
HEX Semantics via Approximation Fixpoint Theory?

Christian Antić, Thomas Eiter, and Michael Fink

Institute of Information Systems, Vienna University of Technology
Favoritenstraße 9-11, A-1040 Vienna, Austria
{antic,eiter,fink}@kr.tuwien.ac.at

Abstract. Approximation Fixpoint Theory (AFT) is an algebraic framework for
studying fixpoints of possibly nonmonotone lattice operators, and thus extends
the fixpoint theory of Tarski and Knaster. In this paper, we uniformly define 2-,
and 3-valued (ultimate) answer-set semantics, and well-founded semantics of
disjunction-free HEX programs by applying AFT. In the case of disjunctive HEX

programs, AFT is not directly applicable. However, we provide a definition of 2-
valued (ultimate) answer-set semantics based on non-deterministic approximations
and show that answer sets are minimal, supported, and derivable in terms of bottom-
up computations. Finally, we extensively compare our semantics to closely related
semantics, including constructive dl-program semantics. Since HEX programs are
a generic formalism, our results are applicable to a wide range of formalisms.

1 Introduction

HEX programs [10] enrich disjunctive logic programs under the answer-set semantics
[12] (ASP programs) by external atoms for software interoperability. As the latter can
represent arbitrary computable Boolean functions, HEX programs constitute a powerful
extension of ordinary logic programs that has been exploited in a range of applications.1

Furthermore, they are closely related to other extensions of ASP programs, such as
dl-programs (considered below), modular logic programs, or multi-context systems with
ASP components (see [8]). The semantics of HEX programs has been defined in terms of
FLP-answer sets, which adhere to minimal models or, even more restricting, to models
free of unfoundedness. However, FLP-answer sets of HEX programs may permit circular
justifications (cf. [18]), and concepts such as well-founded semantics (which is based on
unfounded sets) [21] may be cumbersome to define.

Approximation Fixpoint Theory (AFT) [5,7] is an abstract algebraic framework
for studying fixpoints of (monotone or nonmonotone) lattice operators in terms of
(monotone) approximations. In this sense, AFT extends the well-known Tarski-Knaster
fixpoint theory to arbitrary lattice operators, with applications in logic programming and
non-monotonic reasoning [5,6,7,4,16]; in particular, the major semantics of normal logic
programs [5] and of default and autoepistemic logic [6] can be elegantly characterized
within the framework of AFT; whole families of 2- and 3-valued semantics can be
obtained, where the underlying fixpoint iteration incorporates a notion of foundedness.
? This work was supported by the Austrian Science Fund (FWF) grant P24090.
1 http://www.kr.tuwien.ac.at/research/systems/dlvhex/
applications.html.

This suggests to use AFT for giving semantics to HEX programs targeted for found-
edness, by defining suitable operators in such a way that existing semantics for HEX
programs can be reconstructed or refined, in the sense that a subset of the respective
answer sets are selected (sound “approximation”). The benefit is twofold: by coinciding
semantics, we get operable fixpoint constructions, and by refined semantics, we obtain a
sound approximation that is constructive. Furthermore, related semantics emanate in a
systematic fashion rather than adhoc, and their relationships are understood at an abstract
level and need not be established on an individual basis. Finally, semantics of related
formalisms like those mentioned above might be defined in a similar way.

Motivated by this, we consider 2- and 3-valued semantics of HEX programs (the
latter has not been considered so far), and provide respective notions of answer sets
using AFT. In this way, we reobtain and refine existing semantics of HEX programs and
dl-programs. We also consider disjunctive HEX programs (for which AFT is not directly
applicable) and define 2-valued answer semantics following a method in [15].

The main contributions of this paper can be summarized as follows:
(1) We define the full class of 3-valued semantics [12,17,21] of normal (i.e., disjunction-
free) HEX programs [10] in a uniform way by applying the AFT framework [5,7] (cf.
Section 3). In particular, this class contains 2-, and 3-valued answer-set semantics [12,17],
and well-founded semantics [21]. Moreover, we define ultimate versions which are the
most precise approximation semantics with respect to AFT [7].
(2) We exhaustively compare our semantics with the FLP semantics in [10]. They
coincide on monotone normal HEX programs, but diverge for arbitrary normal HEX
programs: due to constructiveness, each 2-valued AFT answer set is an FLP-answer set
but not vice versa (cf. Theorem 2). Also, each 2-valued answer set is well-supported [18]
which is key to characterize relevant models (cf. Section 5), and thus free of circular
justifications. Moreover, our 2-valued and Shen’s strongly well-supported answer-set
semantics coincide [18] (cf. Theorem 8). However, our AFT approach is more general.
(3) Combining ideas from AFT, logic programs with aggregates [15], and disjunctive
logic programming [13], we introduce 2-valued (ultimate) answer sets for disjunctive
HEX programs along the lines of [15]. To this end, we translate some of the concepts
of AFT to non-deterministic operators and use the notion of computation [14] to iterate
them bottom up; we show that all (ultimate) answer sets are derivable by computations.
Furthermore, (ultimate) answer sets are supported models and each 2-valued answer set
is an FLP-answer set but not vice vera.
(4) We exploit the results for description logic (dl-)programs [9], which can be viewed
as special HEX programs whose external atoms amount to so-called dl-atoms repre-
senting queries to a description logic ontology. Initially, a strong and weak answer set
semantics of dl-programs was defined and later a well-founded semantics for monotone
dl-programs [9]; our results generalize it a fortiori to arbitrary dl-programs. It turns out
that for monotone dl-programs, the semantics coincide for the Fitting approximation
ΦHEX
P ; however, for general dl-programs, the answer set semantics diverges.

The results of this paper provide further evidence that AFT is a valuable tool to define
and study semantics of LP extensions, with well-understood and desired properties. For
space reason, proofs are omitted; they are available in [1], which also provides a more
extensive discussion and contains additional results.

2

2 Preliminaries

2.1 HEX Programs

In this section, we recall HEX programs [10], where we restrict ourselves without loss
of generality to the ground (variable-free) case.
Syntax. Let Σ and Σ# be ranked alphabets of symbols and external symbols, respec-
tively. Elements from Σ# are superscripted with # (f#, g#, h# etc.). 2

In contrast to ordinary logic programs, HEX programs may contain besides (ordinary)
atoms of the form (p, c1, . . . , cn) ∈ Σn+1, n ≥ 0, written in familiar form p(c1, . . . , cn),
also so called external atoms. Formally, an ((m,n)-ary) external atom has the form
f# [i] (o) where f# ∈ Σ#, i = (i1 . . . im) ∈ Σm (=input), m ≥ 0, and o =
(o1 . . . on) ∈ Σn (=output), n ≥ 0. We often omit the arguments i and o from notation
and simply write f#. A HEX-atom is an atom or an external atom. A rule has the form

a1 ∨ . . . ∨ ak ← b1, . . . , b`,∼ b`+1, . . . ,∼ bm, k ≥ 0,m ≥ ` ≥ 0, (1)

where a1, . . . , ak are atoms and b1, . . . , bm are HEX-atoms. It will be convenient to
define, for a rule r, H(r) = a1 ∨ . . . ∨ ak (head), B+(r) = {b1, . . . , b`}, B∼(r) = {∼
b`+1, . . . ,∼ bm}, and B(r) = B+(r) ∪B∼(r) (body). With a slight abuse of notation,
we will treat H(r) as the set {a1, . . . , ak}, i.e., we write, for instance, a ∈ H(r),
H(r)− {a} and so on. Finally, a HEX program P is a finite set of rules of form (1).
FLP Semantics. We denote the set of all atoms (resp., external atoms) occurring in
P by AtP (resp., At#P). Define the Herbrand base of P by HBP = AtP ∪ At#P . A
(2-valued) interpretation I of P is any subset of AtP ; for any p ∈ Σ, we denote
by pI = {c : p(c) ∈ I} its extension in I . The set of all interpretations of P is
IP = P(AtP). We associate with every f# ∈ Σ# a computable interpretation function
f : IP ×Σm+n

P → {t, f}.2
We define the entailment relation as follows: (i) For an atom a, I |= a if a ∈ I ,

(ii) for an external atom f# [i] (o), I |= f# [i] (o) if f (I, i,o) = t, (iii) for a rule r,
I |= B(r) if I |= b for every b ∈ B+(r) and I 6|= b′ for every ∼ b′ ∈ B∼(r), (iv) I |= r
if whenever I |= B(r) then I |= a for some a ∈ H(r), and (v) I |= P if I |= r for each
r ∈ P , and in this case we say that I is a model of P .

Define the FLP-reduct of P relative to I [11] by fP I = {r ∈ P : I |= B(r)} . We
say that I is an FLP-answer set [10] of P if I is a minimal model of fP I .

Example 1. Let P =
{
q(a); p(a)← p⊆#q, q(a)

}
, where p⊆#q is infix notation for

⊆#[p, q], and let I = {p(a), q(a)}. We interpret ⊆# as set inclusion and define ⊆
(I, p, q) = t if pI ⊆ qI where pI = qI = {a}. Since fP I = P and I is a minimal
model of P , I is an FLP-answer set of P .

2.2 Approximation Fixpoint Theory
In this section, we briefly summarize essential notions and results given in [5,7].

In the sequel, we let (L,≤) denote a complete lattice. We call every (x1, x2) ∈ L2

fulfilling x1 ≤ x2 consistent and denote by Lc the set of all such pairs.
2 [10] uses #g and f#g in place of g# and g, respectively, and calls symbols constants.

3

Define the precision ordering on Lc by (x1, x2) ≤p (y1, y2) if x1 ≤ y1 and y2 ≤ x2,
i.e. intuitively, (y1, y2) is a “tighter” interval inside (x1, x2). We identify every x ∈ L
with (x, x) ∈ Lc and call such pairs exact; note that they are the maximal elements w.r.t.
≤p. For z ∈ L and (x1, x2) ∈ Lc, we thus have (x1, x2) ≤p z iff x1 ≤ z ≤ x2, and call
(x1, x2) an approximation of z. As distinct exact pairs have no upper bound, (Lc,≤p) is
not a lattice but a chain-complete poset.

An operator on L is any function O : L→ L; it is monotone, if for every x, y ∈ L
such that x ≤ y, O(x) ≤ O(y). An element x ∈ L is a pre-fixpoint of O, if O(x) ≤ x,
and a fixpoint of O, if O(x) = x. If existent, we denote the least fixpoint of O by lfp(O).

We now define approximations of O which will play a central role throughout the
rest of the paper. We say that an operator A : Lc → Lc is an approximation of O, if (i)
A(x, x) = O(x) for each x ∈ L, and (ii) A is monotone with respect to ≤p. Intuitively,
A is a monotone extension of O to Lc. Clearly, A and O have the same fixpoints in L.
Moreover, A has a least fixpoint k(A), called the A-Kripke-Kleene fixpoint.

For every x, y ∈ L, define the interval between x and y by [x, y] = {z ∈ L :
x ≤ z ≤ y}. Given an element (x1, x2) ∈ Lc, we define the projection of (x1, x2) to
the i-th coordinate, 1 ≤ i ≤ 2, by (x1, x2)i = xi. We call an element (x1, x2) ∈ Lc

A-reliable, if (x1, x2) ≤p A(x1, x2), and in this case the restriction of A(. , x2)1 (resp.,
A(x1, .)2) to [⊥, x2] (resp., [x1,>]) is a monotone operator on the complete lattice
([⊥, x2],≤) (resp., ([x1,>],≤)). Therefore, A(. , x2)1 (resp., A(x1, .)2) has a least
fixpoint in ([⊥, x2],≤) (resp., ([x1,>],≤)).

Let (x1, x2) be A-reliable. Define the A-stable revision operator by A↓↑(x1, x2) =
(A↓(x2),A↑(x1)), where A↓(x2) = lfp(A(. , x2)1) and A↑(x1) = lfp(A(x1, .)2).
Roughly, A↓(x2) underestimates every (minimal) fixpoint of O, whereas A↑(x1) is
an upper bound as tight as possible to the minimal fixpoints of O. The stable revision
operator A↓↑ has fixpoints and a least fixpoint on the chain-complete poset (LApr,≤p) of
the so called A-prudent pairs LApr = {(x1, x2) ∈ Lc | x1 ≤ A↓(x2)}. We thus define
theA-well-founded fixpoint by w(A) = lfp(A↓↑). Furthermore, we call everyA-reliable
fixpoint (x1, x2) of A↓↑ an A-stable fixpoint, and if in addition A is an approximation
of O and x1 = x2 an A-stable fixpoint of O (note that x1 is then a fixpoint of O).

Proposition 1 ([7]). For every x ∈ L, x is an A-stable fixpoint of O iff x is a fixpoint of
O and A↓(x) = x.

In [7] the authors show that there exists a most precise approximation O, called the
ultimate approximation of O, which can be algebraically characterized in terms of O.
Let for C ∈ {

∧
,
∨
} denote C O([x1, x2]) = C {O(x) | x1 ≤ x ≤ x2}.

Theorem 1 ([7]). The ultimate approximation of O is given, for every (x1, x2) ∈ Lc,
by O(x1, x2) = (

∧
O([x1, x2]),

∨
O([x1, x2])).

We summarize some basic facts about the ultimate approximation and its relationship
to every other approximation of O.

Proposition 2 ([7]). For every approximation A of O:

1. k(A) ≤p w(O) and w(A) ≤p w(O).

4

∅

I = T HEX
P (I)

AtP

ΦHEX
P (. , I)1

I1

I2

I3

Ij

(∅, AtP) k
(
ΦHEX

P

)w
(
ΦHEX

P

)
...

Fig. 1. Illustration of the relations between the ΦHEX
P -Kripke-Kleene-, the ΦHEX

P -well-founded, and
the 2-valued ΦHEX

P -answer-set semantics. On the left side: (i) the Kripe-Kleene fixpoint k
(
ΦHEX

P

)
is

the least fixpoint of ΦHEX
P ; (ii) the well-founded fixpoint (least 3-valued stable fixpoint) w

(
ΦHEX

P

)
is the least fixpoint of ΦHEX,↓↑

P . On the right side: monotone iteration of the 2-valued ΦHEX
P -stable

model I . If we replace ΦHEX
P by T HEX

P , we obtain the more precise ultimate semantics.

2. If k(A) (resp., w(A)) is exact, then k(A) = k(O) (resp., w(A) = w(O)) and it is
the unique ultimate stable fixpoint of O.

3. EveryA-stable fixpoint ofO is an ultimate stable fixpoint ofO and for every ultimate
fixpoint x of O, w(O) ≤p x.

3 Fixpoint Semantics for Normal HEX Programs
In this section, we uniformly extend the 2- and 3-valued answer-set semantics [12,17]
and the well-founded semantics [21] of ordinary logic program to the class of normal
(i.e., disjunction-free) HEX programs by applying AFT (for a summary, see Figure 1).

In the sequel, let P be a normal HEX program. We can straightforwardly extend
the well-known van Emden-Kowalski operator TP to T HEX

P . A (consistent) 3-valued
interpretation is a pair (I1, I2) such that I1 ⊆ I2; by IcP we denote the set of all such
pairs. The precision ordering ⊆p on IcP is given by (J1, J2) ⊆p (I1, I2) if J1 ⊆ I1 and
I2 ⊆ J2 (cf. Section 2.2). The intuitive meaning is that every a ∈ I1 (resp., a 6∈ I2) is
true (resp., false), whereas every a ∈ I2 − I1 is undefined.

Definition 1. We identify each (I1, I2) ∈ IcP with the 3-valued evaluation (I1, I2) :
HBP → {t, f ,u} defined by:
1. For every a ∈ AtP , (I1, I2)(a) = t if a ∈ I1, (I1, I2)(a) = f if a 6∈ I2, and

(I1, I2)(a) = u if a ∈ I2 − I1.
2. For every f# ∈ At#P , (I1, I2)(f#) = t (resp., (I1, I2)(f#) = f) if J |= f# (resp.,
J 6|= f#) for every J ∈ [I1, I2], and (I1, I2)(f

#) = u otherwise.

We then directly obtain the following two approximationsΦHEX
P and T HEX

P of T HEX
P : (i)

The extended Fitting approximation ΦHEX
P as an extension of the traditional Fitting opera-

tor ΦP , i.e., ΦP (I1, I2)= (I ′1, I
′
2) where I ′1 = {H(r) : r ∈ P : (I1, I2)(B(r))= t} and

5

I ′2 = {H(r) : r ∈ P : (I1, I2)(B(r)) ∈ {t,u}} (given the usual extension of 3-valued
interpretation to conjunctions of literals—denoted as setsB(r) here); and (ii) the ultimate
approximation T HEX

P , which is the most precise approximation of T HEX
P and algebraically

definable by (cf. Theorem 1) T HEX
P (I1, I2) =

(⋂
T HEX
P ([I1, I2]) ,

⋃
T HEX
P ([I1, I2])

)
.

The approximations ΦHEX
P and T HEX

P give rise to the ΦHEX
P -Kripke-Kleene semantics

and the ultimate Kripke-Kleene semantics, respectively (cf. Section 2.2).

3.1 Answer-Set Semantics
Recall that given an ordinary normal program P , its 3-valued answer sets are character-
ized by the fixpoints of the stable revision operator Φ↓↑P of the Fitting approximation ΦP .
Moreover, the 2-valued answer sets of P are the fixpoints of Φ↓P (cf. [5]).3

Likewise, in this section, we extend these definitions to normal HEX programs. In
the sequel, let AHEX

P ∈
{
ΦHEX
P , T HEX

P

}
. By instantiating the definition in Section 2.2, we

define the stable revision operator of AHEX
P , for every AHEX

P -reliable (I1, I2) ∈ IcP , by
AHEX,↓↑

P (I1, I2) = (AHEX,↓
P (I2),AHEX,↑

P (I1)), where AHEX,↓
P (I2) = lfp(AHEX

P (. , I2)1)

and AHEX,↑
P (I1) = lfp(AHEX

P (I1, .)2).

Definition 2 (Answer-Set Semantics). Let (I1, I2) ∈ IcP be AHEX
P -reliable, respec-

tively let I ∈ IP . We say that

1. (I1, I2) is a 3-valued ΦHEX
P -answer set (resp., 3-valued ultimate answer set) of P , if

(I1, I2) is a fixpoint of ΦHEX,↓↑
P (resp., T HEX,↓↑

P).
2. I is a 2-valued ΦHEX

P -answer set (resp., 2-valued ultimate answer set) of P , if I is a
fixpoint of T HEX

P and ΦHEX,↓
P (I) = I (resp., T HEX,↓

P (I) = I).

Example 2 (Example 1 cont’d). We claim that I = {p(a), q(a)} is a 2-valued ΦHEX
P -

answer set (and, therefore, an ultimate answer set) of P . First, observe that T HEX
P (I) = I .

Second, since ΦHEX
P (∅, I)1 = {q(a)}, ΦHEX

P ({q(a)}, I)1 = I , and ΦHEX
P (I, I)1 = I , we

have ΦHEX,↓
P (I) = I . Hence, I is a 2-valued ΦHEX

P -answer set.

The next Theorem and Example 3 summarize some basic relationships between the
standard FLP semantics and the 2-valued ΦHEX

P -answer-set semantics.

Theorem 2. Let P be a normal HEX program.

1. If P is monotone (i.e., contains only monotone external atoms4) and negation-free,
then I ∈ IP is an ΦHEX

P -answer set iff I is an FLP-answer set of P .
2. If I ∈ IP is an ΦHEX

P -answer set, then I is an FLP-answer set of P .

However, the next example shows that the converse of condition (2) fails in general.

Example 3. Let P =
{
a← f#[a, b]; b← g#[a, b]

}
where f and g are always true

except for f({a}, a, b) = f and g({b}, a, b) = f . It is easy to verify that I = {a, b} is a
minimal model of fP I = P and, hence, an FLP-answer set of P . In contrast, we have
T HEX,↓
P (I) = ∅. Consequently, by Proposition 1, I is not an ultimate answer set of P

and, hence, by Proposition 2, not an ΦHEX
P -answer set.

3 Note that Φ↓
P (I) = lfp(TP I) where P I is the Gelfond-Lifschitz reduct [12].

4 We say that an external atom f# [i] (o) is monotone, if for every J, J ′ ∈ IP such that J ⊆ J ′,
f (J, i,o) ≤ f(J ′, i,o), where f < t.

6

Intuitively, the divergence of the 2-valued answer-set semantics based on AFT and the
FLP semantics is due to the “non-constructiveness” of the FLP semantics. The intuition
behind “constructiveness” is formalized by Fages’ well-supportedness (adapted to HEX
by Shen [18]). Indeed, Theorems 2 and 8 characterize our (2-valued) ΦHEX

P -answer-set
semantics as the strict well-supported subclass of the FLP semantics (cf. the discussion
in Section 5). While incomparability of ultimate and FLP semantics already follows
from the ordinary case [7].

3.2 Well-Founded Semantics

Well-founded semantics play an important role in logic programming and database
theory. However, for (normal) HEX programs, to the best of our knowledge, there exist
no well-founded semantics up so far. In this section, we define well-founded semantics
of normal HEX programs as a special case of 3-valued ΦHEX

P -answer-set semantics, by
instantiating the constructions of AFT given in Section 2.2.

Recall from Section 2.2 that every stable revision operator has fixpoints and a least
fixpoint. This leads to the following definition.

Definition 3 (Well-Founded Semantics). Define the AHEX
P -well-founded model by

w
(
AHEX

P

)
= lfp(AHEX,↓↑

P). We call the T HEX
P -well-founded model w

(
T HEX
P

)
the ul-

timate well-founded model of P .

Example 4. Reconsider the normal HEX program P of Example 3 where we have
seen that I = {a, b} is an FLP-answer set but not an ultimate answer set of P . Since
T HEX,↓↑
P (∅, {a, b}) = (∅, {a, b}), w

(
T HEX
P

)
= (∅, {a, b}) = w

(
ΦHEX
P

)
, i.e., a and b are

both undefined in the (ultimate) well-founded model.

We can compute w
(
AHEX

P

)
by iteratingAHEX,↓↑

P , starting at (∅, AtP), until a fixpoint
is reached. The AHEX

P -well-founded model is the least 3-valued AHEX
P -answer set and

approximates every other 3-valued AHEX
P -answer set, i.e., w

(
AHEX

P

)
⊆p (I1, I2) for

every AHEX
P -answer set (I1, I2) ∈ IcP . In particular, w

(
AHEX

P

)
approximates every

2-valued AHEX
P -answer set; this relation also holds with respect to the FLP semantics.

Theorem 3. For each FLP-answer set I ∈ IP of P , w
(
AHEX

P

)
⊆p I .

Example 5 (Example 4 cont’d). Observe that w
(
T HEX
P

)
= (∅, {a, b}) ⊆p I , and that

I = {a, b} is an FLP-answer set of the normal HEX program P of Example 3.

4 Fixpoint Semantics for Disjunctive HEX Programs

In this section, we extend the 2-valued answer-set semantics [12] to the class of dis-
junctive HEX programs. For such programs, T HEX

P is no longer a lattice operator; thus
AFT—which studies fixpoints of lattice operators—is not applicable. However, by com-
bining ideas from disjunctive logic programming and AFT, Pelov and Truszczyński [15]
extended parts of the AFT to the case of non-deterministic operators.

In the sequel, letP be a disjunctive HEX program. First, we define the non-deterministic
immediate consequence operator NHEX

P . To this end, we recall the Smyth ordering [19]

7

v on P(IP), in which J v K if for every K ∈ K some J ∈ J exists such that
J ⊆ K. Note that v is reflexive and transitive, but not anti-symmetric; thus, P(IP)
endowed with v is not a poset. However, if we consider only the anti-chains in P(IP)
(i.e., only those J where each J ∈ J is minimal w.r.t. ⊆), denoted Pmin(IP), then
(Pmin(IP),v) is a poset with least element {∅} (cf. [13]). Denote for any set D of
disjunctions over AtP (i.e., subset of the disjunctive Herbrand base DHBP of P [13])
by MM (D) the set of the minimal models of D.

Definition 4. By the non-deterministic van Emden-Kowalski operator of P we refer to
the operator NHEX

P : IP → Pmin(IP) where NHEX
P (I) = MM

(
I ∪ T HEX

P (I)
)
.

Intuitively,NHEX
P (I) = J consists of all interpretations J ∈ J representing minimal

possible outcomes of P after one step of rule applications; moreover, when applying
NHEX

P to I we assume each a ∈ I to be true.
We call I ∈ IP a fixpoint of NHEX

P , if I ∈ NHEX
P (I), and pre-fixpoint of NHEX

P , if
NHEX

P (I) v {I}. We denote the set of all minimal fixpoints of NHEX
P by mfp(NHEX

P).

Proposition 3. For every I ∈ IP , I is a minimal model of P iff I ∈ mfp(NHEX
P).

4.1 Non-Deterministic Approximations and Computations
We can consider NHEX

P as an “extension” of T HEX
P to the class of disjunctive HEX

programs. However, an important property of T HEX
P which NHEX

P does not enjoy is
iterability. In this section, we define non-deterministic approximations [15] of NHEX

P and
show how to “iterate” them in terms of computations [14].

Definition 5. Define, for each (I1, I2) ∈ IcP , (i) the non-deterministic Fitting ap-
proximation of NHEX

P by FHEX
P (I1, I2) = MM

(
I1 ∪ ΦHEX

P (I1, I2)1
)
, and (ii) the non-

deterministic ultimate approximation by N HEX
P (I1, I2) = MM

(
I1 ∪ T HEX

P (I1, I2)1
)
.

In the sequel, let AHEX
P ∈ {FHEX

P ,N HEX
P }. The next result shows that FHEX

P (resp.,
N HEX

P) similarly relates to NHEX
P as ΦHEX

P (resp., T HEX
P) relates to T HEX

P .

Proposition 4. Let P be a HEX program. Then,

1. AHEX
P (I, I) = NHEX

P (I), for every I ∈ IP ;
2. (J1, J2) ⊆p (I1, I2) implies AHEX

P (J1, J2) v AHEX
P (I1, I2), for every pair (J1, J2)

and (I1, I2) from IcP .

Like [15], we use computations [14] to formalize the iterated approximation of NHEX
P .

Definition 6. Let I ∈ IP . An AHEX
P -I-computation (in the sense of [14]) is a sequence

JI,↑ = (Ji)i≥0, Ji ∈ IP , such that J0 = ∅ and, for every n ≥ 0,
1. Jn ⊆ Jn+1 ⊆ I , and 2. Jn+1 ∈ AHEX

P (Jn, I).
We call JI,∞ =

⋃
i≥0 Ji the result of the computation JI,↑. Furthermore, J ⊆ I is

AHEX
P -I-derivable, if some computation JI,↑ with result JI,∞ = J exists.

Example 6. Let P = {a∨b; c← a,∼ b}. We show that I = {a, c} isFHEX
P -I-derivable.

Let J0 = ∅. We computeFHEX
P (J0, I) = MM ({a∨b}) = {{a}, {b}}, and let J1 = {a}.

For the next iteration, we compute FHEX
P (J1, I) = MM ({a, a ∨ b, c}) = {I}, and

consider J2 = I . Finally, since we have FHEX
P (J2, I) = {I}, we set Jn = I for every

n ≥ 2, and obtain a FHEX
P -I-computation JI,↑ with result JI,∞ = I , which shows that

I is FHEX
P -I-derivable.

8

4.2 Answer-Set Semantics
We now carry the concepts of Section 3.1 over to disjunctive HEX programs and the
corresponding non-deterministic operators as follows: (i) instead of considering T HEX

P ,
we consider the non-deterministic van Emden-Kowalski operatorNHEX

P as an appropriate
one-step consequence operator; (ii) instead of iterating AHEX

P (. , I)1 to the least fixpoint
AHEX,↓

P (I), we “iterate” AHEX
P (. , I) in terms of AHEX

P -I-computations to the minimal
fixpoints AHEX,↓

P (I); (iii) since disjunctive rules are non-deterministic, we consider
minimal instead of least models, and minimal instead of least fixpoints. With these
intuitions in place, we now define (2-valued) answer-set semantics (cf. [15]).

Definition 7 (Answer-Set Semantics). We say that I ∈ IP is an AHEX
P -answer set,

if I ∈ AHEX,↓
P (I) = mfp

(
AHEX

P (. , I)
)
; it is an ultimate answer set of P , if I is an

N HEX
P -answer set of P .

Example 7. Let P = {p(a) ∨ q(a); ← ∼ p⊆#q}, and let I = {q(a)}. First, we
compute FHEX

P (∅, I) = {{p(a)}, I} which shows that ∅ is not a fixpoint of FHEX
P (. , I);

second, we compute FHEX
P (I, I) = {I}, that is, I is a minimal fixpoint of FHEX

P (. , I)
and thus an FHEX

P -answer set. Since I ′ = {p(a)} violates the constraint and is thus not
an FHEX

P -answer set, I is the only FHEX
P -answer set.

The next result summarizes some basic relationships between the non-deterministic
ultimate and Fitting approximation, e.g., that, as in the normal case, the ultimate approx-
imation N HEX

P is “more precise” than the Fitting approximation FHEX
P .

Proposition 5. Let P be a HEX program. Then,

1. FHEX
P (I1, I2) v N HEX

P (I1, I2), for every (I1, I2) ∈ IcP .
2. If I ∈ IP is an FHEX

P -answer set, then I is an ultimate answer set of P .

A basic requirement for semantics of logic programs is supportedness; in the dis-
junctive case, we say that an interpretation I is supported , if for every atom a ∈ I there
exists some rule r ∈ P such that I |= B(r), a ∈ H(r), and I 6|= H(r)− {a}.
Theorem 4. Let I ∈ IP . If I is an AHEX

P -answer set, then I is supported.

Next, we relate our fixpoint-based answer set semantics to the “standard” FLP
semantics. Theorem 2 established that all 2-valued ΦHEX

P -answer sets of a normal HEX
program are FLP-answer sets. An analogous result holds for disjunctive HEX programs.

Theorem 5. Let I ∈ IP . If I is an FHEX
P -answer set, then I is an FLP-answer set of P .

However, the converse of Theorem 5 does not hold in general (cf. Example 3).
Note that AHEX

P -answer sets as in Definition 7 are non-constructive. However, we
can construct every AHEX

P -answer set bottom-up and identify it with an additional test.

Theorem 6. Let I ∈ IP . Then, I is an AHEX
P -answer set iff I is AHEX

P -I-derivable and
no J ⊂ I exists such that J ∈ AHEX

P (J, I).

Example 8. In Example 6, we have seen that the FHEX
P -answer set I = {a, c} of P =

{a ∨ b; c← a,∼ b} is FHEX
P -I-derivable, and in Example 7 that the FHEX

P -answer set
I = {q(a)} of P = {p(a) ∨ q(a); ← ∼ p⊆#q} is FHEX

P -I-derivable. On the other
hand, I = {p(a), q(a)} is FHEX

P -I-derivable w.r.t. P = {p(a) ∨ q(a); p(a)← p⊆#q},
while J = {p(a)} ∈ FHEX

P (J, I); thus I is not an FHEX
P -answer set of P .

9

5 Related Work

Approximation Fixpoint Theory. AFT [5,7] builds on Fitting’s seminal work on bilat-
tices and fixpoint semantics of logic programs. In [5], the framework was introduced
upon (symmetric) approximations of A operating on the bilattice L2; in logic program-
ming, L2 corresponds to the set I2P of all 4-valued interpretations (I1, I2) of P . However,
as pointed out in [7], under the usual interpretations of logic programs only the consistent
(i.e., 3-valued) fragment IcP of I2P has an intuitive meaning. Therefore, [7] advanced
AFT for consistent approximations, i.e., the 3-valued case also adopted here.

As demonstrated also by our work, a strength of AFT is its flexibility regarding
language extensions. Recall from Section 3 that to extend the semantics from ordinary
normal programs to normal HEX programs, we just had to extend the 3-valued inter-
pretation to the new language construct (i.e., external atoms). A principled way to cope
with language extensions under 4-valued interpretations was recently mentioned in [4];
it hinges on 4-valued immediate consequence operators satisfying certain properties
(≤p-monotonicity and symmetry). It is possible to generalize Definition 1 to this setting.
Pelov and Truszczyński’s Computations [15]. We used non-deterministic operators to
define 2-valued (ultimate) answer sets of disjunctive HEX programs, motivated by [15].
However, our approach is not entirely identical to [15]; we elaborate here on differences.

As aggregates can be simulated by external atoms (cf. Section 3.1 in [10]), we
translate the definitions in [15] to the language of HEX programs and define, for a
disjunctive HEX program P , NSel

P (I) = Sel
(
T HEX
P (I)

)
where Sel : P(DHBP) →

P(IP) is a selection function. As we only used the selection function MM in this paper,
we focus on NMM

P in the sequel.
Pelov and Truszczyński [15] proposed the notion of computation [14] as an appro-

priate formalization of the process of “iterating” NMM
P . In Section 4, we successfully

applied it to non-deterministic (ultimate) approximations, and proved in Theorem 6 that
(ultimate) answer sets are derivable. The following example shows that the definition of
NMM

P as such is not compatible with the notion of computation.

Example 9 ([15], Example 3). Let P = {a ∨ b ∨ c; a ← b; b ← c; c ← a}. Observe
that I = {a, b, c} is the only model of P . By applying NMM

P to J0 = ∅, we obtain
NMM

P (J0) = {{a}, {b}, {c}}. However, since NMM
P ({a}) = {{c}}, NMM

P ({b}) =
{{a}}, and NMM

P ({c}) = {{b}}, there is no computation J↑ with result J∞ = I . On
the other hand, it is easy to see that I is AHEX

P -I-derivable.

Description Logic Programs [9]. Description logic programs5 (dl-programs) [9] are
precursors of HEX programs [10] that allow dl-atoms (i.e., bi-directional links between
a logic program and a description logic ontology) in rule bodies. As shown in [10], we
can simulate every dl-program KB by a normal HEX program P = PKB, which allows
us to compare the semantics defined in Section 3 with the strong and weak answer-set
semantics and the well-founded semantics defined in [9].

Let KB be a dl-program and P be the respective normal HEX program; let At#,m
P

be a (fixed) set of all external atoms a ∈ At#P known to be monotone, and let At#,?
P =

At#P −At
#,m
P . Then the strong Gelfond-Lifschitz reduct [9] of P relative to I ∈ IP is

5 http://sourceforge.net/projects/dlvhex/files/dlvhex-dlplugin/

10

sP I =
{
H(r)← B+(r)−At#,?

P : r ∈ P : I |= B+(r) ∩At#,?
P , I |= B∼(r)

}
.

Note that sP I is a negation-free monotone normal HEX program, which implies that
T HEX
sP I has a least fixpoint; we call I a strong answer set [9] of P , if I = lfp(T HEX

sP I).
The next example shows that neither the strong nor the weak answer-set semantics

coincides with the (ultimate) answer sets of P .

Example 10. Let P = {p(a)←∼ (not p(a))
#} where I |= (not p(a))

if I 6|= p(a).6

We show that I = {p(a)} is a strong answer set of P . As I |=∼ (not p(a))
#, sP I

consists of the fact p(a). Hence, I is the least fixpoint of T HEX
sP I and thus a strong answer

set of P . On the other hand T HEX,↓
P (I) = ∅, which shows that I is not an ultimate answer

set of P and hence not an ΦHEX
P -answer set (cf. Proposition 2). As every strong answer

set of P is also a weak answer set [9], the same holds for the weak answer set semantics.

However, the next result shows that for monotone dl-programs, the semantics in this
paper coincide with the semantics given in [9]; note that well-founded semantics was
defined in [9] under restriction to monotone dl-programs using unfounded sets.

Theorem 7. Let KB be a monotone dl-program and let P = PKB.

1. For each I ∈ IP , I is a strong answer set of P iff I is a 2-valued ΦHEX
P -answer set.

2. For each (I1, I2) ∈ IcP , (I1, I2) is the well-founded model of P as defined in [9] iff
(I1, I2) is the ΦHEX

P -well-founded model.

Shen’s Strongly Well-Supported Semantics [18]. Shen [18] defined (weakly and
strongly) well-supported semantics for dl-programs. As the latter can be simulated
by normal HEX programs, we rephrase Shen’s definition in the HEX-setting.

Given a normal HEX program P and (I1, I2) ∈ IcP , Shen’s notion “I1 up to I2 satis-
fies literal `” is equivalent to our 3-valued evaluation function, in symbols 〈 ` 〉(I1,I2) = t.
We thus can characterize Shen’s fixpoint operator SHEX

P [18, Definition 5] as follows.

Proposition 6. For each (I1, I2) ∈ IcP , SHEX
P (I1, I2) = ΦHEX

P (I1, I2)1.

Finally, call I an strongly well-supported answer set [18] ofP , if I = lfp
(
SHEX
P (. , I)

)
.

The following result is an immediate consequence of Proposition 6.

Theorem 8. Let I ∈ IP . Then, I is a strongly well-supported answer set of P iff I is a
2-valued ΦHEX

P -answer set.

The equivalences above show that Shen’s (strongly) well-supported answer-set
semantics is naturally captured within the more general framework of AFT. However
the use of AFT allowed us to obtain in addition the whole class of 3-valued (ultimate)
answer-set semantics (which contain the well-founded semantics), in a more general
(and perhaps more elegant) approach than the one in [18].

6 For readers familiar with dl-programs, note that P amounts to the dl-program KB =
(∅, {p(a) ← ∼DL[S −∩ p;¬S](a)}) where DL[S −∩ p;¬S](a) is a dl-atom, S is a concept,
and −∩ is the constraint update operator (cf. [9]).

11

6 Discussion and Conclusion

The goal of this paper was to extend the well-founded-, and the (3-valued) answer-set
semantics to the class of HEX programs [10] by applying AFT [5,7], and to compare
them with the “standard” FLP semantics. This was in particular relevant, because HEX
programs constitute a powerful extension of ordinary disjunctive programs, and are able
to represent various other formalisms (e.g., dl-programs; see [10]).

As a result of our investigation, we obtained constructive and uniform semantics
for a general class of logic programs with nice properties. More precisely, for normal
HEX programs, our 2-valued answer-sets based on AFT turned out to be well-supported,
which is regarded as a positive feature. Moreover, Shen’s strongly well-supported answer
set semantics (formulated for dl-programs) coincides with the 2-valued ΦHEX

P -answer set
semantics. Furthermore, to the best of our knowledge, the well-founded semantics for
normal HEX programs has not been defined before; it coincides on positive programs
representing dl-programs with the well-founded semantics in [9], and thus generalizes it
a fortiori to arbitrary dl-programs. Finally, our 2-valued (ultimate) answer-set semantics
of disjunctive HEX programs turned out to be bottom-up computable.

Regarding complexity, assume that checking I |= f# is feasible in polynomial
time. Then, generalizing ordinary normal logic programs to normal HEX programs
does not increase the worst-case complexity of ultimate semantics [7]. Different to the
ordinary case, however, computing well-founded and answer set semantics is not easier
than ultimate approximation. More specifically, as deciding 3-valued entailment as in
Definition 1 is coNP-hard, we obtain that deciding (in the ground case)
– consequence under the (ultimate) well-founded model is ∆P

2 -complete;
– brave consequence is ΣP

2 -complete for 3-valued (ultimate) answer sets; and
– existence of a 2-valued (ultimate) answer-set is ΣP

2 -complete.
Note that for disjunctive HEX programs, despite nondeterministic computations, deciding
brave consequence for ultimate answer sets remains ΣP

2 -complete.

Open issues. Some open issues remain. First, in the case of infinite HEX programs, the
operators defined in this paper all require an infinite guess, which makes the notion of
computation (see Section 4) infeasible. A possible way to tackle this problem consists
of three steps: (i) define a HEX program P to be ω-evaluable, if there exists an ω-
Turing machine [3] M that accepts the answer sets of P ; (ii) simulate M by a positive
disjunctive HEX program PM ; and (iii) iterate the monotone operator NHEX

PM
in terms

of computations as in Definition 6. For example, normal positive HEX programs with
finitary external atoms are ω-evaluable, and more generally HEX programs in which
atoms depend only on finitely many other atoms [2]; it remains to find further relevant
classes of ω-evaluable infinitary HEX programs.

Second, in the definition of ΦHEX
P (and, consequently, FHEX

P) the definition of the
3-valued entailment relation plays a crucial role. In a naive realization, evaluating
(I1, I2)(f

#) is exponential, which possibly can be avoided given further knowledge
on f (e.g., monotonicity) or relevant interpretations J ∈ [I1, I2] in the context of the
program P . Developing respective pruning conditions is interesting and important from
a practical perspective. Alternatively, one can imagine to define 3-valued entailment on
a substructure of [I1, I2], obeying suitable conditions.

12

Finally, Truszczyński [20] has extended AFT to algebraically capture the notions
of strong and uniform equivalence; it is interesting to apply these results to the class of
HEX programs by using the results obtained in this paper.

References
1. Antić, C.: Uniform approximation-theoretic semantics for logic programs with external

atoms. Master’s thesis, TU Vienna, http://www.ub.tuwien.ac.at/dipl/2012/
AC07814506.pdf (2012)

2. Baselice, S., Bonatti, P. A., Criscuolo, G.: On finitely recursive programs. TPLP 9(2), 213-238
(2009)

3. Cohen, R.S., Gold, A.Y.: ω-computations on Turing machines. TCS 6, 1–23 (1978)
4. Denecker, M., Bruynooghe, M., Vennekens, J.: Approximation fixpoint theory and the se-

mantics of logic and answer set programs. In: Correct Reasoning, LNCS 7265, pp. 178–194.
Springer (2012)

5. Denecker, M., Marek, V., Truszczyński, M.: Approximations, stable operators, well-founded
fixpoints and applications in nonmonotonic reasoning. In: Minker, J. (ed.) Logic-Based
Artificial Intelligence, pp. 127–144. Kluwer (2000)

6. Denecker, M., Marek, V., Truszczyński, M.: Uniform semantic treatment of default and
autoepistemic logics. Artificial Intelligence pp. 79–122 (2003)

7. Denecker, M., Marek, V., Truszczyński, M.: Ultimate approximation and its application in
nonmonotonic knowledge representation systems. Inf.Comp. 192(1), 84–121 (2004)

8. Eiter, T., Brewka, G., Dao-Tran, M., Fink, M., Ianni, G., Krennwallner, T.: Combining
nonmonotonic knowledge bases with external sources. In: Proc. FroCos 2009, pp. 18–42.
LNCS 5749, Springer (2009)

9. Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R.: Well-founded semantics for description
logic programs in the semantic web. ACM TOCL 12(2), 11:1–11:41 (2011)

10. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A uniform integration of higher-order
reasoning and external evaluations in answer-set programming. In: Proc. IJCAI 2005. pp.
90–96 (2005)

11. Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic programs: seman-
tics and complexity. In: Proc. JELIA 2004, LNCS 3229, pp. 200–212. Springer (2004)

12. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Computing 9(3-4), 365–385 (1991)

13. Lobo, J., Minker, J., Rajasekar, A.: Foundations of Disjunctive Logic Programming. MIT
Press (1992)

14. Marek, V., Niemelä, I., Truszczyński, M.: Logic programs with monotone cardinality atoms.
In: Proc. LPNMR 2004, LNCS 2923, pp. 154–166. Springer (2004)

15. Pelov, N., Truszczyński, M.: Semantics of disjunctive programs with monotone aggreggates -
an operator-based approach. In: Proc. NMR 2004, pp. 327–334 (2004)

16. Pelov, N., Denecker, M., Bruynooghe, M.: Well-founded and stable semantics of logic
programs with aggregates. Theory and Practice of Logic Programming 7(3), 301–353 (2007)

17. Przymusinski, T.: Well-founded semantics coincides with the three-valued stable semantics.
Fundamenta Informaticae 13(4), 445–463 (1990)

18. Shen, Y.D.: Well-supported semantics for description logic programs. In: Proc. IJCAI 2011,
pp. 1081–1086. AAAI Press (2011)

19. Smyth, M.B.: Power domains. Journal of Computer and System Sciences 16, 23–36 (1978)
20. Truszczyński, M.: Strong and uniform equivalence of nonmonotonic theories – an algebraic

approach. Annals of Mathematics and Artificial Intelligence 48(3-4), 245–265 (May 2006)
21. Van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general logic

programs. Journal of the ACM 38(3), 619–649 (1991)

13

