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Abstract

We show that a Horn SAT and logic programming approach
to obtain polynomial time algorithms for problem solving
can be fruitfully applied to finding plans for various kinds
of goals in a non-deterministic domain. We particularly fo-
cus on finding weak, strong, and strong cyclic plans for plan-
ning problems, as they are the most studied ones in the lit-
erature. We describe new algorithms for these problems and
show how non-monotonic logic programming can be used to
declaratively compute strong cyclic plans. As a further bene-
fit, preferred plans among alternative candidate plans may be
singled out this way. We give complexity results for weak,
strong, and strong cyclic planning. Finally, we briefly discuss
some of the kinds of goals in non-deterministic domains for
which the approach in the paper can be used.

Introduction and Motivation
In recent years, one of the approaches that has been used
in finding solutions to AI problems is to find “models” of a
logical encoding of the problem. Examples of this include
finding planning via satisfiability encoding (Kautz & Sel-
man 1992) or logic programming encodings with answer set
semantics (Gelfond & Lifschitz 1991). The later is now re-
ferred to as answer set programming. But in most of these
cases, the problems that are solved are in the complexity
class NP-complete or beyond. One outlier is the work (Baral
& Eiter 2004) which takes advantage of the lower complex-
ity results about specific logic programming and SAT sub-
classes to come up with a polynomial-time algorithm for
finding maintenance policies.

In that paper, the authors first give a propositional SAT en-
coding of the problem. They then give a transformation of
that encoding to a propositional reverse Horn encoding and
show that the models of the encoding correspond to desired
agent policies. The fixpoint iteration approach to compute
models of Horn theories, which is feasible in linear time, is
then exploited to develop a genuine polynomial-time algo-
rithm for finding agent policies. If one were to view the log-
ical encoding as a specification, then the above mentioned
approach can be considered as a systematic way to develop
algorithms from specifications.
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In this paper, we show that the above approach can also be
used in finding polynomial time algorithms for some plan-
ning problems that emerge in non-deterministic domains
(Dal Lago, Pistore, & Traverso 2002; Cimatti et al. 2003).
In particular, we consider the notions of strong planning,
weak planning, and strong cyclic planning (Cimatti et al.
2003) and develop encodings inspired by the encoding in
(Baral & Eiter 2004), leading to polynomial time algorithms
for finding strong cyclic plans, strong plans and weak plans.
Overall, our main contributions in this paper are:
• We illustrate the novel algorithm design approach of
(Baral & Eiter 2004) to systematically develop an algorithm
from a logical specification. Passing through Horn SAT
specifications, we develop new polynomial time algorithms
for weak, strong, and strong cyclic planning; thus shedding
additional insights about these notions.
• We show how strong cyclic plans can be declaratively
generated with answer set programming at an abstract level.
• We discuss how particular properties of the encodings and
features of answer set solvers can be exploited for com-
puting (most) preferred plans among alternative candidate
plans. In particular, based on the encoding, maximal plans
and least defined plans can be found in polynomial time, and
in an answer set solver certain preference information (e.g.
based on action cost) can be easily expressed.
• We briefly discuss how our approach can lead to algo-
rithms for certain other kind of goals in non-deterministic
domains, such as maintenance goals and goals composed of
a sequence of achievements.
• We give complexity results about weak, strong and strong
cyclic planning. (No such results appear in previous papers.)

Plans and Goals in Non-deterministic Domains
We start with recalling the notions of weak, strong, and
strong cyclic plans from (Cimatti et al. 2003). Such plans
manifest in non-deterministic domains. In such domains,
plans map states to actions or to sets of actions. A weak plan
to achieve p is a plan that says that at least one of the paths
(based on following that plan) leads to p. A strong plan to
achieve p is a plan that says that all paths (based on following
that plan) would lead to p. A strong cyclic plan to achieve
p is a plan that says all along the path (based on following
that plan) there is at least one of the paths (by following that
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Figure 1: Transition diagram of the planning domain D

plan) that would lead to p. In the language of π-CTL∗ (Baral
and Zhao 2004), these goals are expressed as Eπ♦p, Aπ♦p,
and Aπ�(Eπ♦p), respectively; where ♦ means eventually,
� means always, Eπ means exists a path following the plan
under consideration, and Aπ means all paths following the
plan under consideration.

We now give the formal definitions.

Definition 1 (Planning Domain) A Planning Domain is a
triple D= 〈S,A,Φ〉 where
• S is the set of states,
• A is the finite set of actions,
• Φ : S × A → 2S is the (non-deterministic) transition

function that specifies how the state of the world changes in
response to actions.

Definition 2 (Executable Actions) Given a planning do-
main D = 〈S,A,Φ〉, for each s ∈ S, the set of executable
actions in s, Act(s), is Act(s) = {a : Φ(s, a) 6= ∅}.

Example 1 Consider a planning domain D = 〈S,A,Φ〉.
Let S = {b, c, d, e}, A = {x, y}, and the transition function
Φ as in Figure 1. Then, Act(b) = {x, y} while Act(e) = ∅.

Definition 3 (Plan) Given a planning domain D =
〈S,A,Φ〉, a mapping π : S → 2A is called a plan if for
every s ∈ S, if π(s) is defined, then π(s) ⊆ Act(s).

Definition 4 (Planning Problem) Let D = 〈S,A,Φ〉 be
a planning domain. A planning problem for D is a triple
〈D, I,G〉 where I ⊆ S, and G ⊆ S.

Definition 5 (Execution Structure) Let π be a plan of a
planning domain D= 〈S,A,Φ〉. The execution structure
induced by π from the set of initial states I ⊆ S is a tu-
ple K = 〈Q,T 〉 with Q ⊆ S and T ⊆ S × S inductively
defined as follows:

1. If s ∈ I, then s ∈ Q, and
2. If s ∈ Q, action a ∈ π(s), and s′ ∈ Φ(s, a), then s′ ∈ Q

and (s, s′) ∈ T .

A state s ∈ Q is a terminal state of K if there is no s′ ∈ Q
such that (s, s′) ∈ T .

In the following, given a 〈Q,T 〉, we say a state s2 ∈ Q is
reachable from state s1 ∈ Q if there is a path from s1 to s2

in T .

Definition 6 (Plans with respect to a planning problem)
Let D = 〈S,A,Φ〉 be a planning domain, P = 〈D, I,G〉
be a planning problem, π be a plan in D. Let K = 〈Q,T 〉
be the execution structure induced by π from I.

1. π is a weak plan with respect to P iff for any state in I,
some terminal state in G is reachable from the state.

2. π is a strong plan with respect to P iff K is acyclic and
all the terminal states of K are in G.

3. π is a strong cyclic plan with respect to P iff from any
state in Q some terminal state is reachable and all the
terminal states of K are in G.

Example 2 Continuing Ex. 1, for the planning problem
〈D, I,G〉 where I = {b} and G = {e}, the mapping π such
that π(c)= x and π(b)= x, is a strong cyclic plan. Its exe-
cution structure is K = {{b, c, e}, {(b, c), (c, b), (c, e)}}. In
this planning problem, no strong plan exists, while π is also
a weak plan.

Finding Strong Cyclic Plans
In this section we use the approach in (Baral & Eiter 2004)
to develop algorithms that construct strong cyclic plans. To
start with, we give a propositional SAT encoding of a plan-
ning problem, and show that the models of this theory en-
code strong cyclic plans, if one exists, and vice versa.

SAT encoding S -Cyclic(P )
In our SAT encoding, we will use, for each state s and ac-
tion a, propositions si and s ai, where i ≥ 0 is an integer.
Intuitively, si will mean that there is a path from s to G, fol-
lowing T of the execution structure K = 〈Q,T 〉, of length
at most i. Similarly, s ai will intuitively mean that there is
a path from s to G, following T of the execution structure
K = 〈Q,T 〉, of length at most i, with a as its first action.
We employ an upper bound max for i, depending on the
number of states in S; if there is no path of length at most
max, there is no path at all.

Algorithm 1 Suppose we are given a planning problem
P = 〈D, I,G〉 where D= 〈S,A,Φ〉. Let max= |S|−1. We
translate P into a SAT encoding S -Cyclic(P ) as follows:

(0) for all s ∈ S and i, 0 < i ≤ max: si−1 ⇒ si

(1) for every state s ∈ S\G, and for all i, 0 < i ≤ max:
si ⇒

∨
a∈Act(s) s ai

(2) for every states s, s′ ∈ S such that s′ ∈ Φ(s, a) for
some action a: s amax ⇒ s′max

(3) for every state s ∈ S, action a ∈ Act(s), and for all i,
0 < i ≤ max: s ai ⇒

∨
s′∈Φ(s,a) s′i−1

(4) for every state s ∈ S, action a ∈ Act(s), and 1 < i ≤
max: s ai−1 ⇒ s ai

(5) for s ∈ I: smax

(6) for s ∈ S \ G: ¬s0

The intuition behind this encoding is as follows. The
clauses in (0) state that if there is a path from s to G of
length at most i-1, then there is a path of length at most
i. The clauses in (4) make a similar statement for paths with
first action a. The clauses in (1) state that if there is a path
from s to G of length at most i, then there must exist an ac-
tion a which is the first action of such a path. The clauses
in (2) state that for any state s, there is a path from s to G
of length at most max with a as its first action only if from
every state s′ ∈ Φ(s, a) a path to G of length at most max
exists. This takes into account the possibility that s may be



in (the closure) Q of the execution structure 〈Q,T 〉. The
clauses in (3) state that a path from s to G of length at most
i with a as its first action exists only if there is a path from
some state s′ ∈ Φ(s, a) to G of length at most i-1. The
clauses in (5) state that every initial state must have a path
of length at most max. Finally, the clauses in (6) exclude
paths of length zero for non-goal states.

Strong cyclic plans with respect to P and the models of
S -Cyclic(P ) are formally connected as follows.

Proposition 1 Let P = 〈D, I,G〉 be a planning problem
with planning domin D= 〈S,A,Φ〉.

1. P has a strong cyclic plan iff S -Cyclic(P ) is satisfiable;
2. For any model M of S -Cyclic(P ), the partial function

πM : S → 2A defined by πM (s) = {a | M |= s aj , j =
mini M |= si} on all states s ∈ S \ G such that M |= si

for some i, is a strong cyclic plan of P .

Horn SAT Encoding
While S -Cyclic(P ) is constructible in polynomial time
from P , we can not automatically infer that finding strong
cyclic plans is polynomial, since SAT is a canonical NP-
hard problem. However, a closer look at the structure of
the clauses in S -Cyclic(P ) reveals that this instance is solv-
able in polynomial time. Indeed, it is a reverse Horn theory;
i.e., after reversing the propositions, the theory is Horn. Us-
ing propositions si, which intuitively mean the converse of
si, the Horn theory corresponding to S -Cyclic(P ), denoted
S -Cyclic(P ), is as follows:

Algorithm 2 We are given a planning problem P =
〈D, I,G〉, where D= 〈S,A,Φ〉. Suppose max = |S|−1.
We translate P into a Horn encoding S -Cyclic(P ):

(0) for all s ∈ S and i, 0 < i ≤ max: si ⇒ si−1

(1) for every state s ∈ S\G, and for all i, 0 < i ≤ max:∧
a∈Act(s) s ai ⇒ si.

(2) for every states s, s′ ∈ S such that s′ ∈ Φ(s, a) for
some action a: s′max ⇒ s amax

(3) for every state s ∈ S, action a ∈ Act(s), and for all i,
0 < i ≤ max:

∧
s′∈Φ(s,a) s′i−1 ⇒ s ai

(4) for every state s ∈ S, action a ∈ Act(s), and for all i,
1 < i ≤ max: s ai ⇒ s ai−1

(5) for s ∈ I: smax ⇒⊥

(6) for s ∈ S \ G: s0

As computing a model of a Horn theory is a well-known
polynomial problem (Dowling & Gallier 1984), we thus ob-
tain the following result.
Theorem 1 Strong cyclic plans can be computed in polyno-
mial time. �

Maximal plan An interesting aspect of the above is that,
as well-known, each satisfiable Horn theory T has the least
model, M∗(T ), which is given by the intersection of all its
models. Moreover, the least model is computable in linear
time, cf. (Dowling & Gallier 1984). This model not only
leads to a strong cyclic plan, but also leads to the maximal

plan, in the sense that the control is defined on the great-
est set of states outside G among all possible strong cyclic
plans for initial states I ′ and goal states G such that I ⊆ I ′.
This gives a clear picture of which other states may be added
to I while strong cyclicness is preserved. Besides, for any
strong cyclic plan, for any state, the action dictated by that
plan for that state is among the actions dictated by the plan
corresponding to M∗(T ).
Lean plans On the other hand, intuitively a strong cyclic
plan constructed from some maximal model of S -Cyclic(P )
with respect to the propositions sk is undefined to a largest
extent, and works merely for a smallest extension. We may
generate, starting from any model of T , such a maximal
model of T by trying to flip step by step all propositions
sk which are false to true, and change other propositions
as needed for satisfiability. In this way, we can generate a
maximal model of T on {sk | s ∈ S \ E} in polynomial
time, from which a “lean” control can also be extracted in
polynomial time.

Genuine Procedural Algorithm
From the encoding to Horn SAT above, we can distill a di-
rect algorithm STRONG CYCLIC PLAN to construct a strong
cyclic plan, if one exists. It mimics the steps which a SAT
solver might take in order to solve S -Cyclic(P ). For each
state s∈S and action a ∈ Act(s), we use counters c[s] and
c[s a] ranging over {−1, 0, · · · ,max} and {0, 1, · · · ,max},
respectively. Intuitively, c[s] = i represents that so far s0, s1,
· · ·, si are assigned true; in particular, i=−1 represents that
no si is assigned true yet. Similarly, c[s a] = i represents
that so far s a1, s a2, · · ·, s ai are assigned true. In particu-
lar, c[s ai] = 0 means that no s ai is assigned true yet.

Algorithm 3 STRONG CYCLIC PLAN

Input: A planning domain D = 〈S,A,Φ〉, and a planning
problem P = 〈D, I,G〉.

Output: A strong cyclic plan of P if such plan exists. Oth-
erwise, output that no such plan exists.

(Step 1) Initialization:
(i) For every s ∈ G, set c[s] := −1.
(ii) For every s ∈ S\G, if Act(s) = ∅ then set
c[s] := max else set c[s] := 0.

(iii) For each s ∈ S\G and a ∈ Act(s), set c[s a]:=0.
(Step 2) Repeat until no change or c[s] = max for some
s∈I:
(i) For every state s ∈ S\G such that Act(s) 6= ∅,
c[s] := max(c[s], i) where i = mina∈Act(s) c[s a].

(ii) For every state s∈S, a∈Act(s), and s′ ∈Φ(s, a), if
c[s′] = max, then c[s a] := max.

(iii) For every state s ∈ S and a ∈ Act(s),
c[s a] := max(c[s a], i+1) where i= mins′∈Φ(s,a) c[s′].
(Step 3) If c[s] = max for some s∈I, then output that there

is no strong cyclic plan; halt.
(Step 4) Output the plan π : S → 2A defined on the states
s ∈ S\G with c[s]≤max and π(s)= {a | a∈Act(s),
c[s a] = minb∈Act(s) c[s b] }. �



Proposition 2 Algorithm STRONG CYCLIC PLAN finds a
strong cyclic plan, if one exists, in a planning problem. Fur-
thermore, for every input D and P , it terminates in polyno-
mial time.

We remark that algorithm STRONG CYCLIC PLAN can be
made more efficient by pruning in a linear time preprocess-
ing all states which are not on a path between some states
s ∈ I and s′ ∈ G.

A more detailed account of the complexity of STRONG
CYCLIC PLAN and possible improvements are given below.

Strong Cyclic Planning Using an Answer Set Solver
In this section, we show how computing strong cyclic plans
can be encoded as a logic program, based on the results of
the previous section. More precisely, we describe an encod-
ing to non-monotonic logic programs under the Answer Set
semantics (Gelfond & Lifschitz 1991), which can be exe-
cuted on one of the available Answer Set solvers such as
DLV (Leone et al. 2005) or Smodels (Simons, Niemelä, &
Soininen 2002). These solvers support the computation of
answer sets (models) of a given program, from which solu-
tions (in our case, strong cyclic plans) can be extracted.

The encoding is generic, i.e., given by a fixed program
which is evaluated over instances I represented by input
facts F (I). It makes use of the fact that non-monotonic
logic programs can have multiple models, which correspond
to different solutions, i.e., different strong cyclic plans.

In the following, we first describe how a system is rep-
resented in a logic program, and then we develop the logic
programs for both deterministic and general, nondeterminis-
tic domains. We adopt here the syntax of DLV; the adaptions
for other Answer Set Solvers (e.g. Smodels) are very minor.

Input representation F (I) The input I can be repre-
sented by facts F (I) as follows.

• The following facts represent the planning domain D =
〈S,A,Φ〉 and the planning problem P = 〈D, I,G〉:
• state(s), for each s ∈ S;
• action(a), for each a ∈ A;
• trans(s,a,s′), for each s, s′ ∈ S and a ∈ A such that
s′ ∈ Φ(s, a);
• the set of states I is represented by using a predicate
start by facts start(s), for each s ∈ I;
• the set of states G is represented by using a predicate
goals by facts goal(s), for each s ∈ G;
• finally, the ranges 1 . . . max and 2 . . . max are repre-
sented using predicates range1 and range2, respectively.

Program PSC The program PSC , executable on the DLV
engine, for computing a strong cyclic plan is as follows.
%ranges
range1(N) :- #int(N), N>0.
range2(N) :- #int(N), N>1.

% 0
s_bar(S,J1) :- s_bar(S,J), J=J1+1.

% 1
s_bar(S,I) :- state(S), not goal(S),

range1(I), not fail_body(S,I).

fail_body(S,I) :- range1(I),
trans(S,A,Y), not s_a_bar(S,A,I).

% 2
s_a_bar(S,A,#maxint) :-

trans(S,A,Y), s_bar(Y,#maxint).
% 3
s_a_bar(S,A,I) :- state(S), action(A),

range1(I), not fail_a_body(S,A,I).

fail_a_body(S,A,I) :- range1(I), I=I1+1,
trans(S,A,Y), not s_bar(Y,I1).

% 4
s_a_bar(S,A,I1) :- range2(I),

I=I1+1, s_a_bar(S,A,I).
% 5
:- s_bar(S,#maxint), start(S).

% 6
s_bar(S,0) :- state(S), not goal(S).

% single out a plan:
pi(S,A) :- fail_a_body(S,A,J), not goal(S),

J = #min{J1: fail_body(S,J1)}.

Besides the input predicates of F (I), the program em-
ploys predicates s bar(S,I) and s a bar(S,A,I) which
intuitively correspond to SI and S AI respectively. The
predicates fail body(S,I) and fail a body(S,A,I)
are used to uniformly represent clauses in (1) and (3), re-
spectively, with varying body size; they amount to the nega-
tion of s bar(S,I) and s a bar(S,A,I), respectively.
The plan is computed in the predicate pi(S,A).
Example 3 The logic program encoding F (I) of the strong
cyclic planning problem in Example 2 is as follows:
#maxint=3.
state(b). state(c). state(d). state(e).
start(b). goal(e). action(x). action(y).
trans(b,x,c). trans(c,x,b). trans(c,x,e).
trans(b,y,d). trans(c,y,d).

The program PSC ∪ F (I) has one answer set. Filtered to
the atoms fail a body(s,a,i) and pi(s,a), we get:
{ fail_a_body(c,x,1), fail_a_body(b,x,2),
fail_a_body(c,x,2), fail_a_body(b,x,3),
fail_a_body(c,x,3), pi(b,x), pi(c,x) }

Hence, we obtain the strong cyclic plan π given by π(b) =
{x} and π(c) = {x}.

Preferred plans In the above example, PSC yields a sin-
gle and deterministic plan π, i.e., |π(s)| ≤ 1 always holds.
In general, there can be multiple answer sets, each cor-
responding to a different plan. Moreover, π can be non-
deterministic; if in Example 3 a further action z would lead
from c to e, then π(c, e) would be in the result computed,
and thus π(c) = {x, z}. By adding further rules in PSC , we
can easily generate a deterministic plan πdet, e.g. by nonde-
terministically selecting one action from π(s):
pi_det(S,A) :- pi(S,A), not drop(S,A).
drop(S,A)vdrop(S,B):- pi(S,A),pi(S,B),A<>B.

For the case where multiple solutions exist, we might ex-
ploit features available in Answer Set Solvers to select pre-
ferred plans. For example, using weak constraints offered
by DLV, we can express prioritization between different ac-
tions. For illustration, the weak constraints



:˜ pi_det(c,x). [:1] :˜ pi_det(c,z). [:2]

express that as for πdet, taking action z in state c is pre-
ferred over taking x. Using weak constraints, we can also
easily model costs for action execution, possibly dependent
on the state, which add up in execution. In this way, op-
timal (i.e., most preferred) plans among the candidates can
be computed, possibly combining different criteria like de-
terministic actions and execution cost. We leave a detailed
discussion of this for further study.

Finding Strong Plans
Finding strong plans can be approached in three ways: (i) as
a special case of finite maintainability, when there are no ex-
ogenous actions; (ii) further constraining strong cyclic plan-
ning; or (iii) by a generic SAT encoding.

As for (ii), a Horn SAT encoding and genuine algorithm
for strong planning are as follows:

Horn Sat Encoding Strong(P ): The clauses (0), (1), (4),
(5), (6) from S -Cyclic(P ) and the following clauses:
(7) For every state s ∈ S and action a ∈ A, for all s′ ∈
Φ(s, a), and for all i, 0 < i ≤ max: s′i−1 ⇒ s ai

Genuine procedure STRONG PLAN: Steps 1, 2.(i), 3, and
4 from STRONG CYCLIC PLAN plus the new Step:
(Step 2) (ii′) For any state s ∈ S, if s′ ∈ Φ(s, a) for
a ∈ Act(s) and c[s′] = i such that 0 ≤ i ≤ max, then do
c[s a] := max(c[s a], i + 1).

As discussed later, this yields algorithms of the same or-
der as for strong cyclic planning.

The following Horn SAT encoding and the corresponding
genuine procedure is more efficient.

Algorithm 4 For planning problem P = 〈D, I,G〉, where
D = 〈S,A,Φ〉, the Horn instance Strong

+
(P ) contains:

(0) for every s ∈ G: s

(1) for every state s ∈ S\G and action a ∈ Act(s) such
that Φ(s, a) = {s′1, . . . , s

′
m}, m > 0:

s′1 ∧ · · · ∧ s′m ⇒ s and s′1 ∧ · · · ∧ s′m ⇒ s a.
(2) For I = {s1, . . . , sl}: s1 ∧ · · · ∧ sl ⇒ ⊥.

Theorem 2 For a planning problem P = 〈D, I,G〉,

(i) a strong solution exists iff Strong
+
(P ) is unsatisfiable

iff ⊥ is derivable from Strong
+
(P ).

(ii) π = {〈s, a〉 | s a ∈ T i
P ′ , s /∈ T i−1

P ′ , for some i ≥ 1},
is a (non-deterministic) strong solution, where T 1

P ′ = G

and T i+1
P ′ = {` | `1 ∧ · · · ∧ `l ⇒ ` ∈ Strong

+
(P ) and

`1, . . . , `l,∈ T i
P ′} for i ≥ 1, are the powers T i

P ′ of the
logic programming immediate consequence operator TP ′

(see e.g. (Dantsin et al. 2001)) for the program P ′ =

Strong
+
(P ) (viewing ⊥ as atom).

A strong plan π as in the theorem can be constructed in
O(|Φ| + |S|) time starting from P , since Strong

+
(P ) is

easily constructed and, as well-known, the powers of TP ′ are
incrementally computable in linear time using proper data
structures, cf. remarks in (Dantsin et al. 2001).

Finding Weak Plans
One way to think about finding weak plans is as relaxing
strong cyclic planning. A respective Horn SAT encoding
and genuine algorithm for Weak planning are as follows:

Horn Sat Encoding Weak(P ): The clauses (0), (1), (3),
(4), (5), (6) from S -Cyclic(P ).

Genuine procedure: It consists of Steps 1, 2.(i), 2.(iii), 3,
and 4 of algorithm STRONG CYCLIC PLAN. (It does not
contain the Step 2 (ii).)
Again, this yields algorithms of the same order as for

strong cyclic planning. More efficient ones emerge from the
following encoding.
Algorithm 5 For planning problem P = 〈D, I,G〉, where
D = 〈S,A,Φ〉, the Horn instance Weak

+
(P ) is as follows:

(0) for every s ∈ G: s

(1) for every state s ∈ S\G, action a ∈ Act(s), and s′ ∈
Φ(s, a): s′ ⇒ s a and s′ ⇒ s.

Theorem 3 For a planning problem P = 〈D, I,G〉,

(i) a weak solution exists iff for each s ∈ I, Weak
+
(P ) ∪

{¬s} is unsatisfiable if and only if each s ∈ I is true in
M∗(Weak

+
(P )), the least model of Weak

+
(P ).

(ii) π = {〈s, a〉 | s a ∈ M∗(Weak
+
(P ))}, is a (non-de-

terministic) strong solution, if any strong solution exists.

Note that Weak
+
(P ) is definite Horn, and thus its least

model M∗(Weak
+
(P )) does exist. Furthermore, it is com-

putable in linear time in the size of Weak
+
(P ). Since the

latter is easily constructed, finding a weak plan w.r.t. P is
thus feasible in time O(|Φ| + |S|), i.e., in linear time.

Complexity and Relation to other Algorithms
For any planning domain D = 〈S,A,Φ〉 and planning prob-
lem P = 〈D, I,G〉, we denote by ‖D‖ = |S|+|A|+|Φ| and
‖P‖ = ‖D‖ + |I| + |G| the representation size of D and P ,
respectively (where Φ is viewed as set of triples 〈s, a, s′〉).
Proposition 3 Strong Cyclic Planning can be solved, via
the Horn encoding S -Cyclic(P ) and, by a suitable imple-
mentation of Algorithm STRONG CYCLIC PLAN, in time
O(|S|·‖P‖) and O(|S|·|Φ|), respectively.

Compared to (Cimatti et al. 2003), our algorithm for
strong cyclic planning works differently. Basically, their
algorithm iteratively computes weak plans by backtracking
from the goal states and prunes the planning problem until a
weak plan which is also a strong cyclic plan is obtained. Our
algorithm, instead, has no such intuition and simply aims
at establishing the necessary logical conditions, as in the
seminal planning as satisfiability approach (Kautz & Selman
1992). A simple implementation of the Cimatti et al. algo-
rithm has O(|S|2|Φ|) time complexity, while a sophisticated
one has O(|S|·|Φ|) comparable to ours. In the extended ver-
sion of the paper, we illustrate on an example the difference
between the workings of their algorithm and ours.

For finding strong plans and weak plans by constrained
and relaxed strong cyclic planning, respectively, we obtain:



Proposition 4 Strong Planning (resp., Weak Planning) can
be solved, via the encoding Strong(P ) (resp., Weak(P )) in
time O(|S|·‖P‖), and by a properly implemented algorithm
STRONG PLAN (resp., WEAK PLAN), in time O(|S|·|Φ|).

Simple implementations of the algorithms for strong and
weak planning in (Cimatti et al. 2003) have time com-
plexity O(|S|·|Φ|), while more sophisticated ones have
O(‖P‖), i.e., linear time. For the special Horn encod-
ings Strong

+
(P ) and Weak

+
(P ), we obtain the same time

bound. They are closely related to the respective algorithms
in (Cimatti et al. 2003) and may be viewed as declarative
descriptions of the plan construction method. Nicely, an ef-
ficient implementation comes for free by the efficient algo-
rithms for solving Horn theories.

As for the computational complexity of the planning
problems, we note the following.1

Proposition 5 Deciding whether a given planning problem
〈D, I,G〉 has (i) a strong cyclic solution is P-complete (ii)
a strong solution is P-complete, and (iii) a weak solution is
NLOG-complete.

The P-hardness results are an easy consequence of com-
plexity results on k-maintainability (Baral & Eiter 2004).
The NLOG-membership of weak solutions is explained by
the fact that as shown above, this reduces to solving for each
s ∈ I a Horn SAT instance (Theorem 3) that is also a 2-SAT
instance, which is feasible in NLOG. The NLOG-hardness
follows from a simple reduction from the canonical graph
reachability problem. We finally note that exploiting Theo-
rem 3, also computing some weak plan is feasible in nonde-
terministic logspace.

Extending the Approach to Other Goals
As we mentioned earlier, weak, plans, and strong cyclic
plans can be expressed as Eπ♦p, Aπ♦p, and Aπ�(Eπ♦p) in
language π-CTL∗. Although we focus on these plans in this
paper, the planning algorithm finding approach can be used
to find algorithms for many other kinds of goals in π-CTL∗.
Such goals include:

• Maintenance Goals such as Aπ�(Eπ�♦p). Such goals
are particularly relevant when possible exogenous actions
can take the agent away from p, and it has to get back to p.

• Goals such as A�(Eπ♦p), and Aπ�(E♦p), where E and
A correspond to exist path and all path regardless of whether
they follow the policy under consideration or not.

• Goals of the kind: Reach p for sure; then reach q and so
on. In this case the second ‘reach’ could mean either weak,
strong or strong cyclic way of reaching. Here our approach
can be used to generate multiple policies that are to be used
depending on the status of achievement.
• Goals of the kind: Try to reach p (weak plan) and if at any
point if p becomes unreachable then try to reach q.

1We could not find a reference for these results, which might be
known to the specialists, though.

Conclusion
In this paper, we show that the methodology in (Baral &
Eiter 2004) can be used to develop polynomial time plan-
ning algorithms for various kinds of problems in a non-
deterministic domain, viz. for weak, strong, and strong
cyclic planning. Small modifications to the algorithm ob-
tained for strong cyclic planning, whose complexity is com-
parable to a sophisticated implementation of the Cimatti et
al. algorithm, yield polynomial algorithms for strong and
weak planning. Furthermore, simple, genuine Horn encod-
ings give efficient (linear time) implementations of Cimatti
et al.’s strong and weak plan construction method at an ab-
stract level. We also show how strong cyclic planning can
be declaratively done in non-monotonic logic programming,
using an Answer Set Solver. By exploiting features of such
solvers, a (most) preferred among multiple candidate plans,
depending on criteria like deterministic actions, action pref-
erence, or action cost might be singled out.

It appears that the method described in this paper may be
fruitfully applied to obtain polynomial-time planning algo-
rithms for other kinds of goals in non-deterministic domains.
Among them are several goals expressed in the language π-
CTL∗ (Baral and Zhao 2004). Exploring this is part of our
ongoing work.
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