.rt. A is
polynomial-time equivalent to dualizing a positive CNF.

Proof. (Sketch) Observe that since the query is not positive,
explanations off may involve negative literals.

Proposition 2 implies that the nontrivial explanations for
g w.rt. A correspond to the prime implicatesof ¥ such
thatg € N(c) andP(c)UN(c) C AU{q}. Letg = z;, and
define sets\y and M, for M as in the proof of Theorem 2.
Denote byA . (resp.,A_) the set of positive (resp., negative)
literals in A. We consider the following two cases:
(1) Positive explanations fa7. 1.e., all prime implicates of
Yst{q} C N(c) C Ay U{q}andP(c) = 0.

Similarly as in the proof of Theorem 2, we construct du-
alization problems for functiong,, but forv € max(My):

(1.1) For everyw € max(M), let
F, = max({v A 2 Aw | w € max(M;)}).

The associated monotone Boolean functjpnon P, =
An{x; | v; = 1} is defined byf, (w) = 0 & w < s holds
for some vectos in the projection ofF’, on P,.

(1.2) We define, for € max(M,),

0, ={c|N(c)=0, P(c)=P,\ S, 2% € F,}.
Similarly as in Theorem 2, we can show that the clauses in

the dual prime CNFs for alp,,, v € max(M,), correspond
to the positive explanations gf(Eiter & Makino 2002).
(2) Non-positive explanations faj. These are all prime
implicatesc of ¥ s.t. {¢} € N(¢c) € Ay U {¢} and
P(c) ={r}, wherer € A_.

For eachr = z;, (wherej’ # j), we proceed as follows.

(2.1) For everyw € max(M,) andi € {0,1}, define
M: {veMi|vT:i}.

(2.2) For each/(®) € max(M}) andv?) € max(M7), let
F,

v© o) = max({o@AvM AzA+ Aw |

w € max({u € My |uj =0)}).
We associate with it a monotone Boolean functfgn) ,«)
on Py = AN {z; | o!” = vV = 1} such that

fo© 0 (w) =0« w < s for somes in the projection of
Fy0) »1 0N Pyo) ).

(2.3) We define the CNFs
Py o = {c| N(e) =0, P(c) = P, \ S, 2° € F0 ,» }-

Then, it can be shown (Eiter & Makino 2002) that the
clauses in the dual prime CNFS,«) ,«) for all v, ,a),

wherev(©® € max(M;) andv® € max(M7)andr € A_,
correspond to the non-positive explanationg.of

In total, computing all explanations @fis polynomial-
time reducible to dualizing (in parallel) polynomially many
positive CNFs. As mentioned in the proof of Theorem 2,
this is polynomially reducible to dualizing a single CNF.

The converse is shown by a reduction similar to the one in
the proof of Theorem 2; we just invert the polaritypf O

Joint Explanations

We call any set ofE C A of literals ajoint explanation
of observations, 0, ..., 0; from a background theor{
w.r.t. a set of assumption$ C Lit, if £ is an explanation of
eacho; from X w.r.t. A. The observations; may be letters,
or in a generalized setting propositional formulas.

Note that any sucli is also an explanation for the con-
junctiona = o1 A os A --- A o Of all observations, while
the converse is not true in general: an explanafibof o
may not satisfy minimality fob;, say, i.e., som&’ C E
may explaino;. Thus, joint explanations are stronger than
ordinary explanations. In case of multiple explanations, this
may be used to single out those which match with each of
the (possibly independently made) observations.

For example, the malfunctioning of a car may be ex-
plained by two car mechanics, based on observatipasd
02, respectively. A match of their (individual) diagnosés
and E; (i.e., 1 = E5) may be taken in favor of believ-
ing in their correctness. In fact, the diagnoses are robust in
the sense that adding the other observation does not require
a change; from another perspective, the same diagnosis is
good for explaning different observations.Af and E, are
different, then we might want to know whether alternative
diagnoses; and E/, do exist which coincide, i.e., whether
a joint explanation is possible.

As it turns out, recognizing joint explanations for CNFs,
i.e., deciding whetheF is a joint explanation for observa-
tionsoy,...,o0; described by CNFs, front w.r.t. assump-
tions A is tractable, for both formula- and model based rep-
resentation. However, deciding existence is harder.

Theorem 5 Given a Horn CNFp, query CNFsyy, xa2, .. .,
X1, Wherel > 2, andA C Lit, deciding if a joint explanation
exists from>: w.r.t. A is NP-complete. Hardness holds even
if | = 2, eachy; is a letter,p is acyclic, andA = Lit.



Theorem 6 Given the characteristic se¥! = char(X) of
a Horn theoryX, query CNFsy1, x2,.-.,Xx:, | > 2, and
A C Lit, deciding if a joint explanation exists fromw.r.t.
A is NP-complete. Hardness holds ever if 2, eachy; is
a letter, andA = Lit.

Thus, the tractability results in (Selman & Levesque 1996;
Kautz, Kearns, & Selman 1993) do not generalize to joint
explanations for positive queries. Similar intractability re-
sults hold for negative queries and combined positive and
negative queries.

Related Works
Selman and Levesque (1990; 1996) were among the first to
study the complexity of computing general and assumption-
based explanations; Corollary 1 closes an open problem of
them. The underlying algorithmX®LANATIONS is a rela-
tive of a similar procedure by Bores al.(1990) for comput-
ing all prime implicates of a Horn CNF in output-polynomial
time. In fact, Theorem 1 can be seen as a strengthening of
their result. For negative queries, a similar algorithm is not
evident. del Val (2000) presented generation of implicates
and prime implicates of certain clausal theories in a target
language, which is formed on a subset of the atoms, using
a procedure based on kernel resolution and derived expo-
nential bounds on its running time. Furthermore, del Val
described the use of this procedure for generating jointly all
explanations of all literals not on a set of atoimsHowever,
neither is this method incremental in nature, nor is it clear
whether it is total polynomial time. Moreover, it considers a
letter ¢ and its negatiof at once.

Inoue (1992) considered, in the propositional and the first-
order context, generating explanations and prime implicates
using SOL-resolution. He proposed a strategy which pro-
cesses, starting from the empty set, clauses from a theory
incrementally. However, due to possible large intermediate
results, this method is not total polynomial time in general.
Khardonet al. (1999) show how computing all keys of a re-

lational database schema, which is constrained by a Boolean

formulayp, can be polynomially transformed into computing
all explanations of a query from ¢ A 1, wherey is Horn.
Thus, our algorithm EPLANATIONS can be used for effi-
ciently generating all keys of a database scheme wheése

a Horn CNF. This generalizes the result foconsisting of
non-negative Horn clauses, i.e., a set of functional depen-
dencies (Lucchesi & Osborn 1978)Note that Khardoret

al. also show how to compute a single explanation of a query
q from a theoryy polynomially, using repeatedly an oracle
for computing a key of a database schema constrained by
© A 1, where) is Horn; however, this method is not us-
able for generating explanations from general Horn theories
(cf. Footnote 1). Less related to our work is (Eiter & Gottlob
1995), which considered abduction from Horn and general
propositional theories, but focused on existence of explana-
tions and reasoning tasks about explanations.

Conclusion

We have presented a number of positive and negative results

about generating all and some abductive explanations, re-

LIn fact, Khardoret al’s transformation works only i has no
negative prime implicate; otherwise, keys introduce inconsistency.

spectively, which complement previous work in the litera-
ture. In particular, we analyzed the role of positive vs nega-
tive abductive queries, under both formula- and model-based
representation, and we considered the novel notion of joint
explanation. Our positive results may be readily applied for
efficiently computing (a subset of) all explanations. The re-
sults draw a complete picture for the model-based setting,
and almost so for the formula-based setting; the complexity
of generating all explanations for a negative query in it is
currently open.
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