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Via Salaria 113, 00198 Rome, Italy

Abstract

We analyze the computational complexity of Halpern and Pearl’s (causal) explanations in
the structural-model approach, which are based on their notions of weak and actual cause.
In particular, we give a precise picture of the complexity of deciding explanations, � -partial
explanations, and partial explanations, and of computing the explanatory power of partial
explanations. Moreover, we analyze the complexity of deciding whether an explanation or
an � -partial explanation over certain variables exists. We also analyze the complexity of
deciding explanations and partial explanations in the case of succinctly represented con-
text sets, the complexity of deciding explanations in the general case of situations, and
the complexity of deciding subsumption and equivalence between causal models. All com-
plexity results are derived for the general case, as well as for the restriction to the case of
binary causal models, in which all endogenous variables may take only two values. To our
knowledge, no complexity results for explanations in the structural-model approach have
been derived so far. Our results give insight into the computational structure of Halpern and
Pearl’s explanations, and pave the way for efficient algorithms and implementations.

Key words: Causal model, probabilistic causal model, weak cause, explanation, � -partial
explanation, partial explanation, explanatory power, complexity.

	
This paper is an extended and revised version of a paper that appeared in: Proceedings

of the 8th International Conference on Principles of Knowledge Representation and Rea-
soning (KR 2002), pp. 49–60, Morgan Kaufmann, 2002.


Corresponding author.
Email addresses: eiter@kr.tuwien.ac.at (Thomas Eiter),

lukasiewicz@dis.uniroma1.it (Thomas Lukasiewicz).

Preprint submitted to Elsevier Science 19th June 2003



1 Introduction

The automatic generation of explanations plays an important role in many AI areas
like planning, diagnosis, natural language processing, and probabilistic inference.
Notions of explanations have been studied quite extensively in the literature, see
especially [28,21,45] for philosophical work, and [33,48,29] for work in AI that is
related to Bayesian networks. A critical examination of such approaches from the
viewpoint of explanations in probabilistic systems is given in [6].

In a recent paper [25,27], Halpern and Pearl introduced an elegant definition of
causal explanation in the structural-model approach, which is based on their no-
tions of weak and actual cause [25,26]. They showed that this notion of causal
explanation models well many problematic examples in the literature. The main
idea is that an explanation is a fact that is not known for certain but, if found to be
true, would constitute a cause of the fact to be explained, regardless of the agent’s
initial uncertainty. An important note is that Halpern and Pearl’s notion of causal
explanation is very different from the concepts of causal explanation which have
been considered in other works in AI, e.g. in [37,38,22].

Informally, the basic idea behind the structural-model approach is that the world is
modeled by random variables, which may causally influence each other. The vari-
ables are divided into background variables, which are influenced by factors outside
the model, and observable variables, which are influenced by background and ob-
servable variables. This latter influence is described by functions for the observable
variables. The following is a simple example due to Halpern and Pearl [25,26,27],
which illustrates the structural-model approach.

Example 1.1 (Arsonists) Suppose two arsonists lit matches in different parts of a
dry forest, and both cause trees to start burning. Assume now either match by it-
self suffices to burn down the whole forest. We may model such a scenario in the
structural-model framework as follows. We assume two binary background vari-
ables �
� and ��� , which determine the motivation and the state of mind of the two
arsonists, where ��� is 1 iff arsonist � intends to start a fire. We then have three binary
variables ��� , ��� , and � , which describe the observable situation, where ��� is 1 iff
arsonist � drops the match, and � is 1 iff the whole forest burns down. The causal
dependencies between these variables are expressed by functions, which say that
the value of ��� is given by the value of ��� , and that � is � iff either ��� or ��� is � .
These dependencies can be graphically represented as in Fig. 1.
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Figure 1. Causal Graph
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Causes and explanations for events, such as ����� (the whole forest burns down),
are defined by considering the values of variables in the above model and certain
hypothetical variants (see Sections 2.2, 3.1, and 4.1). For example, arsonist � start-
ing a fire is a (weak and an actual) cause of the whole forest burning down under
every possible context in which arsonist � intends to start a fire. Moreover, arson-
ist � starting a fire is an explanation of the whole forest burning down relative to
the set of all possible contexts in which either arsonist intends to start a fire. �
For more examples and extensive background on structural causal models, we refer
especially to [2,20,40,41,24].

While the semantic aspects of explanations in the structural-model approach have
been thoroughly studied in [25,27], a study of their computational properties is
missing so far. In their papers, Halpern and Pearl were not concerned with algo-
rithms for computing explanations, and thus the issue of how explanations can be
(as efficiently as possible) computed remains to be considered. An important step
towards resolving this issue is an analysis of the computational complexity of ex-
planations. However, no complexity results for explanations, apart from trivial in-
tractability results which are inherited from Boolean functions, were known, and a
characterization of the complexity of explanations was open.

In this paper, we aim at filling this gap by giving a precise account of the com-
plexity of explanations in structural causal models. It continues and extends the
work in [14,18] on the complexity of actual and weak causes, which are a step-
ping stone for defining explanations. As for computation in the structural-model
approach, Hopkins [30] recently explored search-based strategies for computing
actual causes (i.e., minimal weak causes) in both the general and restricted set-
tings. However, he did not pay much attention to complexity issues, and did not
provide a detailed analysis of the intrinsic complexity of actual causes, nor did he
address the computation of explanations on top of weak causes.

The main contributions of this paper can be summarized as follows (a review of the
mentioned complexity classes is given in Section 2.3):

� We determine the complexity of (full) explanations in the structural-model ap-
proach [25,27]. We consider the problems of recognizing explanations and of
deciding whether an explanation over certain variables exists. As it turns out,
these problems are complete for �� � and !#"$ , respectively, in the unrestricted
case, and complete for �  and ! "� , respectively, in the binary case. Thus, recog-
nition and existence of explanations reside, loosely speaking, at the second and
the third level of the well-known Polynomial Hierarchy.� We then determine the complexity of partial explanations in the structural-model
approach [25,27], which relax full explanations in a probabilistic setting. We
consider the problems of recognizing % -partial / partial explanations, of deciding
whether an % -partial explanation over certain variables exists, and of comput-
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ing the explanatory power of partial explanations. These problems turn out to
be complete for & ')(*+ , ! "$ , and ,-& '.(*+ , respectively, in the unrestricted case, and
complete for &�/. + , !0"� , and ,-& /1 + , respectively, in the binary case.� Furthermore, we analyze the complexity of explanations and partial explana-
tions in a setting where context sets are succinctly represented. In the standard
setting, the contexts 23�54627�84:9:9898462<; which ought to be respected for forming an
explanation are simply enumerated in the problem input. In another (natural)
representation, the contexts are given by a membership function =?>@2BA , which on
input of a context 2 tells whether 2 ought to be respected or not. This form of
representation is more succinct than simple context enumeration in general, and
may lead to exponential savings in storage for the context set of interest. How-
ever, this is traded for a significant increase in the complexity of explanations.
More precisely, we show that recognizing explanations and partial explanations
is complete for C "D in the unrestricted case, and complete for C "$ in the binary
case.� Finally, we analyze the complexity of explanations in the generalization of con-
texts to situations, which are pairs >FEG462BA of a causal model E and a context2 [25,27]; here, also uncertainty about the causal model, and not only about the
context which applies to the actual scenario can be modeled. We consider the
problems of recognizing explanations and deciding explanation existence. We
find that for the recognition problem, moving from contexts to situations results
in a complexity increase; as we show, this problem is C�"$ -complete both in the
unrestricted and the binary case. For the existence problem, no complexity in-
crease happens in general, i.e., the problem remains !H"$ -complete, but for the
binary case, in which the problem becomes ! "$ -complete.� In our analysis of explanations for situations, we encounter and resolve problems
on structural causal models which are interesting in their own right. Namely, we
consider the problems of subsumption and equivalence between causal modelsEI� and EJ� modulo the language of causal formulas [25,27]. That is, given EK�
and EJ� , is it true that each causal formula L which holds on EM� also holds on EN�
(denoted EI�HOPEQ� ), respectively that E�� and EJ� model the same set of causal
formulas (denoted E��#RSEJ� ), and thus are indistinguishable in the language of
causal formulas. As we show, both deciding EM��OTEJ� and deciding EI�URVEJ�
is CW"$ -complete, in the unrestricted and, noticeably, also in the binary case. Both
membership in CW"$ and hardness for CW"$ are not immediate, and require suitable
auxiliary results which help to distinguish causal models.

Our results in the present paper draw a precise picture of the complexity of expla-
nations in the structural-model approach, and are valuable and important in several
respects:

� First and foremost, they provide a handle in understanding the computational
nature of explanations and the intrinsic difficulties which are at the heart of their
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computation. They must be reflected somehow in the worst-case behavior of
“optimal” algorithms solving the problem. In this way, our results contribute in
paving the way for efficient algorithms and for implementations of explanations
in the structural-model approach.� Second, the insight into sources of complexity which make the problems in-
tractable provides a starting point for identifying cases of lower complexity, and
in particular of tractable cases. While we do not purse this issue here, results on
this can be found in [15,16].� Third, the results are useful in comparing Halpern and Pearl’s notion of causal
explanation with other notions of explanations (e.g., abductive explanations [35],
[47,12] and maximum a posteriori explanations, alias most probable explana-
tions in Bayesian networks [33,34]), and allow to assess the existence of efficient
mappings between different frameworks for generating explanations.

The rest of this paper is organized as follows. Section 2 provides some preliminar-
ies on structure-based causal models, the notion of weak cause, and the complexity
classes that we encounter in this paper. In Section 3, we analyze the complexity of
full explanations in the structural-model approach. Section 4 concentrates on the
complexity of partial explanations. In Section 5, we then analyze the complexity
of explanations in the case of succinctly represented context sets. Section 6 deals
with the complexity of explanations and of related problems in the general case
of situations. In Section 7, we discuss related work on other frameworks of expla-
nations, and compare our results to complexity results for them. Section 8 gives a
discussion of the results, in particular of implications for algorithms, and provides
some concluding remarks, including an outlook on future research issues.

While several of the results are intuitive, their proofs (in particular, the hardness
parts) are nontrivial and technically quite involved. Thus, in order not to distract
from the flow of reading, some technical details are moved to Appendices A–D.

2 Preliminaries

In this section, we give some technical preliminaries. We first recall structure-based
causal models and the notion of weak cause by Halpern and Pearl [25,26]. We then
describe the complexity classes that appear in our results.

2.1 Causal Models

We start with recalling structure-based causal models; for a rich background, see
especially [2,20,40,41,24]. Roughly speaking, the main idea behind structure-based
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causal models is that the world is modeled by random variables, which may have
a causal influence on each other. The variables are divided into exogenous vari-
ables, which are influenced by factors outside the model, and endogenous variables,
which are influenced by exogenous and endogenous variables. This latter influence
is described by structural equations for the endogenous variables.

More formally, we assume a finite set of random variables. Capital letters �?4YXZ4Y[J4
etc. denote variables and sets of variables. Each variable \]� may take on val-
ues from a nonempty finite domain ^_>`\a�`A . A value for a set of variables \ �b \c�Y4:9:9:9d4e\f;1g is a mapping hHi<\Tjk^_>`\l�mAdnpoqoqorns^_>t\u;vA such that h�>`\u�@AYwx^_>`\f�`A ;
for \T�zy , the unique value is the empty mapping y . The domain of \ , denoted^_>`\zA , is the set of all values for \ . Lower case letters h346{B46|}4 etc. denote val-
ues for the sets of variables \~45�
45�W4 etc., respectively. Assignments of values to
variables \S��h are often abbreviated by the value h . For �K�~\ and h�w�^_>t\QA ,
denote by hZ��� the restriction of h to � . For disjoint sets of variables \�45� and
values h�w�^_>t\QA�46{Uw�^�>���A , denote by h7{ the union of h and { . As usual, we often
identify singletons

b \u�Fg with \f� and their values h with h�>`\u�`A . We often identify
the values � and � with the classical truth values ���<�@�8� and �:���3� , respectively.

We are now ready to define causal models. A causal model E is a triple >��?4YXZ45��A ,
where � is a finite set of exogenous variables, X is a finite set of endogenous vari-
ables with �z�]X��Jy , and ��� b ������\Vw�Xug is a set of functions ����i7^�>��B�0�sA�j^_>`\zA that assign a value of \ to each value of the parents ���W� �¡�¢n_XG£ b \�g
of \ . Every value 2�w�^_>��pA is also called a context. The parent relationship be-
tween the variables of E¤��>��?4YXZ45��A is expressed by the causal graph for E ,
which is the directed graph that has �QnaX as the set of nodes, and a directed edge
from \ to � iff \ is a parent of � , for all variables \~45�Kwu�zn]X . A causal modelE¥�¢>��?4YXZ45��A is binary iff � ^_>`\zA��m�z¦ for all \Vw�X .

We focus here on the principal class of recursive causal models E¤��>��?4YXZ45��A ; as
argued in [25], we do not lose much generality by concentrating on recursive causal
models. A causal model E¥�¢>��#45X�45��A is recursive, if its causal graph is a directed
acyclic graph. Equivalently, there exists a total ordering § on X such that �Kwu�B�W�
implies �K§~\ , for all \�46�Kw�X . In recursive causal models, every assignment to
the exogenous variables �J�_2 determines a unique value { for every set of en-
dogenous variables �K�_X , denoted �©¨]>@2BA (or simply ��>`2BA ). In the following, E
is reserved for denoting a recursive causal model.

Example 2.1 (Arsonists continued) In our introductory example, the causal modelE¥�¢>��?4YXZ45��A is given by �J� b ����4d���8g , X�� b ���Y4e���:45�ug , and �N� b ��ª7«545�xª * ,��¬-g , where ��ª7«<�N��� , ��ª * �N��� , and ��¬���� iff ���­��� or ���B�I� . The causal graph
for E is shown in Fig. 1. As this graph is acyclic, E is recursive. �
In a causal model, we may set endogenous variables \ to a value h by an “external
action”. More formally, for any causal model E¥�¢>��#45X�45��A , set of endogenous
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variables \���X , and value h3w�^_>t\QA , the causal model E��-®}¯��¢>��?4YXN£Z\~45�x�-®}¯°A ,
where �x�Z®}¯�� b �²±³ �´�Kw�XI£�\�g and each �²±³ is obtained from � ³ by setting \
to h , is a submodel of E . We use EJ¯ and �3¯ to abbreviate EJ�-®}¯ and �3�Z®}¯ ,
respectively, if \ is understood from the context. Similarly, for a set of endogenous
variables �K�zX , we write ��¯)>@2BA to abbreviate �B¨?µ¶>@2BA .
As for computation, we assume that in causal models E·�M>��#45X�45��A , where �¸�b �x���F\¹w�Xfg , every function ���]iº^�>��B�0�sAWj ^_>t\QA with \Vw�X is computable
in polynomial time. The following proposition is then immediate.

Proposition 2.2 For all \�46�K�zX and h�w�^_>t\QA , the values ��>`2BA and �B¯»>@2BA ,
given 2�w�^_>���A , are computable in polynomial time.

2.2 Weak Causes

We now recall the notion of weak cause from [25,26]. We first define events and
the truth of events in a causal model E¥��>��?4YXZ45��A under a context 2�w�^�>��pA .
A primitive event is an expression of the form �I�Q{ , where � is an endogenous
variable � and { is a value for � . The set of events is the closure of the set of
primitive events under the Boolean operations ¼ and ½ (that is, every primitive
event is an event, and if L and ¾ are events, then also ¼�L and L�½¿¾ ).

The truth of an event L in a causal model E¥��>��?4YXZ45��A under a context 2�w�^_>��pA ,
denoted >�EÀ462BAW�� L , is inductively defined as follows:

� >FEÀ4e2ºAW��G�I�Q{ iff �B¨c>`2BAZ�G{ ;� >FEÀ4e2ºAW��À¼
L iff >�EÀ462BAW�� L does not hold;� >FEÀ4e2ºAW��ÀL�½Á¾ iff >�EÀ462BAW�� L and >FEG462BAW� �G¾ .

Further operators Â and j are defined as usual, i.e., L�Â_¾ and L�j ¾ stand for¼U>F¼�LÁ½N¼Z¾#A and ¼
LlÂN¾ , respectively. We write L�>`2ºA to abbreviate >�EÀ462BA�� �JL .
For \V�zX and h�w�^_>t\QA , we use L7¯.>@2BA as an abbreviation of >FEJ¯»4e2ºA �� L .
For \T� b \l�54:9:9:9d4e\uÃ°g?�zX with ÄpÅ�� and h<�.w�^_>t\u�rA , we use \T�zhÆ�BoqoqoÇh7Ã to
abbreviate \l�­�zh©�Æ½Q989:9�½l\uÃ3�zh7Ã .
The following result follows immediately from Proposition 2.2.

Proposition 2.3 Let \È�zX and h�w�^_>t\QA . Given 2�w�^_>��pA and an event L , de-
ciding whether L�>@2BA and L7¯.>@2BA (given h ) hold can be done in polynomial time.

� Note that [17] also admitted exogenous variables in primitive events, while [25,26] does
not. This does not affect the complexity of explanations in the basic setting, but has some
consequences for the generalization to situations, as discussed in Section 6.
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We are now ready to recall the notion of weak cause [25,26]. Let E¥�¢>��#45X�45��A be
a causal model. Let \È�zX and h�w�^�>`\QA , and let L be an event. Then, \É�_h is a
weak cause of L under 2 iff the following conditions hold:

AC1. \�>@2BAZ�Êh and L�>`2ºA .
AC2. Some [Ë�zX�£-\ and some h�w�^_>t\QA and Ì�w�^�>F[�A exist such that:

(a) ¼
L ¯5ÍZ>`2ºA , and

(b) L7¯5Í�ÎÏ >`2BA for all Ð�N�zX�£H>`\Tna[¡A and Ð|
�ÑÐ��>@2BA .
The following example illustrates the notion of weak cause.

Example 2.4 (Arsonists continued) Consider the context 2���Ò��m�f>´�v4:��A in which both
arsonists intend to start a fire. Then, ���­��� , ���º�I� , and ���­����½����B��� are weak
causes of ���I� . For instance, let us show that ���­��� is a weak cause of ����� :
(AC1) both ��� and � is � under 2 , (AC2(a)) if both ��� and ��� are set to � , then �
has the value � , and (AC2(b)) if ��� is set to � and ��� to � , then � is � . Moreover,���­��� (resp., ���B�I� ) is the only weak cause of ���I� under the context 2x��Ò Óc�>Ç�v46�»A (resp., 2�ÓeÒ��}�¢>@�}4:��A ) in which only arsonist � (resp., ¦ ) intends to start a fire. �
The following proposition characterizes irrelevant variables in weak causes.

Proposition 2.5 Let E·��>��?4YXZ45��A be a causal model. Let \V�zX and h�w�^_>`\QA ,
let L be an event, and let 2�w�^_>��pA . Let \]Ó3w�\ such that in the causal graph
for E , it holds that \aÓ is not a predecessor of any variable in L . Let \ ± �_\T£ b \uÓ8g
and h ± �zhZ� \ ± . Then, \É�_h is a weak cause of L under 2 iff (i) \]Ó°>@2BA<�~h�>`\uÓ�A
and (ii) \�±d�_h<± is a weak cause of L under 2 .

Proof. >FÔÕA Assume that \É��h is a weak cause of L under 2 . That is, (AC1)\�>@2BA<�~h and L�>@2BA hold, and (AC2) some [ �_X�£�\ , h�w�^_>t\QA , Ì�w�^_>F[�A exist
such that (a) ¼
L ¯5Í->@2BA and (b) L7¯5Í�ÎÏ >@2BA for all Ð�N�zX�£H>`\Tn][�A and Ð|?� Ð��>`2ºA . In
particular, (i) holds. Moreover, \ ± >@2BA<�~h ± and L�>`2BA hold. Since \aÓ is no predeces-
sor of any variable in L , it also follows that (a) ¼�L ¯�Ö×Í Ö >@2BA and (b) L7¯ Ö Í Ö ÎÏ >@2BA hold for
all Ð�N�QX�£U>`\Tn][¡A and Ð|
�ÑÐ��>`2BA , where h ± � h
� \ ± , Ì ± �zÌWh7Ó , and h�Óº��h�>`\uÓ�A .
This shows that \ ± ��h ± is a weak cause of L under 2 , and thus also (ii) holds.

>FØÕA Assume that (i) and (ii) hold. Thus, \ ± �_h ± is a weak cause of L under 2 .
That is, (AC1) \_±t>@2BA<�~h<± and L�>@2BA hold, and (AC2) some [Ë�zX�£�\z± , h<±�w�^_>`\�±ÙA ,Ì�w�^�>F[�A exist such that (a) ¼�L ¯YÖ×Í >@2BA and (b) L7¯ Ö Í�ÎÏ >`2ºA for all Ð���zX�£U>`\~±dn][�A
and Ð|#�ÚÐ��>@2BA . Since also \uÓ�>@2BA<��h�>`\uÓ�A , it holds that \�>@2BA<�~h and L�>@2BA . Further-
more, as \uÓ is no predecessor of any variable in L , it follows that (a) ¼�L ¯dÖÛ¯YÜFÍ Ö >@2BA
and (b) L7¯ Ö ¯YÜ�Í Ö ÎÏ >`2BA for all Ð� �NX�£7>`\Jn
[�A and Ð|
�ÑÐ��>`2ºA , where Ì ± �_Ìa�Ý>�[�£ b \uÓ8g�A
and h7ÓB�zh�>t\aÓ�A . Hence, \T�_h is a weak cause of L under 2 . �
We finally recall a result from [14,18], which shows that deciding weak cause is
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complete for ! "� (resp., ÞW& ) in the general (resp., binary) case. Note that this result
holds also when the domain ^_>`\zA<� b �v489:9:9�46ßº��g of each variable \Vwu�JnaX is
implicitly specified by ßº�_Å�� .
Theorem 2.6 (see [14,18]) Given a causal model E �u>��?4YXZ45��A , \��pX , h3wx^_>t\QA ,2�w�^_>��pA , and an event L , deciding whether \É�_h is a weak cause of L under 2 is
complete for ! "� (resp., ÞW& ) in the general (resp., binary) case.

2.3 Complexity Classes

We assume that the reader has some elementary background in complexity theory,
and is familiar with the concepts of polynomial-time solvability, Þ�& , polynomial-
time transformations among problems, and hardness resp. completeness of a prob-
lem for a complexity class, as can be found e.g. in [31,32,39]. We now briefly recall
the complexity classes that we encounter in this paper.

We recall that the Polynomial Hierarchy (PH) contains the classes àa � �z& , !#" � �Þ�& , C " � �Qádâ - ÞW& , à  Ã5ãB� �Q& ')(ä , ! "Ã5ãB� �QÞ�& ')(ä , and C "Ã � co- ! "Ã , for all ÄSÅ � .
They informally model solving problems with an oracle for some other problem,
which belongs to the class shown in the superscript. For our concerns, it is con-
venient to assume that the oracle can be called on instances of different problems
from a suite of fixed problems in the class, which does not affect the computational
power. Each call to the oracle costs unit time. In particular, àu � � & /1 (resp.,!#"� �PÞ�& /. ) denotes the class of problems decidable in polynomial time with the
help of an ÞW& oracle on a deterministic (resp., a nondeterministic) Turing machine.
Intuitively, the computational power of the classes in PH increases with each levelÄ .

From these classes, further complexity classes have been derived. The class �� Ã �b°å�æså ± � å w�!#"Ã 4 å ± w�CW"Ã g , Ä�Å�� , is the “conjunction” of !0"Ã and CH"Ã ; in particular,�  � is the familiar class �  . The letter D is mnemonic for the fact that a problem
in �  Ã can be seen as the difference between two problems in ! "Ã formally viewed
as sets of Yes-instances. Such problems can be easily solved with two calls to a ! "Ã
oracle, but are intuitively easier since the calls can be made independently of each
other. On the other hand, the problems are at least as difficult as both !H"Ã -complete
and CW"Ã -complete problems.

The class & ')(ä+ , ÄpÅ�� , contains the decision problems which can be solved in poly-
nomial time with one round of parallel calls to a ! "Ã oracle rather than calls in
arbitrary order, and is part of the Refined PH [51]. Intuitively, constraining the use
of the oracle to one parallel call of all queries restricts the computational power,
since the outcome of an oracle call can not be taken into account for other oracle
calls. It is known that constraining to parallel oracle queries is tantamount to re-
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stricting the number of oracle calls, in arbitrary order, to ç]>@èéâvê-ßÆA many, where ß
is the size of the problem input, cf. [51].

According to the current belief in complexity theory, Fig. 2 shows a strict hierarchy
of inclusions.

ë´ì - íxîî í�î ïxð î7ñ ðò ó ð ô õºöô
÷ öô

ïxðô î�ø�ùúò ó ð û õºöû
÷ öû

ïxðû î�ø¶ùüò õºöý
÷ öý

ó ðý

Figure 2. Containment between Complexity Classes

For classifying problems that compute an output value (e.g., the set of atoms that
are entailed by a classical formula L ), function classes similar to the classes above
have been introduced (cf. [46,31]). Among these are ,�& , ,-& /1 + �J,-& ')( «+ , and ,-& ' (ä+ ,

which are the functional analogs of & , &?/. + �z& ' ( «+ , and & ')(ä , respectively. For fur-
ther background on these complexity classes, we refer to [31,32,39,46,51].

We remark that all classes þ in Fig. 2 are closed under polynomial-time reduc-
tions, i.e., if a problem C has a polynomial time transformation into a problem C ±
from þ , then also C belongs to þ . Furthermore, each þ has complete problems
under polynomial-time transformations, including canonical variants of the satis-
fiability problem (SAT), i.e., deciding satisfiability of a Boolean formula L . The
latter is well-known ÞW& -complete, while its complement, deciding unsatisfiabil-
ity of L is ádâ - ÞW& -complete; deciding, given two Boolean formulas L�� and L�� ,
whether LÆ� is satisfiable and LB� is unsatisfiable is complete for �p . More gener-
ally, a complete problem for the class !s"Ã (resp., CW"Ã ), Ä�Å�� , is to decide the va-
lidity of a given quantified Boolean formula (QBF) ÿu�´\c�Çÿ²�6\u�39:9:96ÿ²Ãd\uÃ3L , where\c�Y4e\u�q4:9:9:9�4e\uÃ are sets of variables, ÿ��mÿ��39:9:9eÿ�Ã is a sequence of alternating quan-
tifiers � and � such that ÿ��­��� (resp., ÿ��­��� ), and L is a Boolean formula over
the variables in \l�xn~\u�ZnNoqoqo°nÁ\uÃ . Deciding, given two QBFs �W� and �#� of the
form ÿ��´\l�´ÿ��6\u�39:9:9eÿ�Ã�\aÃÆL with ÿ��­��� , whether �H� is valid and �0� is not valid is
complete for the class �p Ã . Finally, given � such QBFs �W��4:9:9:9d4���� , deciding whether
the number of valid formulas among ����4:989:984���� is even (resp., computing the set
of all valid formulas among ����4:9:98984���� ) is complete for & ' (ä+ (resp., ,-& ' (ä+ ).

In this paper, unless stated otherwise, completeness for a decision class is with
respect to standard polynomial-time transformations. Completeness for a func-
tion class is understood in terms of a natural generalization of polynomial time
transformations: The problem 	
� reduces to 	�� , if there are polynomial time func-
tions 
 and � such that for each instance �¶� of 	�� , the output for �°� is given by�º>
�°�54�	���>�
->
���mAeAmA � ; see [46,31] for formal details. In case of & and ,�& , complete-
ness is understood in terms of reductions that can be computed in logarithmic space.

� Note that the first argument of � allows to access the original problem instance � � .
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3 Explanations

In this section, we analyze the complexity of (full) explanations in the structural-
model approach due to Halpern and Pearl [25,27]. We consider the problems of
recognizing explanations and of deciding whether an explanation over certain vari-
ables exists. We consider the general as well as the restriction to the binary case.

3.1 Definitions

We now recall the concept of (full) explanation from [25,27]. Intuitively, an ex-
planation of an observed event L is a minimal conjunction of primitive events that
causes L even when there is uncertainty about the actual situation at hand. The
agent’s epistemic state is given by a set of possible contexts 2�w�^�>��pA , which de-
scribes all the possible scenarios for the actual situation.

More formally, let E¥�M>��?4YXZ45��A be a causal model, let \V�QX and h�w�^_>`\zA , let L
be an event, and let �u�_^_>��pA be a set of contexts. Then, \É��h is an explanation
of L relative to � , if the following conditions hold:

EX1. L�>@2BA holds for every context 2�w�� .

EX2. \T�zh is a weak cause of L under every 2�w�� such that \�>`2ºA��Gh .

EX3. \ is minimal. That is, for every \ ±�� \ , some 2�w�� exists such that \ ± >`2ºAZ�hZ� \�± and \�±��_hZ� \�± is not a weak cause of L under 2 .

EX4. \�>@2BA<�~h for some 2�w�� , and \�>@27± A���_h for some 2<±qw�� .

The following example illustrates the above notion of explanation.

Example 3.1 (Arsonists continued) Consider the set of contexts � � b 2x��Ò��5462©��Ò Ó ,27ÓeÒ��5g . Then, both ���­��� and ���B��� are explanations of �M�I� relative to � , since
(EX1) �c>`2Æ��Ò��mA<�z�c>`2Æ��Ò Ó5A<�Q�c>`27ÓeÒ��mA<�I� , (EX2) ���7��� (resp., �p�B�I� ) is a weak
cause of ����� under 2Æ��Ò�� and 2Æ��Ò Ó (resp., 2Æ��Ò�� and 27ÓeÒ�� ), (EX3) ��� and ��� are
obviously minimal, and (EX4) ���8>`2©��Ò��ÇA<��� and ���8>`2�ÓeÒ��ÇA���I� (resp., ����>@2©��Ò��mA<���
and ���°>`2Æ��Ò Ó5A���I� ). Furthermore, ���­����½I�W�º�I� is not an explanation of �I���
relative to � , as here, the minimality condition EX3 is violated. �

3.2 Results

In our complexity analysis, we focus on the following problems, which are major
tasks in explanation-based causal reasoning:

11



Explanation: Given E¥��>��?4YXZ45��A , \V�QX , h�w�^_>t\QA , an event L , and a set of
contexts �u��^_>��pA , decide whether \T�_h is an explanation of L relative to � .

Explanation Existence: Given E·��>��?4YXZ45��A , \È�zX , an event L , and a set of
contexts �u�_^�>��pA , decide whether some \ ± �~\ and h ± w�^_>t\ ± A exist such that\ ± �_h ± is an explanation of L relative to � .

The first problem, Explanation, is the recognition of an explanation. It emerges di-
rectly from the definition of explanation in Section 3.1 and captures its intrinsic
complexity. The second problem, Explanation Existence, is associated with the im-
portant task of finding an explanation for an event L . Similar as in other frameworks
for explanations (e.g. [35,47]), the set \ focuses attention to a subset of the vari-
ables, in terms of which the explanation must be formed. Finding explanations is
certainly the central task of a causal-reasoning system built for applications in prac-
tice, and thus this problem deserves special attention. We analyze the complexity
of these problems for the general as well as the binary case, where E is restricted
to binary causal models (i.e., each endogenous variable may take only two values).

Our complexity results on these two problems for the general and the binary case
are summarized in Table 1. In detail, the problem Explanation is complete for the
class �  � (resp., �  ) in the general (resp., binary) case, while the problem Expla-
nation Existence is complete for !s"$ (resp., !0"� ) in the general (resp., binary) case.
It thus turns out that finding explanations is at the third level of PH. Hence, ex-
planations are harder to compute than weak causes, which lie at the second level
of PH [14]. On the other hand, recognizing explanations is only mildly harder than
recognizing weak causes, which is ! "� -complete.

Table 1
Complexity of Explanations

Problem general case binary case

Explanation �  � -complete �  -complete

Explanation Existence � "$ -complete � "� -complete

We now show how the complexity results in Table 1 can be formally derived. In
order not to distract from the flow of reading, we present the main parts and key
ideas behind constructions, and move some technical details to Appendix A.

The following result shows that deciding explanations is �  � -complete in the gen-
eral case. The problem is in �  � , as condition EX2 amounts to a conjunction of a
linear number of problems in ! "� , and EX3 to the negation of such a problem; EX1
and EX4 are easily checked. Thus, by usual techniques, the explanation check can
be reduced to a conjunction of problems in !s"� and CW"� . Hardness for �p � is shown
by a reduction from the �� � -complete problem of deciding, given a pair >�����4��#�YA of
QBFs, whether �W� is valid and �#� is not valid.
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Theorem 3.2 Explanation is �  � -complete.

Proof. As for membership in �  � , recall that \S��h is an explanation of L rela-
tive to � iff EX1–EX4 hold. Deciding in EX1 whether L�>`2ºA for every 2�w�� and in
EX4 whether \�>`2BA<��h and \�>`2 ± A���_h for some 2x4e2 ± w�� is polynomial. In EX2,
the set � ± of all 2�w�� such that \I>@2BA<�~h is polynomially computable. By The-
orem 2.6 and as !0"� is closed under polynomially many conjunctions, deciding
whether \T�_h is a weak cause of L under every 2�w�� ± is in !#"� . In EX3, guess-
ing some \�± � \ and checking that \_±��zhZ� \�± is a weak cause of L under every2�w�� such that \ ± >`2ºA<�~hZ� \ ± is in !0"� . Thus, deciding EX3 is in C�"� . In summary,
deciding whether \T�zh is an explanation of L relative to � is in �² � .

Hardness for �p � is shown by a reduction from deciding, given a pair >��p��4��#�5A of
QBFs �?�¶���}�H���º�W� �)� with �<w b �¶4Y¦.g , where each �.� is a propositional formula on
the variables �W�º� b �W�éÒ��Y4:9:9:9d46�W�éÒ !#"�g and �W��� b �H� Ò��Y4:9:989d45�H� Ò ;$"�g , whether �W� is valid
and �#� is not valid. We construct E¥�¢>��?4YXZ45��A , \V�_X , hÕwÊ^_>`\zA , �f�z^_>��pA ,
and L as required such that \T��h is an explanation of L relative to � iff ��� is valid
and �#� is not valid.

Roughly speaking, the main idea behind this construction is as follows. We con-
struct EI�­�¢>��#45X©�645���eA and EJ�©��>��?4YX<�:45�x�YA and two events L3� and L�� such that
(i) X©�­�aX7�B� b&% g (that is,

%
is the only endogenous variable that EM� and EJ� have

in common), and (ii) for every 2�w�^_>��pA , it holds that
% �Q� is a weak cause of Lº�

under 2 in EQ� iff �?� is valid (see Fig. 3, left side). The causal model E is the
union of E�� and EJ� , enlarged by the additional endogenous variables

% ± and '
(see Fig. 3, right side). We then construct L and 2x�Y4627�Æw�^_>��pA such that L is under2©� and 2�� equivalent to LÆ� and L�� , respectively. Finally, the construction is such that% �z�©½ % ±��J� is an explanation of L relative to ��� b 23�54627�dg in E , iff (a)

% �z� is a
weak cause of LÆ� under 2Æ� in EI� , and (b)

% �Q� is not a weak cause of LB� under 2��
in EJ� , where (a) (resp., (b)) is encoded in EX2 (resp., EX3). That is,

% �Q�º½ % ± �J�
is an explanation of L relative to � in E , iff ��� is valid and �0� is not valid.

( )+*

, )
-/. - ô

0 )

- )
�W� Ò��Boqoqom�W� Ò !1" �H� Ò��Boqoqo6�W� Ò ;2"

3 *
4

5
5 3 3

Figure 3. Schematic Construction for Evaluating two QBFs 6 � and 6 �
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More formally, for every ��w b �v4Y¦)g , the causal model EN��� >��?4YX­�F46�x�`A is defined
by �p� b&7 g and X<�t�p�W�vn��W�¶n b&% 45þ#�@g , where ^_>�8�A<� b �}48�v4Y¦.g for all 8Mw_��� , and^_>�8�A<� b �}4:��g for all 8�wJ��n�X<�1£U�W� . Moreover, we define

L<���M>9� ±� ½;:<>= ¬?" 8@��N¦vA©ÂN>�þ#�°�Q�»AÆÂN> % �I�?½~þ#�����?½;A<B= ¬?" 8@��N¦¶A�4
where ��±� is obtained from �.� by replacing each 8lw�����na�W� by “ 8a�I� ”. The func-
tions in �x�º� b � �< �C8¿w�X<��g are defined as follows:

� � �< �J� for all 8lw��W�}n b&% 45þ#�Fg ,� � �< � %ED þ#� for all 8lw��W� .
As shown in [14,18], for every �<w b �v4Y¦)g and 2�w�^_>��pA , it holds that

% �Q� is a
weak cause of L�� under 2 in EQ� iff �?� is valid.

The causal model E·��>��?4YXZ45��A is now defined by X��JX3�©nÁX7��n b&% ±r4�'Qg , where^_> % ± A<�z^_>
'_A<� b �}4:�¶g , and �N�Q����n��x�Zn b �1F Ö � 7
, �#Gc�I� iff > 7 �z�p½_L©�mA3Â> 7 ���0½~L��YA is true g . Let L be defined as '���� , and let 23�Y4627�Æw�^�>��pA be defined

by 2©�d> 7 A<�Q� and 27��> 7 A<�I� . Observe that L is primitive.

For every �<w b �v45¦.g and 2�w�^_>��pA , it holds that
% �Q� is a weak cause of LB� under 2

in E iff �?� is valid. Hence, for every �<w b �¶4Y¦.g ,
(i)

% �Q� is a weak cause of L under 27� in E iff �#� is valid.

By Proposition 2.5, the following statements hold:

(ii)
% �Q� is a weak cause of L under 2Æ� in E iff% �Q�H½ % ± �Q� is a weak cause of L under 2Æ� in E .

(iii)
% ± �z� is not a weak cause of L under 2Æ� in E .

Using these results, we now show that
% �z�Æ½ % ± �Q� is an explanation of L relative

to ��� b 2©�Y4627�dg iff �H� is valid and �#� is not valid.

>FÔÕA Assume that
% �Q�W½ % ± �Q� is an explanation of L relative to � . In particular,

by EX2,
% �z�p½ % ± �Q� is a weak cause of L under 2Æ� . Moreover, by EX3,

% �Q�
is either not a weak cause of L under 23� , or not a weak cause of L under 2B� . By (ii),% �z� is a weak cause of L under 23� . Thus,

% �z� is not a weak cause of L under 2B� .
By (i), �H� is valid, and �0� is not valid.

>FØÕA Assume that �H� is valid and �#� is not valid. We first show that EX1 holds.
As þ#�´>`2BA<�z� for all �<w b �¶4Y¦.g and 2�w�� , we get L���>@2BA for all �<w b �v45¦.g and 2�w�� .
Thus, L�>@2BA for all 2�w�� . To see that EX4 holds, observe that

% >@2x�mA<� % ± >@2©�mA<�z� ,
while

% >@27�YA<�Q� and
% ± >`27�YA<�I� . We next show that EX2 holds. By (i),

% �z� is a
weak cause of L under 2Æ� . By (ii), it follows that

% �z�²½ % ± �z� is a weak cause
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of L under 2Æ� . We now show that EX3 holds. By (i),
% �z� is not a weak cause of L

under 2�� . By (iii),
% ±d�z� is not a weak cause of L under 23� . �

The following theorem shows that deciding whether an explanation over certain
variables exists is !0"$ -complete. Here, the !0"$ upper bound is straightforward by
the !0"� upper bound of recognizing explanations, and a standard guess and check
argument. The !0"$ -hardness of Explanation Existence stems from a subtlety in the
definition of explanation. From satisfaction of EX1, EX2 and EX4 for \T��h we
can not conclude that some \ ± �_h ± contained in \T�_h exists which will satisfy
EX1-EX4; if we minimize \É�_h so as to satisfy EX3, the resulting \ ± �zh ± may
violate EX4. It is this interplay of the conditions which makes this problem difficult,
and the proofs of the hardness results nontrivial.

Theorem 3.3 Explanation Existence is !s"$ -complete.

Proof (sketch). As for membership in !s"$ , observe that the problem can be reduced
to guessing some \ ± �~\ and h ± w�^_>t\ ± A , and verifying that \ ± �_h ± is an expla-
nation of L relative to � . By Theorem 3.2, this can be done in polynomial time with
two calls to a !0"� -oracle. Thus, the problem is in !s"$ .

Hardness for ! "$ is shown by a reduction from deciding whether a given QBF �M��­���ºþH�­^I� is valid, where � is a propositional formula on the variables ��naþNna^ .
We construct E¤��>��?4YXZ45��A , \V�zX , �u��^_>��pA , and L such that � is valid iff some\ ± �~\ and h ± w�^_>t\ ± A exist such that \ ± �zh ± is an explanation of L relative to � .
Roughly, the main idea is to encode the quantifier “ �­� ” in guessing some \ ± �~\ ,
and “�ºþJ�­^K� ” in checking the complement of a weak cause in EX3. Note that the
construction is technically involved; it is schematically shown in Fig. 4. �
In the binary case, the complexity of all considered problems drops by one level in
PH; this parallels the drop of the complexity of weak causes from !H"� to ÞW& in the
binary case [14]. The membership parts can be derived analogous as in the general
case, and the hardness parts by slight adaptations of the constructions in the proofs,
where certain subcomponents for weak cause testing are modularly replaced. The
following two results show that recognizing explanations (resp., deciding the exis-
tence of explanations) is complete for �� (resp., !#"� ) in the binary case.

Theorem 3.4 Explanation is �� -complete in the binary case.

Proof. As for membership in �  , recall that \É��h is an explanation of L relative
to � iff EX1–EX4 hold. By the proof of Theorem 3.2, checking EX1 and EX4 is
polynomial. Moreover, in EX2, the set �3± of all 2�w�� such that \�>`2BA<�_h is polyno-
mially computable. By Theorem 2.6, deciding whether \T�_h is a weak cause of L
under every 2�w�� ± is in ÞW& in the binary case. In EX3, guessing some \ ±$� \ and
checking that \ ± �_hZ� \ ± is a weak cause of L under every 2�w�� with \ ± >`2BA<�_hZ� \ ±
is in ÞW& in the binary case. Thus, the complementary problem of deciding EX3 is
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Figure 4. Schematic Construction for Evaluating a QBF 6@\^] Y`_ U ] L O
in ádâ - ÞW& in the binary case. In summary, deciding whether \T�_h is an explanation
of L relative to � is in �p in the binary case.

Hardness for �  is shown by a reduction from the following �  -complete problem.
Given two propositional formulas in 3DNF %
�<�Q%-��Ò��ºÂ_oqoqo7Â]%-��Ò ÃY« and %3�º�z%3�eÒ��ºÂoqoqo7Â]%3�eÒ Ã * on the variables ���7� b ����Ò��Y489:9:9 , ����Ò ;�«eg and ���B� b �W�eÒ���4:9:9:9�46���eÒ ; * g , re-
spectively, where Ä­�54YÄv�:46ßx��4eßº�3Å�� , decide whether %�� is not a tautology and %x� is
a tautology. Without loss of generality, ���Æ�¿���B�Qy , and Ä1�Y4YÄv�3Åz¦ .
We construct E¥�¢>��#45X�45��A , \V�zX , h�w�^_>`\zA , �u��^_>��pA , and L such that \É�_h
is an explanation of L relative to � iff %�� is not a tautology and %�� is a tautology.
The construction is similar to the one in the proof of Theorem 3.2. Roughly, we
replace the part for !0"� -hardness of deciding weak cause in the general case by a
new part for NP-hardness of deciding weak cause in the binary case.

More formally, for every �<w b �v4Y¦.g , we define the causal model EN�©�É>��?4YX­�F45�3�`A as
follows. The exogenous and endogenous variables are given by �À� b&7 g and XB�©��W�­n b&% 45^�� Ò��64:9:9:9d45^�� Ò Ãa"9b<�6g , respectively, where ^_>�8�A<� b �}4:�¶g for all 8lwu�¢nzX7� .
The functions �x��� b � �< �c8cw�X­�Fg are defined by:

� � �< �T� for all 8lw��W�1n b&% g ,� � �d "fe « � % ÂÁ%Æ� Ò�� ,� � �d "fe g � ^�� Ò h�b<�ºÂ~%Æ� Ò h for all i]w b ¦14:9:9:9d4YÄ¶�VjÕ�¶g .
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Let L<�°�J^�� Ò Ãkb<�xÂQ%Æ� Ò Ã . As shown in [14,18], for every �<w b �¶4Y¦.g and 2�w�^_>���A , it
holds that

% �I� is a weak cause of L�� under 2 in EQ� iff %Æ� is not a tautology.

The causal model E·�M>��?4YX�46��A is now defined by X��JXÆ�?nIX<�Un b&% ±r4l'Jg and���Q����n��x�3n b �#F Ö � 7
, �#G���� iff > 7 �Q�#½cLÆ�mA�Â_> 7 ���Z½cL7�YA is true g . Let L be

defined as '¡��� , and let 2Æ�Y4627�Æw�^�>��pA be defined by 2Æ�d> 7 A<�I� and 2��q> 7 A<�z� .
Observe that L is primitive.

By a similar line of argumentation as in the proof of Theorem 3.2, it follows that% ���#½ % ± �I� is an explanation of L relative to �_� b 23�54e2��dg iff %-� is not a tauto-
logy and %x� is a tautology. �
Theorem 3.5 Explanation Existence is ! "� -complete in the binary case.

Proof (sketch). As for membership in !s"� , by Theorem 3.4, guessing some \ ± �W\
and h ± wx^_>t\ ± A , and verifying that \ ± �_h ± is an explanation of L relative to � can
be done in polynomial time with two NP-oracle calls in the binary case. This shows
that Explanation Existence is in ! "� in the binary case.

Hardness for ! "� is shown by a reduction from the following ! "� -complete problem.
Given a QBF �Á�m�­���ºþ�� , where � is a propositional formula on the variables��� b ���Y4:989:9845�n�`g and þ�� b þW�Y4:9:9:9d45þ�!Ug , decide whether � is valid. We constructE¥�¢>��?4YXZ45��A , \V�zX , �u��^_>��pA , and L such that � is valid iff some \ ± �~\
and h<±�w�^_>t\�±ÝA exist such that \�±d�_h<± is an explanation of L relative to � . The
construction is similar to the one in the proof of Theorem 3.3. Roughly, we replace
the part for !0"� -hardness of deciding weak cause in the general case by a new part
for Þ�& -hardness of deciding weak cause in the binary case. �

4 Partial Explanations and Explanatory Power

In this section, we analyze the complexity of partial explanations in the structural-
model approach due to Halpern and Pearl [25,27]. We consider the problems of
recognizing % -partial / partial explanations and of deciding whether an % -partial
explanation over certain variables exists. Furthermore, we consider the problem of
computing the explanatory power of a partial explanation. All complexity results
are derived for the general as well as the binary case.

4.1 Definitions

We now recall the notions of % -partial / partial explanations and of explanatory
power of partial explanations [25,27]. Roughly, the main idea behind partial expla-

17



nations is to generalize the notion of explanation of Section 3.1 to a setting where
additionally a probability distribution over the set of possible contexts is given.

Let E·�M>��#45X�45��A be a causal model. Let \È�zX and h�w�^_>t\QA . Let L be an event,
and let �u�_^_>��pA be such that L�>@2BA for all 2�w�� . We use the expression �1o�-®}¯ to
denote the unique largest subset � ± of � such that \T�zh is an explanation of L
relative to � ± . The following proposition shows that � o�Z®}¯ is defined, if there exists
a subset � ± of � such that \T�zh is an explanation of L relative to � ± . It also gives a
useful characterization of � o�Z®}¯ .
Proposition 4.1 Let E·��>��?4YXZ45��A be a causal model. Let \V�zX and h�w�^_>`\QA ,
and let L be an event. Let �u�_^_>���A be such that L�>`2ºA for all 2~wp� . If \S��h is an
explanation of L relative to some �3±��p� , then � o�Z®}¯ is the set of all 2�w�� such that
either (i) \�>`2ºAq��Êh , or (ii) \�>`2ºA<�~h and \T�_h is a weak cause of L under 2 .

Proof. Clearly, � o�Z®}¯ does not contain any 2�w�� such that \�>`2BA<��h and that \É��h
is not a weak cause of L under 2 , as otherwise EX2 would be violated. Hence,� o�-®}¯ is a subset of the set of all 2�w�� such that either (i) or (ii). Assume now that
some 2<±qw�� with \�>@2<±ÝA����h does not belong to � o�-®}¯ . Then, \T�zh is an explanation
of L relative to � ± �r�so�Z®}¯ n b 2 ± g . But this contradicts �to�Z®}¯ being the largest
such � ± . Assume next that some 2 ± w�� such that \�>@2 ± A<�zh and that \É��h is a
weak cause of L under 2 ± does not belong to � o�Z®}¯ . Then, \T��h is an explanation
of L relative to � ± ��� o�-®}¯ n b 2 ± g . But this contradicts again � o�-®}¯ being the largest
such � ± . Hence, � o�Z®}¯ is the set of all 2~wp� such that either (i) or (ii). �
Let � be a probability function on � , and define

��>9� o�Z®}¯ ��\¡�zhBA�� uvxwzy|{}B~2��R� v���� µ
��>@2BA�� uvxwNy�x� v|��� µ ��>`2BAº9

Then, \T�zh is called an % -partial explanation of L relative to >��Z4d�pA iff � o�Z®}¯
is defined and ��>9� o�Z®}¯ ��\T��hBAºÅz% . We say \T��h is a partial explanation of L
relative to >��Z4d�pA iff \É�_h is an % -partial explanation for some %��~� ; further-
more, ��>9�/o�Z®}¯ ��\T�_hBA is called its explanatory power (or goodness).

Example 4.2 (Arsonists continued) Consider the set of contexts � � b 2x��Ò��5462©��Ò Ó ,27ÓeÒ��5g , and let 	 be the uniform distribution over � . Then, both ���­�I� and ���B���
are 1-partial explanations of ����� . That is, both ���­��� and �W�º�I� are partial
explanations of ���I� with explanatory power � . �
As for computation, we assume that the above probability functions 	 are com-
putable in polynomial time.
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4.2 Results

In our analysis, we consider the following important problems related to partial
explanations and their explanatory power:

% -Partial Explanation: Given E¤��>��?4YXZ45��A , \È�zX , h�w�^_>`\zA , an event L , a
set of contexts �u�_^_>��pA such that L�>@2BA for all 2�w�� , a probability function �
on � , and %�Å � , decide whether \T�_h is an % -partial explanation of L relative
to >9�Z4l	�A .

% -Partial Explanation Existence: Given E·��>��?4YXZ45��A , \V�zX , an event L , a set
of contexts �u�_^_>��pA such that L�>`2BA for all 2�w�� , a probability function � on � ,
and %�ÅÀ� , decide whether some \ ± �~\ and h ± w�^_>t\ ± A exist such that \ ± ��h ±
is an % -partial explanation of L relative to >9�Z4l	�A .

Partial Explanation: Given E¥�¢>��#45X�45��A , \V�_X , h�w�^_>t\QA , an event L , a set
of contexts �u�_^_>��pA such that L�>`2BA for all 2�w�� , a probability function � on � ,
decide whether \É�_h is a partial explanation of L relative to >9�-4�	�A .

Explanatory Power: Given E·�M>��?4YX�46��A , \V�zX , h�w�^_>t\QA , an event L , �S�^_>��pA , and a probability function � on � , where (i) L�>@2BA for all 2�w�� , and (i)\T�zh is a partial explanation of L relative to >9�Z4l	�A , compute the explanatory
power of \T�zh .

The problems % -Partial / Partial Explanation and % -Partial Explanation Existence
can be viewed as relaxations of Explanation and Explanation Existence, respec-
tively, in a probabilistic context. Explanatory Power is the problem of computing
the “goodness” of a partial explanation \S��h , given by the coverage of the cases
where \T�_h is true in the contexts � . This information can be used to rank partial
explanations and single out “best” ones.

Our complexity results on these problems for the general and the binary case are
summarized in Table 2. In detail, recognizing % -partial / partial explanations is com-
plete for & ' (*+ (resp., &�/. + ) in the general (resp., binary) case, while deciding the
existence of % -partial explanations is complete for !s"$ (resp., !0"� ). Furthermore,
computing the explanatory power of a partial explanation is complete for ,-& ')(*+
(resp., ,-& /1 + ) in the general (resp., binary) case. Hence, finding % -partial expla-
nations has the same complexity as finding full explanations, while recognizing% -partial / partial explanations is mildly harder than recognizing full explanations.

The following result shows that recognizing % -partial explanations is & ' (*+ -complete.
Roughly, to recognize an % -partial / partial explanation, we need to know the set of
contexts � o�Z®}¯ . By exploiting the basic characterization result in Proposition 4.1,
it can be computed efficiently with parallel calls to a !s"� oracle. Once � o�Z®}¯ is
known, we need to check whether \T��h is an explanation relative to it, the rest is
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Table 2
Complexity of Partial Explanations and Explanatory Power

Problem general case binary case

� -Partial Explanation � ' (*+ -complete � /1 + -complete

� -Partial Explanation Existence � "$ -complete � "� -complete

Partial Explanation � ' (*+ -complete � /1 + -complete

Explanatory Power �s� '.(*+ -complete �s��/1 + -complete

easy. Thus, the complexity of these problems lies here in the computation of � o�Z®}¯ .
Theorem 4.3 % -Partial Explanation is & ' (*+ -complete.

Proof (sketch). We first prove membership in & ')(*+ . Recall that \T�zh is an % -
partial explanation of L relative to >��Z4�	�A iff (a) \T�zh is an explanation of L relative
to � o�Z®}¯ , and (b) ��>9� o�Z®}¯ ��\¡�_hBAºÅ_% . By Proposition 4.1, � o�Z®}¯ is the set of all2�w�� such that either (i) \�>`2BA���_h , or (ii) \�>@2BA<�~h and \É�_h is a weak cause of L
under 2 . As deciding (i) is polynomial, and deciding (ii) is in !U"� , by Theorem 2.6,
computing � o�Z®}¯ is in ,-& ' (*+ . Once � o�-®}¯ is given, deciding (a) is possible with
two !#"� -oracle calls, by Theorem 3.2, and deciding (b) is polynomial. It is now
well-known that two rounds of parallel !s"� -oracle queries in a polynomial-time
computation can be replaced by a single one [3]. Hence, the problem is in & ' (*+ .

Hardness for & ' (*+ is shown by a reduction from deciding, given Ä QBFs �s�a��}�W�2�º�W���)� with �ew b �v4:9:9:9�4YÄ�g , where each �.� is a propositional formula on the
variables ���W� b �W�éÒ��Y4:9:9:9d46�W�éÒ !#"�g and �W��� b �W�éÒ��Y4:9:9:9d45�W� Ò ;2"Fg , whether the number
of valid formulas among �W��4:9:9:9 , �#Ã is even. Without loss of generality, ���Un����4:9:989d46�WÃ�nK�WÃ are pairwise disjoint, �W� is valid, and for each i<w b ¦14:9:9:9�4YÄ�g ,
the validity of ��h implies the validity of ��h�b<� [51]. We construct E·�M>��?4YXZ45��A ,\V�QX , h�w�^�>`\QA , L , �u��^_>��pA , � , and % such that \É��h is an % -partial expla-
nation of L relative to >9�-4�	�A iff the number of valid formulas among �p��4:9:9:9d4��#Ã is
even. Roughly, the main idea behind this construction is as follows. For each �H� , we
construct an instance of weak cause, that is, E�����>��x��45X<�F45�x�tA , \f�x�GX<� , h<�)w�^_>t\u�tA ,2<�»w�^_>��x�`A and an event L�� , such that \u���_h<� is a weak cause of L�� under 27� in EQ�
iff �?� is valid. Then, E is the union of all EJ� , enlarged by additional variables
(see Fig. 5), and we define \T�z\l��nIoqoqo¶n_\uÃ and hp�zh©�B9:9:9mh7Ã . By setting 	 to
the uniform distribution over � and %����1��� �#� , we obtain that \É��h is an % -partial
explanation of L relative to >9�Z4l	�A iff \T�_h is an explanation of L relative to � o�Z®}¯ .
The latter is made to hold iff the number of valid formulas among the �s� ’s is even.
In detail, EX3 is violated iff � is even, �0� is not valid, and �#��b<� is valid. �

20



-s�-/. ...

0 5
� . � �

5 �5 .

4
Figure 5. Schematic Construction for Evaluating � QBFs 6 ����������� 6ZÃ

The following theorem shows that deciding the existence of % -partial explanations
is complete for !0"$ . Here, the !#"$ upper bound follows from the & ' (*+ upper bound
of recognizing % -partial explanations by a standard guess and check argument.
The !#"$ -hardness is inherited from the !0"$ -hardness of Explanation Existence.

Theorem 4.4 % -Partial Explanation Existence is !s"$ -complete.

Proof. We first prove membership in ! "$ . By Theorem 4.3, deciding whether \ ± ��h ±
is an % -partial explanation of L relative to >9�-4�	�A is in & ')(*+ 9 Hence, guessing some\ ± �~\ and h ± w�^_>t\ ± A , and deciding whether \ ± �_h ± is an % -partial explanation
of L relative to >9�-4�	�A is in !#"$ .

Hardness for !#"$ is shown by a reduction from Explanation Existence (see The-
orem 3.3). Given an instance of it, let 	 be the uniform distribution on � , and
let %���� . Then, \ ± �_h ± is an % -partial explanation of L relative to >��Z4�	�A iff \ ± ��h ±
is an explanation of L relative to � . �
The next theorem shows that deciding partial explanations is & ' (*+ -complete. The
membership part is proved similarly as in the proof of Theorem 4.3. The hardness
part follows easily from the hardness result in Theorem 4.3.

Theorem 4.5 Partial Explanation is & ')(*+ -complete.

Proof. As for membership in & ' (*+ , recall that \É��h is a partial explanation of L
relative to >9�-4�	�A iff (a) \T�_h is an explanation of L relative to � o�Z®}¯ , and (b) � o�Z®}¯
contains some 2 such that \�>`2ºA<�~h and ��>`2BAR�~� . By the proof of Theorem 4.3,
computing � o�Z®}¯ is in ,�& ' (*+ . Once � o�Z®}¯ is given, checking (a) is in �  � by The-
orem 3.2, and checking (b) is polynomial. As two rounds of parallel !W"� -oracle
queries in a polynomial-time computation can be replaced by a single one [3], de-
ciding whether \T�zh is a partial explanation of L relative to >9�-4�	�A is in & ' (*+ .
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We next show & ' (*+ -hardness. If 	 is the uniform distribution over � , then \T��h is
a partial explanation of L relative to >9�Z4l	�A iff \T��h is a �� �C� -partial explanation of L
relative to >9�-4�	�A . By the proof of Theorem 4.3, deciding the latter is complete for
& '.(*+ . Thus, deciding whether \S��h is a partial explanation of L relative to >9�Z4l	�A
is & ')(*+ -hard, and hardness holds even if 	 is the uniform distribution over � . �
The following result shows that computing the explanatory power of a partial expla-
nation is ,�& ' (*+ -complete. Here, the membership part is proved similarly as in the
proof of Theorem 4.3. The hardness part is shown by a reduction from computing
all valid QBFs among Ä given QBFs �Á���}���º�H� .

Theorem 4.6 Explanatory Power is ,-& ' (*+ -complete.

Proof (sketch). We first prove membership in ,-& ' (*+ . Let \T�_h be a partial ex-
planation of L relative to >9�-4d�pA . To compute its explanatory power, we compute
first � o�-®}¯ and then ��>�� o�Z®}¯ ��\T�_hBA . By the proof of Theorem 4.3, the former is
in ,-& ' (*+ , while the latter is polynomial. In summary, the problem is in ,-& ' (*+ .

Hardness for ,-& ' (*+ is shown by a reduction from computing, given Ä QBFs �s�Z��}�W���º�H���)� with �<w b �v489:9:9�4YÄ�g , where each �.� is a propositional formula on the vari-
ables �W��� b �H� Ò��Y4:9:989846�H� Ò !#"�g and �W�Z� b �H� Ò��Y4:9:989845�W�éÒ ;$"�g , the vector >��.��489:9:9�4l��Ã:Apwb �}4:�¶g Ã such that �°�º�¡� iff �?� is valid, for all �<w b �v4:9:98984YÄ�g . Without loss of gener-
ality, ���3n��²�Y4:9:9:9d46��Ã?n~�WÃ are pairwise disjoint, and ��� is valid. Roughly speak-
ing, the main idea is to construct a problem instance such that >��}��4:9:9:9�4l�°ÃqA is the
bit-vector representation of the explanatory power of \T�_h . The construction is
similar to the one in the proof of Theorem 4.3, which is illustrated in Fig. 5. For
each �?� , we construct EQ���M>�����4�X­��46�x�`A , \f�)�zX­� , h<��wx^_>`\f�`A , 2<�Fw�^_>����tA , and an
event L7� such that \u���zh<� is a weak cause of L�� under 27� in EQ� iff �?� is valid.
These models are then combined in E such that 2B�»w�� o�-®}¯ iff �?� is valid. Defining	]>`2<�tA<�Q¦ ��b<� �U>F¦ Ã jK��A for all �<w b �v4:989:984YÄ7g completes the reduction. �

5 Succinct Representation

Our complexity results in Sections 3 and 4 (as summarized in Tables 1 and 2) as-
sume that the set of contexts � is enumerated in the input. However, � may contain
exponentially many contexts. Hence, a descriptive representation can be much more
compact and desirable in practice. In the succinct representation setting, we thus
assume that � is given by a tractable membership function = � >`2ºA . That is, on input
of 2�w�^_>��pA , function = � >@2BA reports in polynomial time whether 2�w�� holds. This
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includes, e.g., descriptions of � in terms of propositional formulas � over � such
that the models of � describe the contexts in � .

Table 3 shows our complexity results for some of the problems in Sections 3 and 4
in the setting where contexts are succinctly represented. More precisely, recog-
nizing explanations and partial explanations in the case of succinct context sets is
complete for C "D (resp., C "$ ) in the general (resp., binary) case.

Table 3
Complexity of Explanations and Partial Explanations: Succinct Representation

Problem general case binary case

Explanation � "D -complete � "$ -complete

Partial Explanation � "D -complete � "$ -complete

Thus, it turns out that succinct representation increases the complexity of Explana-
tion and Partial Explanation drastically. Intuitively, in this case checking a property
for all contexts in � becomes much harder, since there seems no better way than
guessing the “right” context witnessing or disproving the property. The complexity
increase by two levels in PH stems from the fact that condition EX3 involves two
nested checks of properties for all contexts in � . This dominates the complexity of
EX1, EX2, and EX4 and leads to C "D complexity.

For % -Partial Explanation, we have similar effects. Worse, we need to calculate
sums of probabilities over succinctly represented context sets. This leads us outside
PH: It requires us to solve problems which are at least as hard as deciding whether a
given propositional CNF � has ÅQÄ models, where Ä is in the input. This problem is,
as generally believed, not in PH. We refrain from a detailed analysis of computing% -partial explanations here. A complexity increase for Explanation Existence under
succinct context sets to ! "� is plausible, though we have not analyzed it; note that
already the C "D -hardness proof for Explanation is rather involved.

The following result shows that deciding explanation is Cp"D -complete for succinct
context sets. Here, membership in C�"D follows from the fact that checking EX1,
EX2, EX3, and EX4 is in á8â - Þ�& , C "$ , C "D , and Þ�& , respectively, for succinct con-
text sets. Hardness for C "D is shown by a reduction from deciding whether a given
QBF �¿���B�q�­���ºþH�­^I� is valid, which is essentially encoded in condition EX3.

Theorem 5.1 Explanation is C�"D -complete for succinct context sets.

Proof (sketch). Recall that \É�_h is an explanation of L relative to � iff EX1–EX4
hold. Under succinct context sets, in EX1, deciding L�>`2BA for all 2�w�� is in á8â - Þ�& .
In EX4, deciding whether \�>`2ºA<��h and \�>@2 ± A���_h hold for some 23462 ± w�� is inÞ�& . By Theorem 2.6, deciding whether \S��h is a weak cause of L under every
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2�w�� with \�>`2BA<��h in EX2 is in C "$ . Thus, deciding whether some \z± � \ exists
such that \�±d��hZ� \�± is a weak cause of L under every 2�w�� with \z±t>@2BA<�_hZ� \�± is
in !#"D . That is, deciding EX3 is in C�"D . In summary, deciding whether EX1–EX4
hold is in CW"D under succinct context sets.

Hardness for CW"D is shown by a reduction from deciding whether a given QBF�Á���B���­���ºþH�­^I� is valid, where � is a propositional formula on the variables�Qna��naþNna^ . We construct E¥�¢>��?4YX�46��A , \V�_X , h�w�^_>t\QA , L , and �f�_^_>��pA
such that \T�_h is an explanation of L relative to � iff � is valid. This construc-
tion is schematically illustrated in Fig. 6. Roughly, the main idea is to encode �
in EX3, where the quantifier “�B� ” is represented by considering all \ ±�� \ , the
quantifier “ �­� ” is expressed by finding some 2�w�^_>��pA , and �ºþJ�­^K� is expressed
by checking the complement of a weak cause. �

P ±

ZZ ±

[

X Ó

T ÓT T �NM�M�M T Ã Y �NM�M�M Y �

O

T ±� M�M�M T ±Ã

L �NM�M�M L ;
U �VM�M�M U !� �zM�M�M � Ã

W

X
� ± � M�M�M � ± Ã

Figure 6. Schematic Construction for Evaluating a QBF 6@\ _ � ] Y�_ U ] L O
The next result shows that under succinct context sets, also deciding partial expla-
nation is CW"D -complete. Here, membership in C�"D can be proved similarly as in the
proof of Theorem 5.1, using additionally Proposition 4.1. Hardness for C²"D easily
follows from an extension of the hardness part in the proof of Theorem 5.1, where
we additionally assume the uniform distribution � on the set of contexts.

Theorem 5.2 Partial Explanation is C�"D -complete for succinct context sets.

Proof. As for membership in C�"D , recall that \T�zh is a partial explanation of L
relative to >9�-4�	�A iff (a) \T�_h is an explanation of L relative to � o�Z®}¯ , and (b) � o�Z®}¯
contains some 2 such that \�>`2BA<��h and ��>`2ºAR�Á� . By Proposition 4.1, � o�Z®}¯ is the
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set of all 2�w�� such that either (i) \�>`2ºA���~h , or (ii) \�>`2ºA<�~h and \É��h is a weak
cause of L under 2 . To check that (a) holds, we check that EX1–EX4 hold. Clearly,
EX1 and EX2 always hold. The complement of EX3 says that some \ ±�� \ ex-
ists such that for every 2�w�� it holds that \ ± >`2ºA<�~hZ� \ ± and 2�w�� o�-®}¯ implies that\�±d��hZ� \�± is a weak cause of L under 2 . That is, some \z± � \ exists such that for
every 2�w�� , it holds either (a) \ ± >@2BA���_hZ� \ ± , or (b) \I>@2BA<�~h and \T�zh is not a
weak cause of L under 2 , or (c) \ ± �zhZ� \ ± is a weak cause of L under 2 . As de-
ciding whether \T�_h (resp., \ ± �_hZ� \ ± ) is a weak cause of L under 2 is in !s"� ,
deciding whether EX3 does not hold is in !s"D . That is, deciding whether EX3 holds
is in CW"D . EX4 says that some 2x4e2 ± w�� o�Z®}¯ exist such that \�>@2BA���~h and \�>@2 ± A<�_h .
Equivalently, some 23462 ± w�� exist such that \�>`2ºA���~h , and \�>`2 ± A<�_h and \É��h
is a weak cause of L under 2 ± . Thus, deciding whether EX4 holds is in !U"� . In
summary, checking (a) is in C "D . Finally, (b) says that some 2�w�� exists such that\�>@2BA<�~h , ��>`2ºAR�Á� , and \T�_h is a weak cause of L under 2 . Thus, checking (b)
is in ! "� . In summary, deciding whether (a) and (b) hold is in C "D .

Hardness for C�"D is shown by a reduction from the Cp"D -complete problem of de-
ciding whether a QBF �Á�p�B�m�­���ºþJ�­^K� is valid, where � is a propositional
formula on the variables �Qnf��naþ�nu^ .

Let E¥�M>��?4YXZ45��A , \V�zX , h�w�^_>`\QA , L , and �u�_^�>��pA be defined as in the proof
of Theorem 5.1, and let 	 be the uniform distribution over � . By the proof of
Theorem 5.1, >��¶Ax\É�_h is an explanation of L relative to � iff � is valid. Further-
more, L is primitive, L�>`2ºA for all 2�w�� , and for every 2�w�� , either (i) \�>@2BA���~h , or
(ii) \I>@2BA<�~h and \T�_h is a weak cause of L under 2 .

By Proposition 4.1, \T�zh is a partial explanation of L relative to >��Z4�	�A iff (a)\T�zh is an explanation of L relative to � , and (b) � contains some 2 such that\�>@2BA<�~h and ��>@2BAR�~� . Here, (a) implies (b). By > �¶A , it follows that \É�_h is a
partial explanation of L relative to >9�Z4l	�A iff � is valid. �

6 Generalization: Situations

In this section, we analyze the complexity of recognizing explanations and of de-
ciding the existence of explanations in the general case of situations [25,27]. In
the course of this, we also analyze the complexity of checking subsumption and
equivalence between causal models.
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6.1 Definitions

We now recall the concept of explanation for the case of situations [25,27]. Intu-
itively, an agent may also be uncertain about the causal model, and not only about
the context that applies to the actual situation at hand. Thus, in the general case of
situations, the agent’s epistemic state consists of a set of pairs >FEG462BA , called situa-
tions, where E is a causal model and 2 is a context. Before defining explanations
for situations, we first define causal formulas and their truth and validity.

A basic causal formula is an expression of the form ¡ ���£¢k{.�54:9:9:9�45�7Ãt¢¸{¶Ã�¤°L ,
where L is an event, �3�54:9:9:9d45��Ã are pairwise distinct endogenous variables, {v��w^_>��<�rA for all �<w b �v4:9:9:9�4YÄ�g , and ÄpÅ_� . The set of causal formulas is the closure
of the set of basic causal formulas under the Boolean operations ¼ and ½ . For�I� b �©�Y4:989:9845�7Ã�g and {s�_{.�B9:9:9m{¶Ã , we use ¡ �;¢k{¥¤°L to abbreviate ¡ �3�z¢¸{.�Y4:989:9 ,��Ã/¢k{�Ã�¤�L . As usual, we use LfÂ~¾ and ¦ to abbreviate ¼U>�¼
Lu½_¼-¾0A and LuÂ_¼�L ,
respectively. The truth of a causal formula ¾ in E¤��>��?4YXZ45��A under 2�w�^�>��pA ,
denoted >�EÀ462BAW��À¾ , is inductively defined by:

� >FEÀ4e2ºAW��§¡×�;¢k{¨¤�L iff LV©¶>@2BA in E ,� >FEÀ4e2ºAW��À¼
L iff >FEÀ4e2ºAW�� L does not hold,� >FEÀ4e2ºAW��ÀL�½Á¾ iff >FEÀ462BA��� L and >�EÀ462BAW��G¾ .

We say ¾ is valid in E¥��>��?4YXZ45��A , denoted E � �Q¾ , if >FEÀ462BA�� ��¾ for all 23w�^�>��pA .
By ª¬«x>�E A we denote the set of all causal formulas which are valid in E .

The following result, whose easy proof is omitted, shows that deciding validity isá8â - Þ�& -complete. Roughly, this result is immediate by the fact that checking E � �z¾
amounts to checking >FEÀ462BA�� �_¾ for each of the in general exponentially many
contexts 2 in ^_>��pA .
Proposition 6.1 Given a causal model E¥�¢>��#45X�45��A and a causal formula ¾ ,
deciding whether E � �G¾ is ádâ - ÞW& -complete.

We are now ready to define situations, and explanations relative to situations as fol-
lows. A situation 8]��>FEÀ462BA consists of a causal model E¥�¢>��#45X�45��A and a con-
text 2�w�^�>��pA . Informally, rather than having explanations of the form \É�_h rela-
tive to a set of contexts � , where \ is a set of endogenous variables and h�w�^_>`\zA ,
we now generalize to explanations of the form >@¾H4e\T�zhBA relative to a set of situa-
tions ­ , where ¾ is a causal formula that restricts the causal models to be considered
from ­ .

Before we give a formal definition, we introduce some useful notation. Let for any
set of situations ­ and causal formulas ¾ and ¾ ± denote ¾¥��q®�¾ ± that E � �Ú¾
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implies E � � ¾
± , for all >�EÀ462BA0w¯­ , and let ¾¢R�®u¾�± denote ¾P��q®f¾�±¶½Á¾
±x� �¬®f¾ ,
i.e., equivalence of ¾ and ¾?± on the causal models occurring in ­ .

Let then ¾ be a causal formula, let \ be a set of endogenous variables, and leth�w�^_>`\zA . Furthermore, let L be an event, and let ­ be a set of situations. Then,>@¾H4e\T�zhBA is an explanation of L relative to ­ , if the following conditions hold:

ES1. >FEÀ4e2ºA��� L for every situation >FEÀ4e2ºAºw�­ .

ES2. \É�_h is a weak cause of L under 2 in E , for every >FEG462BAºw�­ such that>FEÀ4e2ºAW��Õ\S��h and E � �G¾ .

ES3. >@¾H4e\T�zhBA is minimal. That is, there is no >`¾ ± 4e\ ± ��h ± A°�± ®J>@¾H4e\T�zhBA sat-
isfying ES2 such that (i) ¾ ��q®�¾ ± and (ii) \ ± ��\ and h ± �zhZ� \ ± .

ES4. >FEÀ4e2ºA�� ��\T�zh for some >FEÀ4e2ºAºw�­ , and >FE ± 462 ± A�� �J¼U>`\É�_hBA for some>FEG±r462<±ÙAºw�­ .

In ES3, >@¾ ± 4e\ ± ��h ± A²�± ®Q>@¾H4e\T�zhBA means that either ¾³�R�®c¾ ± , i.e., ¾ ± and ¾ are
not equivalent on the causal models in ­ , or that \ ± �_h ± and \T�zh are different.

Observe that the notion of explanation for sets of contexts is a special case of the
notion of explanation for sets of situations, as \É��h is an explanation of L relative
to � in E iff >�¦f4e\É��hBA is an explanation of L relative to

b >FEÀ462BA��F2�w��-g .
The following example illustrates explanations relative to situations.

Example 6.2 (Arsonists continued) Consider the causal model E¥�¢>��?4YX�46��A of
the running example given in Example 2.1. Let the causal model E ± �¢>��?4YX�46� ± A be
identical to E except that the function ��±¬ w���± is now defined by ��±¬ �I� iff �²�­���
and ���B��� . Informally, this says that the whole forest burns down iff both arsonists
start a fire. Let the causal model E ± ±8��>��H± ±t45X�45��± ±ÙA be identical to E except that
now the set of exogenous variables is given by � ± ± � b ���Y4d���q4d� $ g and the function� ± ±¬ w�� ± ± is defined by � ± ±¬ ��� iff ���­�I� or ���B��� or � $ �I� . Intuitively, the whole
forest burns down iff either some arsonist starts a fire or some other event results
into a fire (which is expressed by the exogenous variable � $ ). Let the causal formula¾ be given by ¡ ���V¢ �14<���x¢k�C¤����Q� (intuitively, the whole forest burns down
only if one of the two arsonists starts a fire), and let the context 2x��Ò���Ò���w�^_>�� ± ± A
be defined by 2Æ��Ò���Ò��d>��x�`A<��� for all �<w b �v45¦14�´1g (intuitively, both arsonists intend to
start a fire, and there is also some other event that results into a fire).

Then, both >@¾H46���}����A and >`¾W46�W�º����A are explanations of ����� relative to the set
of situations ­ � b >FEÀ4e2Æ��Ò��mA�4q>FEÀ4627ÓeÒ��´A�4�>�EÀ462©��Ò ÓYA�4q>FEG± 462©��Ò��mA�4�>�EG± ±t4e2Æ��Ò���Ò��´AYg , since
(ES1) 8_��z���I� for all 8¿wH­ , (ES2) ���­��� (resp., ���B��� ) is a weak cause of���I� relative to every 8lw b >FEÀ4e2Æ��Ò��mA�4�>�EÀ462©��Ò Ó5AY4�>FE ± 462©��Ò��mAYg (resp., 8lw b >FEÀ462©��Ò��mA ,>FEÀ4e2�ÓeÒ��ÇA�4�>�E ± 462©��Ò��ÇA5g ), (ES3) ���­�I� (resp., ���B��� ) is trivially minimal, and ¾ also
cannot be weakened to some ¾ ± such that E ± ± � �z¾ ± , since ���<�I� (resp., �p�B�I� )
is not a weak cause of ����� relative to >FE ± ± 462©��Ò���Ò��´A , and (ES4) ���d>`2Æ��Ò��ÇA<�I� and
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���8>`2�ÓeÒ��´A���I� (resp., ���°>`2Æ��Ò��´A<�I� and ����>`2©��Ò ÓYA���I� ) in E . �
We next define the concepts of subsumption and equivalence between causal mod-
els. We say that a causal model E·�M>��?4YX�46��A subsumes a collection of causal mod-
els EI��4YEQ�:4:9:9:9d4YEQ; , where EQ�¶�M>��x��4YX­��45�3�`A with X��NX­� , �<w b �v489:9:9�46ß�g , denotedEI��4YEJ�84:9:9:9d4YEQ;�OPE , iff for all causal formulas L on the variables in X , it holds
that EQ�<� �QL , for all �<w b �v4:9:989846ßxg , implies E � �QL , that is, µ ;�Ý®B� ª¬«3>FEQ�@Aº�¶ª¬«x>�E A .
Two causal models E��7��>�����4YXº�Y45�Z�mA and EJ�B�¢>����84YX7�845���YA , where X©�}�NX<� , are
equivalent, denoted E��7RNEJ� , iff EI�ºO_EJ� and EJ�3OzEI� . That is, E�� and EJ� are
equivalent iff ª¬«3>FEI�eA<�·ª¬«3>FEQ�YA . In other words, EI� and EJ� are indiscernible in
the language of causal formulas.

The following result provides a characterization of the failure of subsumption of a
collection of causal models by some causal model. This characterization is particu-
larly useful for assessing the computational complexity of deciding this relationship
as well as of deciding equivalence of causal models.

Theorem 6.3 Let E¥�¢>��?4YX�46��A and EJ���¢>��x��4YXZ45�x�tA , ��OÀ�
OÀß , be causal mod-
els. Then, EI�Y4YEQ�q4:9:9:9d4YEQ;��OÀE iff the following property holds:

> �¶A There exists some 2�w�^_>���A such that for every �mw b �v489:9:9�46ß�g and for every27�Fwx^_>��x�`A , there exists some causal formula ¡ �;¢k{¥¤:\Q�Wh , where � is a (pos-
sibly empty) set of endogenous variables and \ is a single variable, such that
(i) >FEÀ4e2ºAq�� �³¡ �;¢¸{¨¤8\¡�zh and (ii) >�EQ��462<�`AW� �³¡ �;¢¸{¨¤8\¡�zh .

Proof. >FÔÕA Suppose E���4YEQ�q4:9:9:9�4YEQ;��O_E , that is, ª_� µ ;�Ý®B� ª¬«3>FEQ�tA¸��¹ª¬«x>�E A .
Let L�w�ª_£#ª¬«3>FE A be an arbitrary formula. As Lº�w³ª¬«3>FE A , there exists some
context 2�w�^_>��pA such that >�EÀ462BA��� �JL , while >FEJ��4e27�rA�� �JL for all �<w b �¶4:9:9:9�46ß�g
and 27�vw�^_>����tA . As easily seen, for all recursive causal models E ± �¢>�� ± 4YX ± 45� ± A
and 2 ± w�^�>�� ± A , the following holds (cf. also [24]):

� >FE ± 462 ± A�� �»¡ �;¢ {¥¤°¼-¾ iff >FE ± 4e2 ± AW� � ¼�¡×�;¢k{¨¤:¾ ;� >FE ± 462 ± A�� �»¡ �;¢ {¥¤.>`¾
�º½Á¾���A iff >FE ± 462 ± AW� �³¡ �;¢k{¥¤q¾��Æ½�¡×�;¢k{¥¤q¾�� .
Therefore, L is equivalent to a Boolean combination of causal formulas of the
form ¡×��±k¢¸{)±¼¤:\~±d�_h<± , where ��± is a (possibly empty) set of endogenous variables
and \ ± is a single variable. Moreover, as the domain of every variable is finite, we
can equivalently rewrite L into a disjunctive normal form

Ah = ½
¾ :Ã = ¿ g ¡×�¨hÇÒ Ãs¢k{2hÇÒ Ã�¤:\HhÇÒ ÃÆ�_h¨hÇÒ Ã�À?4

where each \²hÇÒ Ã is a single variable. Since >FEJ�F462<�tA�� � L , it follows that >�EJ��462<�rA�� �¡×�¨hÇÒ Ãs¢k{2hÇÒ Ã�¤:\HhÇÒ ÃÆ��h¨hÇÒ Ã for some i#�¶iqÓ and all Äpw¸Á²hFÜ ; on the other hand, since>FEÀ4e2ºA��� �QL , some ÄvÓ:wSÁ²hFÜ exists such that >FEG462BAq�� �»¡×�?hFÜmÒ ÃÇÜN¢k{$hFÜ´Ò ÃmÜa¤:\HhFÜmÒ ÃÇÜ5��h¨hFÜeÒ ÃÇÜ .
As >FEQ�F462<�`AW� �³¡ �?hFÜÇÒ ÃmÜN¢¸{2hFÜmÒ ÃÇÜ�¤:\HhFÜmÒ ÃÇÜ���h¨hFÜeÒ ÃmÜ , this proves property >��¶A .

28



>FØÕA Suppose that > �¶A holds. Let L be the disjunction of all formulas ¡×�;¢k{¥¤:\¡��h
for all �<w b �v4:989:9846ßxg and 27� as in > �¶A . Then, >�EJ��4e27�rA�� � L for all �<w b �v4:989:9846ßxg and2<�»w�^_>��x�`A , while >�EÀ462BA¯�� � L by construction. This shows that µ ;�Ý®B� ª¬«3>FEQ�tA¯��ª¬«x>�E A , that is, E���45EJ�:4:9:98984YEQ;��OzE . �
We remark that a similar result would hold for causal models with arbitrary (finite
and/or infinite variable domains), if also causal formulas ¡ �;¢k{¨¤:\Â��_h , where\T�zh is a primitive event, are allowed in Theorem 6.3.

6.2 Results

Our complexity results for the case of situations are summarized in Table 4. We
consider the problem of recognizing explanations, which turns out to be complete
for CW"$ in the general and the binary case. Furthermore, we consider the problem
of deciding the existence of explanations, which is shown to be complete for !H"$
in the general and the binary case. We also consider the problems of deciding sub-
sumption and equivalence between causal models, which are shown to be complete
for C "$ in the general and the binary case.

Table 4
Complexity of Explanations: Situations

Problem general case binary case

Explanation � "$ -complete � "$ -complete

Explanation Existence � "$ -complete � "$ -complete

Notice that by a standard guess and check argument, C "$ membership of Explana-
tion for situations implies a !0"D upper bound for deciding the existence of an expla-
nation for situations, in a sensible formulation of the problem (see below). More-
over, as explanations for contexts are a special case of explanations for situations,
the !#"$ lower bound of Explanation Existence in the case of contexts immediately
implies a !0"$ lower bound of Explanation Existence in the case of situations.

As we show, this lower bound is in fact complemented with a !H"$ upper bound,
which means that deciding the existence of explanations for situations is not harder
than for contexts. On the other hand, the problem is already !H"$ -hard for binary
models. This is explained by subsumption checks which implicitly occur in form-
ing an explanation for situations, whose complexity dominates the complexity of
explanations in the binary case.

We exploit the characterization of subsumption in Theorem 6.3 to derive the fol-
lowing complexity result on checking subsumption between causal models.
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Theorem 6.4 Given causal models E¥�¢>��?4YXZ45��A and EN����>��x��4YXZ45�3�`A , ��O��<OzÄ ,
deciding whether E���4YEJ�39:9:9d4YEJÃQO E is C "$ -complete. Hardness holds even ifÄU�I� , that is, for pairs of causal models.

Proof. We first prove membership in C�"$ . By Theorem 6.3, to show that EM��4:989:9 ,EJÃÃ�OGE , we can guess some 2�w�^_>��pA and then check that for every �mw b �¶4:9:9:9�4YÄ�g
and 2<�»w�^�>��x�`A , there exists some causal formula ¡×�;¢¸{¥¤:\¡�_h , where � is a
(possibly empty) set of endogenous variables and \ is a single variable, such that
(i) >�EÀ462BA��� �Ä¡ �;¢¸{¨¤8\¡�zh and (ii) >�EQ��462<�`A�� �^¡×�;¢¸{¥¤:\¡�_h . This can be done in
nondeterministic polynomial time, using a !s"� -oracle. Thus, the problem is in C�"$ .

Hardness for CW"$ for Äs�I� is shown by a reduction from deciding whether a given
QBF �Á���º�Ä�­þ·�º^Å� is valid, where ���@��>��]46þ�45^�A is a propositional formula
on the variables ��� b ���Y4:9:9:9d45�¬�rg , þ�� b þW�Y4:989:9845þ�!Ug , and ^G� b ^]�Y4:9:989 , ^�;1g .
We now construct two causal models E¥�¢>��?4YXZ45��A and EM�<�M>�����4YX�46���mA such
that EI�©OzE iff � is valid. The sets of exogenous and endogenous variables are
defined by �Q�N�
�7�z��naþ and XI�z^Ên][ n b ��g , respectively, where [·� b [�� ,9:9:9d4Y[@�tg and ^_>t\QA<� b �}4:�¶g for all \Vwu�zn]X . The functions �N� b �����F\Vw�Xug
and ����� b � �� ��\Èw�Xfg are defined by �x�¿�J� �� �Q� for all \Vw�X�£ b ��g , �#Æ¢�Ç ��Ý®B� >@�W�N��N[��`A , and � �Æ � Ç ��Ý®B� >@�W�È��Q[_�tAÆÂ�¼#� (see Fig. 7).

É �VM�M�M É �
L �NM�M�M L ; L �NM�M�M L ;

U �NM�M�M U ! U �VM�M�M U !Y � M�M�M Y �

Ê

Y �NM�M�M Y �

Ê
É �VM�M�M É �Ë

ÌÌÍ Í «(a) (b)

Figure 7. Causal Models (a) ÎÏ\·Ð T � W �ÒÑnÓ and (b) Î � \¯Ð T ��� W �ÒÑ3�lÓ
We now prove that � is valid iff E��©OzEQ� . It can be shown that � is not valid
iff > �¶A some 2�w�^�>��pA exists such that for every 23��w�^_>��
�eA , there exists a causal
formula ¡ �;¢k{¥¤:\T��h , where �¢�_X and \Èw�X , such that (i) >�EÀ462BA��� �;¡×�;¢¸{¥¤\T�zh and (ii) >FEI��462©�mA�� �^¡×�;¢¸{¥¤:\¡�zh (see Appendix D). By Theorem 6.3, this
proves that � is valid iff EI�ºO_EJ� . �
By an extension to the proof of Theorem 6.4, we obtain the following complexity
result on testing equivalence between causal models.
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Theorem 6.5 Given two causal models EM�­�¢>����Y45X�45�Z�eA and EJ�B�¢>����q4YXZ45�x�YA ,
deciding whether E��­R�EJ� is C "$ -complete.

Proof. We first show membership in Cp"$ . Recall that E��­R�EQ� iff EI�©O_EJ� andEJ�3OQEI� . By Theorem 6.4, deciding whether EM�ºOQEQ� (resp., EN�xOzEI� ) holds is
in CW"$ . Thus, as CW"$ is closed under conjunction, the problem is in Cp"$ .

For the CW"$ -hardness part, we give a reduction from deciding E¢��OÉEQ� . Roughly
speaking, we construct a causal model E such that ª¬«3>FE A
�Ôªq«3>�E¢�mA<�°ªq«3>�EJ��A .
Then, EI�#OGEJ� iff E RPEI� , which proves the result.

We construct the causal model E¥�¢>��?4YX�46��A as follows. Assume, without loss of
generality, that E�� and EJ� are such that the union

% >�E��eAxn % >�EJ��A#� >�XÀnQ���Æn���q4 7 ��n 7 ��A of their causal graphs
% >�E��eA�� >FXPnN�
��4 7 �mA and

% >FEJ��A²�Ú>FX n���q4 7 �5A is a directed acyclic graph; note that E and EM� in the proof of Theorem 6.4
have this property.

The set of exogenous variables is given by �J�N�#�­nc���ºn b ��Ó8g , where ��Ó is a fresh
exogenous variable with domain ^_>��-ÓYA<� b �v4Y¦)g . The functions ��� b �����F\Vw�Xug
are constructed from the functions �?�­� b � �� ��\Vw�Xfg and �x�º� b � �� �F\¹w�Xfg as
follows. For each \¹w�X , let the parents ���H� of \ in E be the union �B� ��
and ��� �� of the parents of \ in EI� and EJ� , respectively, plus �-Ó , and define�x��>`hBA<�z� �� >`hZ�Û��� �� A if hZ�Û��ÓB��� , and �x�p>`hBA<�J� �� >thZ�Û�B� �� A if hZ�Û��ÓB�N¦ . That is, if
the ��Ó -component of h is �<w b �¶4Y¦.g , then the value of ��� is the value of the function� �� for \ in the model EJ� on h projected to the parents of \ .

Notice that E is a recursive causal model, because its causal graph
% >FE A
�É>���nX�4 7 �Un 7 �pn b ��ÓIj \ �H\ wÚX�g�A is a directed acyclic graph. Clearly, for

every causal formula on X , it holds that E � �NL iff EM�x� �NL and EJ����JL . Thus,ª¬«x>�E A<�@ª¬«3>FE��mA<�Õª¬«3>FEJ�5A , as desired. As E can be built in polynomial time
from EI� and EJ� , the result follows. �
We finally address the issue of recognizing explanations relative to a set of situa-
tions ­ . In that, we make use of the following lemma, which is helpful in checking
the minimality condition ES3.

Lemma 6.6 Let Ö and ÖÑ±�� b EI�Y4:989:984YEz;1g be sets of causal models such thatÖÚ±��¯Ö . Then, there exists a causal formula L defining Ö¥± in Ö , that is, ÖÑ±B�b E w²Ö �ÇE � �JL3g , iff EI��489:9:9845EQ;��OzE holds for every EËw²Ö £#ÖÑ± .
Proof. >FÔÕA Let L define Ö ± , and assume towards a contradiction that there exists
some E wHÖ £/ÖÚ± such that E��º9:9:9d4YEQ;fOGE . Since L�w µ ;�Ù®B� ª¬«3>FEz�`A , it follows
that L�w�ªq«3>�E A , which contradicts that L defines Ö ± .
>FØÕA Suppose that E��B9:98984YEQ;��OÉE holds for every model E w²Ö £�Ö ± . Hence,
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there exists a formula Lº¨Kw µ ;�Ù®B� ª¬«3>FEz�`A such that LB¨r�w�ªq«3>�E A . Consequently,
the formula L¡�Ø× ¨ =kÙ¶Ú�Ù Ö LB¨ defines ÖÚ± , that is, for every E w²Ö , it holds
that EËw²Ö ± iff E � �NL . �
We are now ready to analyze the complexity of recognizing explanations in the
case of situations. The following theorem shows that this problem is C�"$ -complete.
Here, C "$ -hardness is inherited from the C "$ -hardness of subsumption checking.
Notice that for binary causal models, the complexity of recognizing explanations is
the same, as subsumption checking is Cp"$ -hard already for binary causal models.

Theorem 6.7 Given a causal formula ¾ , a set of endogenous variables \ , a valueh�w�^_>`\zA , an event L , and a set of situations ­ , deciding whether >@¾H4e\T��hBA is an
explanation of L relative to ­ is C�"$ -complete.

Proof. We first prove membership in Cp"$ . Recall that >@¾H4e\T��hBA is an explanation
of L relative to ­ iff ES1–ES4 hold. Let Ö denote the set of all causal models E
such that >FEG462BAºw�­ for some context 2 .

By Proposition 2.3, in ES1, deciding whether >�EÀ462BA�� �zL for all >FEG462BAºw�­ is poly-
nomial, and in ES4, deciding whether >FEG462BA�� �~\É��h and >�E ±t4e27± A�� �J¼U>t\S��hBA
for some >�EÀ462BA�4�>�EÀ± 462<±ÝAºw�­ is polynomial.

In ES2, we decide whether for every >FEÀ4e2ºAºw�­ , it holds (a) >�EÀ462BA²���¼U>`\É��hBA ,
or (b) >FEÀ4e2 ± A¢� � ¼-¾ for some context 2 ± in E , or (c) \T��h is a weak cause
of L under 2 in E . By Proposition 2.3, (a) is polynomial and (b) is in ÞW& . By
Theorem 2.6, (c) is in !0"� . In summary, deciding whether ES2 holds is in !U"� .

In ES3, we apply Lemma 6.6: To disprove ES3, we may guess some \ ± �~\
and some Ö ± � b EI��4:9:9:9d4YEQ;.g#�pÖ such that the following holds: (i)

b E w²Ö �E � �z¾Hg?��Ö ± , (ii) EI��489:9:9845EQ;¶�O E for all E w²Ö £�Ö ± , (iii) \ ± ���\ or
b E wÖ �¶E � �Q¾Ugq��·ÖÚ± , and (iv) for all >FEG462BAºw�­ , either (a) >FEÀ4e2ºA��� ¼U>t\z±d�_hZ� \�±ÙA ,

or (b) E �wÛÖ ± , or (c) \ ± �zhZ� \ ± is a weak cause of L under 2 in E . Tasks (i),
(iii), and (iv) are clearly solvable in polynomial time with a !U"� oracle. As for (ii),
by Theorem 6.4, checking whether EM��4:9:9:9�4YEQ;¶�OGE holds for each E w²Ö £�Ö ±
can be done in nondeterministic polynomial time with a !U"� -oracle. This implies
that deciding whether ES3 holds is in C "$ . In summary, deciding whether ES1–ES4
hold is in C "$ .

Hardness for C "$ is shown by a reduction from the problem of deciding subsump-
tion between causal models, which is C "$ -complete by Theorem 6.4: Given two
causal models EI�<�M>����Y4YXZ45�Z�mA and EJ�©��>����q4YXZ45���5A , decide whether E��ºOzEJ� .
By the proof of Theorem 6.4, we can assume that �#�­�����B��� .

We now construct a causal formula ¾ , a set of endogenous variables \ , a valueh�w�^_>`\zA , an event L , and a set of situations ­ , such that >@¾H4e\T��hBA is an expla-
nation of L relative to ­ iff E��BOzEJ� .
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The set of situations is defined by ­Á� b 8©����>FEQ��4e27�rA��Ò´sO~�<O¯Ü1g , where the causal
models EQ�@�f>��x��4YX­��46�x�`A and the contexts 27� are given as follows. For �ew b ´}4:9:98984�Ü1g ,
the sets of exogenous and endogenous variables are defined by �Z���N�Qn b ��Ó:g andX<���QXÊn b \uÓq45��4|ª²g , respectively, where ^_>`\zAe� b �}4:�¶g for all \�w b �-Óq4e\uÓ:45��4|ª²g .
For �<w b ´}4:989:9d4lÜ1g , the functions �x��� b � �� ��\Èw�X­�Fg are defined as follows:

� � $ � b � $� Ü �z�}4Z� $³ �S>���Ó#�À�vAÆ½�>`\uÓ#�¡��AY4Z� $Ý �¡�¶g-nu�Z� ;� � D � b � D� Ü �z�}4Z� D³ �S>���Ó#�À�vAÆ½�>`\uÓ#�¡��AY4Z� DÝ �¡�¶g-nu�x� ;� � � � b � ��©Ü �z�}4Z� �³ �G\uÓ:4Z� �Ý �G�1gZn b � �� �J�p�F\Èw�X�g ;� �1ÞB� b � Þ�©Ü ���v4Z� Þ³ � �}4�� ÞÝ �À�1g-n b � Þ� �Q�p��\Vw�Xug .
The contexts 2 $ 4:9:9:9d462NÞ are arbitrary such that 2 $ >���Ó�A<�z� and 2 D >���Ó�A<��� .
Observe now that \aÓB�J� is a weak cause of �I�Q� under 2 $ in E $ , while \uÓB�J�
is not a weak cause of �I�z� under 2 D in E D (but \uÓ�>`2 D A<�Q� in E D ). Moreover,
notice that \aÓB�J� is a weak cause of �I�z� under 2 � in E � , while \uÓº�Q� is not a
weak cause of �I�J� under 2xÞ in E�Þ (as \uÓ�>@2NÞYA���z� in E�Þ ).
Intuitively, if we want to form an explanation >`¾W4m\�ÓB�Q�vA for �I�Q� , the situa-
tion >FE�Þq4e2ÈÞ5A serves, together with the situation >�E � 462 � A , as a witness to the prop-
erty ES4. By minimality of an explanation, we must have E � selected by ¾ , since\uÓº�Q� is in E � a weak cause for �I�J� in context 2 � . Furthermore, E $ may be
selected; this, however, is only possible if it does not require to select also E D by
subsumption, as >FE D 462 D A spoils the condition ES2. That is, E $ may not be selected,
just if E $ OGE D holds, which is equivalent to EM�#OGEJ� . Thus, if we have a causal
formula ¾ which selects precisely E � and E�Þ , then the candidate >@¾H4e\aÓº�z�»A is an
explanation just if E��#OÀEJ� holds.

We now show that >�ª��Q�14e\aÓº�z�»A is an explanation of �I�Q� relative to ­ iffEI�BOQEJ� holds. Indeed, it is easily checked that by construction, ES1, ES2, and
ES4 hold. If E����OzEJ� , then ES3 is violated, as >9ª_�Q�pÂzLx4e\aÓB�Q�»A satisfies ES2,
where L�wHª¬«3>FEI�mA<£#ª¬«3>FEJ��A is arbitrary, and

b EËw²Ö �´E � �Eªz�z�0ÂcLÆgZ� b E $ ,E � 4YE�Þdg�ß b E � 4YE�Þ:g-� b E wHÖ �ÇE � �àª_�z�1g , where Ö � b EJ�}�a´UOÁ�<O·Ü1g .
Conversely, if ES3 is violated, then >@¾ ± 4e\ ± ��h ± A��± ®G>9ª_�Q�}4e\uÓ��Q�vA means that\ ± ��h ± coincides with \aÓB�J� and thus E $ � � ¾ ± and E D �� � ¾ ± must hold (as\uÓº�Q� is not a weak cause of ���Q� under 2 D in E D , but \aÓq>@2 D A<�z� in E D ). Thus,EI���OGEQ� holds.

As the above reduction is polynomial, this shows C�"$ -hardness. �
Let us now turn to the issue of deciding the existence of explanations in the general
case of situations. This problem has to be carefully defined, since otherwise simple
(and perhaps unintended) explanations may be found.

It is not difficult to see that if an event L satisfies ES1 for a set of situations ­ ,
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and if \aÓ is variable and h�Ó a value for \aÓ such that ES4 holds for \]Óp�Th7Ó , that
then some explanation of form >`¾W4e\]Ó#�Êh7Ó�A for L w.r.t. ­ exists. This implies that
given a set of variables \ to build explanations using them for L w.r.t. ­ , deciding
whether some explanation exists is possible in polynomial time.

A more sensible formulation of Explanation Existence for the case of situations is
the following.

Explanation Existence (for situations): Given a finite set of situations ­ , a set of
endogenous variables \ , a causal formula ¾ , and an event L , decide whether
a causal formula ¾ ± with ¾ � �¬®T¾ ± , \ ± ��\ , and h ± w�^_>t\ ± A exist such that>@¾ ± 4e\ ± �zh ± A is an explanation of L relative to ­ .

Here, the causal formula ¾ is a positive selection condition for causal models in
ES2, such that each causal model E satisfying ¾ must be respected and the event\T�zh must be a weak cause of L under 2 for every situation >�EÀ462BAºw�­ such that>FEÀ4e2ºA�� ��\T�zh and E � �z¾ . A weakening of ¾ , that is, a cautious enlargement
of the set of respected causal models is admissible, which amounts to adding al-
ternative selection conditions. Before we analyze the complexity of Explanation
Existence for situations, we introduce some terminology.

We call a pair >@¾H4e\T�_hBA a pseudo-explanation of an event L relative to a set of
situations ­ , if >@¾H4e\T�zhBA satisfies conditions ES1, ES2, ES4, and the following
weakened form of ES3:

ES3 ± . There is no >`¾W4e\ ± ��h ± A��± ®P>`¾W4e\T�_hBA satisfying ES2 such that \ ± �~\
and h ± ��hZ� \ ± .

The following result is useful for determining the complexity of Explanation Exis-
tence.

Lemma 6.8 Given a causal formula ¾ , an event L , a set of endogenous vari-
ables \ , and a finite set of situations ­ , there exists an explanation >@¾0± 4e\�±d��h<± A
of L relative to ­ such that ¾Ñ���®�¾ ± , \ ± �~\ , and h ± w�^_>t\ ± A iff there exists a
pseudo-explanation >@¾ ± 4e\ ± ��h ± A of L relative to ­ such that ¾Ú���®I¾ ± , \ ± �~\ ,
and h<±°w�^_>t\�± A .
Proof. ( Ô ) Obviously, any explanation is a pseudo-explanation.

( Ø ) Let >@¾�±r4e\�±Y�zh<± A be a pseudo-explanation of L relative to ­ such that ¾ ���®f¾�± .
We show that there exists some explanation >@¾ ± ± 4e\ ± �zh ± A of L relative to ­ such
that ¾ ± � �¬®f¾ ± ± . Let ¾�á be a weakest formula ¾ ± ± such that ¾ ± � �¬®�¾ ± ± and ES2 holds
for >`¾ ± ± 4e\ ± ��h ± A . We claim that >@¾�á84e\ ± ��h ± A is an explanation of L relative to ­ .
Since ¾ ��q®�¾âá , this will prove the result.
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Towards a contradiction, suppose >@¾?± ±r4e\~± ±��zh<± ± A , where ¾ á � �¬®�¾�± ± , is such that it
satisfies ES2 and either (i) \_± ± � \�± and h<± ±d�_h<±F� \~± ± , or (ii) ¾ á �Rq®M¾�± ± . In case
(i), each causal model E selected by ¾ ± is also selected by ¾�á , and thus by ¾ ± ± ;
furthermore, \ ± ± �zh ± ± is a weak cause of L in E under 2 for each >FEG462BA~w»­
such that E � �¸¾
± ± and >�EÀ462BAl�� \�± ±d�zh<± ± . This contradicts that >@¾
±r4e\~±��zh<± A is
a pseudo-explanation of L relative to ­ . Thus, \ ± ± �_\ ± must hold, and case (ii)
must apply. However, this means that ¾ãá is not a weakest formula ¾ ± ± such that¾ ± � �¬®M¾ ± ± and >`¾ ± ± 4e\ ± ��h ± A satisfies ES2, which is a contradiction. This proves
that >`¾�á:4e\ ± �zh ± A is an explanation of L relative to ­ . �
Theorem 6.9 Problem Explanation Existence for situations is !U"$ -complete.

Proof. We first prove membership in ! "$ . By Lemmas 6.6 and 6.8, it is sufficient
to guess some \ ± �~\ , h ± w�^_>t\ ± A , and Ö ± � b EI�Y489:9:9845EQ;1gI��Ö such that (i)b E w²Ö �.E � �z¾HgN�¯Ö ± , (ii) EI��489:9:9845EQ;·�O�E for all E w²Ö £�Ö ± , and ES1,
ES2 where “ E wÔÖÑ± ” replaces “ E � �¸¾ ”, ES3 ± , and ES4 hold. Task (i) can be
done in polynomial time with an ÞW& -oracle, while task (ii) can be done, by Theo-
rem 6.4, in nondeterministic polynomial time with a C "� -oracle. Checking ES1 and
ES4 is possible in polynomial time, while ES2 can be checked, by Proposition 6.1
and Theorem 3.3, in polynomial time with a !U"� oracle. Finally, checking ES3 ± is
in CH"� , since deciding the existence of a counterexample to minimality is in !H"� . In
summary, the whole procedure runs in nondeterministic polynomial time using aCW"� oracle. Hence, Explanation Existence is in !U"$ .

For the case of unrestricted models, ! "$ -hardness is inherited from the ! "$ -comple-
teness of Explanation Existence for context explanations, which occurs as a special
case of Explanation Existence for situations. We show !U"$ -hardness for the binary
case by a reduction from deciding non-subsumption between causal models, which
is ! "$ -complete by Theorem 6.4: Given two causal models E¢�<��>�����4YXZ45���mA andEJ�B�¢>����q45X�45�x�YA , decide whether EI���OÀEJ� . Without loss of generality, we assume
that ���7�N���B��� .

The reduction is similar in spirit to the one in the proof of Theorem 6.7, yet differ-
ent. We construct a causal formula ¾ , a set of endogenous variables \ , an event L ,
and a set of situations ­ , such that some explanation >@¾ ± 4e\ ± �zh ± A of L relative to­ exists such that ¾ � �q®�¾ ± , \ ± �K\ , and h ± w�^�>`\ ± A iff EI�q�OGEJ� .
The set of situations is defined by ­Á� b 8©����>FEQ��4e27�rA��Ò´sO~�<O¯Ü1g , where the causal
models EQ�@�f>��x��4YX­��46�x�`A and the contexts 27� are given as follows. For �ew b ´}4:9:98984�Ü1g ,
the sets of exogenous and endogenous variables are defined by �Z���N�Qn b ��Ó:g andX<���QX�n b \uÓq4e\c�Y45��4|ª²g , respectively, where ^_>t\QAe� b �14:�¶g for all \�w b �-Ó:4m\aÓq4m\l�54�
4�ª�g . For �<w b ´}4:9:989d4�Ü.g , the functions ����� b � �� ��\Èw�X­�Fg are defined as follows:

� � $ � b � $�©Ü �z�}4Z� $��« �J�14-� $³ �S>���Ó#� �»AÆ½J>`\uÓ0�¡��A�4�� $Ý �¡�¶gZnf��� ;
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� � D � b � D� Ü �z�}4Z� D� « �J�14-� D³ �S>���Ó#� �»AÆ½J>`\uÓ0�¡��A�4�� DÝ �¡�¶gZnf��� ;� � � � b � �� Ü �z�}4Z� �� « �J�14-� �³ �G\c�Y4Z� �Ý �À�.gZn b � �� �z�p��\Vw�Xug ;� �1ÞB� b � Þ� Ü ���v4Z� Þ� « �J�14-� Þ³ �S>�ª����qAÆ½N>`\uÓB���?Âc\l�­�I��A�4�� ÞÝ �G�1g-nb � Þ� �Q����\Èw�Xfg .
The contexts 2 $ 4:9:9:9d462NÞ are arbitrary such that 2 $ >���Ó�A<�z� and 2 D >���Ó�A<��� .
Observe now that the situations 8©� have the following weak causes of �I�z� involv-
ing only variables in \ � b \aÓq4e\c�5g : 8 $ has \uÓº�z� and \uÓº�z��½�\c�<�z� , 8 D has
no weak cause, 8 � has \c�­�Q� and \uÓº�z�H½¿\c�­�Q� , and 8RÞ has \c�­�Q� .
Define now ¾ �äª_�z� , LÉ�Ë�I�Q� , and \ � b \]Ó84e\c�Yg . Note that ¾ selects the
models E � and E�Þ .
Intuitively, 8 � and 8RÞ create a single candidate event, \]ÓB�J��½_\c�­�Q� , for an ex-
planation >@¾ ± 4e\ ± ��h ± A of L as desired. This candidate is good if 8 $ but not 8 D can
be respected in the explanation, i.e., ¾ ± selects E $ but not E D , which is equivalent
to EI���OGEJ� .
Formally, in any explanation >`¾ ± 4e\ ± ��h ± A for �I�z� relative to ­ such that ¾È��q®¾
± , the set \_± must be different from \]Ó ; otherwise, \�±��_h<± is not a weak cause
under 2 � in E � and under 2ÈÞ in E�Þ , which means that ES2 is violated. Thus, \ ±
must include \l� . On the other hand, \ �� b \¿�6g and h ± � \c�}�Q� must hold, since
otherwise ES4 is violated. Since \aÓº�I�Æ½�\c�­�Q� is not weak cause of �I�z� in E�Þ
under 2ÈÞ , we have that \ ± �zh ± must be of form \aÓº�Q�H½l\c�­�J� .
We claim that some >@¾ ± 4m\aÓB�z��½J\c�­�z�»A with ¾Ú��q®�¾ ± is an explanation of L
relative to ­ iff EI���OGEJ� holds.

Suppose that >`¾?±r4e\uÓ��J�²½�\l�­�Q�»A is an explanation of L relative to ­ . We must
have ¾ ± �R�®f¾ : indeed, >`¾W4e\uÓº�z�x½²\c�<�Q�»A is not a pseudo-explanation of L , since
ES3 ± fails, which is witnessed by >`¾W4e\l�<�z�»A satisfying ES2. Therefore, ¾ ± must
select either E $ or E D . Since \ allows no weak cause of �I�z� in E D under 2 D , ¾ ±
must not select E D . This implies E $ �OGE D , which in turn implies that E����OGEQ� .
Conversely, suppose that E����OÈEQ� . Then, E $ �OÈE D , and the set

b E $ 4YE � 4YE�Þ:g
is definable by a formula ¾ ± such that ¾¸��¬®z¾ ± . Consider >@¾ ± 4e\uÓB�J�²½z\c�­�z�»A .
Clearly, ES1 holds for L��¹���J� and ES4 holds for \�ÓB�J�²½�\c�­�J� . Also ES2
holds, since \aÓB�Q�u½�\c�­�z� is a weak cause of �I�Q� in E $ under 2 $ and inE � under 2 � . Furthermore, neither for >@¾?± 4e\uÓº�z�»A nor for >@¾
± 4e\c�<�Q�»A is ES2
satisfied, since \aÓB�z� is not a weak cause of �I�Q� in E � under 2 � and \c�<�Q� is
not a weak cause of ���Q� in E $ under 2 $ . Thus, >@¾ ± 4e\uÓº�Q�Æ½�\c�<�Q�»A is a pseudo-
explanation of L relative to ­ . From Lemma 6.8, it follows that some explanation>@¾ ± ± 4m\aÓB�Q�U½¿\c�<�Q�»A of �I�z� relative to ­ exists (in fact, ¾ ± ± R�®f¾ ± must hold).
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As the above reduction is polynomial, this shows ! "$ -hardness. �
We remark that the existence of specific explanations may have higher complexity.
For example, deciding the existence of an explanation >@¾ ± 4e\ ± ��h ± A where ¾ ± �G¾ ,
is both !0"$ -hard and CW"$ -hard; the latter is implicit in the proof of Theorem 6.7.

6.3 Causal Formulas with Exogenous Variables

We now give some remarks on the impact of the language of events that is consid-
ered in defining explanations and situations. In this paper, like in [25,26], primitive
events involve only endogenous variables. The setting stated in [17] is slightly more
liberal and also admits exogenous variables to occur in primitive events. While such
enhanced expressiveness does not increase the complexity results for explanations
in Sections 3–5, it allows to simplify some of the technical hardness proofs. On the
other hand, the higher expressiveness of causal formulas which may also involve
exogenous variables via primitive events implies a refinement of the subsump-
tion and indiscernibility relation, which is also easier to test: The characterization
of EI��4:9:9:9�4YEQ;¹�O E in Theorem 6.3, where E¥�¢>��?4YX�46��A and EN�¶��>��?4YXZ45�x�tA
for all �<w b �v489:9:9�46ß�g , can be replaced by the following simpler condition:

> �B�¶A There exists some 2�w�^�>��pA such that for every �<w b �v4:9:9:9�46ßxg , there exists a
causal formula ¡ �;¢¸{¨¤:\��zh , where � is a (possibly empty) set of endoge-
nous variables and \ is a single variable, such that (i) >FEÀ462BA��� �^¡×�;¢¸{¥¤:\Q�Hh ,
and (ii) >FEQ��4e2ºAW��§¡×�;¢k{¨¤8\¡�_h .

The check of this condition is easily seen to be Þ�& -complete. Therefore, the sub-
sumption test E��BOzEJ� (resp., equivalence test E��<R�EJ� ) is ádâ - Þ�& -complete ra-
ther than CW"$ -complete, and thus two levels lower in the polynomial hierarchy. Con-
sequently, it does not dominate the complexity of the conditions ES1–ES4; the
same algorithm for checking an explanation, performed in this setting, yields then
a �  � (resp., �  ) upper bound in the general (resp., binary) case. A matching lower
bound is inherited from the complexity of Explanation in the basic setting, as it is
a special case of situations, and thus the problem is complete for �² � (resp., �p ).
Similarly, for the problem Explanation Existence, we obtain completeness for ! "$
and !#"� in the general and the binary case, respectively.

7 Related Work

In this section, we give a comparison of our work to related work on complexity of
explanations in the areas of abduction and of Bayesian networks.
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7.1 Abductive Explanations

Abduction has been recognized as an important principle of common-sense rea-
soning, and plays an important role in many AI problems including diagnosis,
planning, or natural language processing to mention but a few. One of the uses
of abduction is to obtain explanations for observations, which loosely speaking is
accomplished by a kind of reversed modus ponens. There is quite some work on al-
gorithms and complexity of finding abductive explanations (e.g. [4,8,9,11,44,47]).

Roughly, in a logic-based setting, abductive explanations are defined as follows
(cf. [35,47]). Given some background knowledge ª , which is a theory, i.e., a set of
sentences in some logic, and a set of observations ç , which are typically facts, a
set of sentences

7
from a set of hypotheses ' is an explanation of ç from ª , iff

(1) ªIn 7
is satisfiable, i.e., not contradictory, and

(2) ª�n 7 � � ç , i.e., the observations are logically entailed from the background
knowledge and the explanation, under a notion of logical entailment � � .

Usually, further conditions are imposed on
7

in order to single out most plausible
explanations. A standard such condition is the application of Occam’s razor, i.e.,
minimality in terms of set inclusion.

While causal and abductive explanations, in a standard logical setting such as
above, are apparently different concepts, they have similar complexity. In particu-
lar, deciding the existence of an abductive explanation in the propositional context
(i.e., ª , ç , and ' are in classical propositional logic) is !U"� -complete, as shown
in [11]. This matches our respective result on causal explanations for binary causal
models. In fact, computing causal explanations can be polynomially transformed
into computing abductive explanations in this case, and vice versa.

In the case of causal models with non-binary domains, explanations are one level
higher up in the Polynomial Hierarchy, and deciding the existence of a causal ex-
planation is !#"$ -complete. This matches, interestingly, the complexity of abductive
explanations from disjunctive logic programs under the stable resp. answer set se-
mantics. In this setting, the background theory ª is a propositional disjunctive logic
programs, ' and

7
are set of atoms, and � � is standard cautious inference, i.e., truth

in all stable models resp. answer sets of a program. As was shown in [12], deciding
the existence of an abductive explanation is !s"$ -complete in this scenario. Thus,
deciding the existence of causal and of abductive LP explanations is polynomially
intertranslatable, which extends easily to computing some causal resp. abductive
LP explanation, and computational engines could be mutually exploited.

The issue of efficient transformations of causal into abductive explanations, as well
as into related reasoning tasks of nonmonotonic formalisms, is an interesting sub-
ject for further work, which may also be exploited for obtaining rapid prototype
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implementations. E.g., by mapping binary causal explanations to abductive expla-
nations, (extended) variants of the Truth Maintenance System (cf. [44]) could be
utilized for this purpose, or the diagnostic frontend of the DLV system [10]. An-
other possibility would be an encoding of causal explanations in Answer Set Pro-
gramming, and using the DLV engine to compute solutions. For the case of general
causal explanations, reductions to QBF solvers such as [5,42,19] could be used.

7.2 Bayesian Networks

After Cooper’s well-known intractability result [7] for probabilistic inference in
Bayesian networks, a number of papers in this area have investigated complexity
issues for reasoning and in particular for explanation finding.

A dominating notion of explanation in the probabilistic AI literature is the max-
imum a posteriori explanation (MAP, alias most probable explanation [33,34]),
which is an assignment to all variables given a partial assignment to the variables in
a Bayesian network, such that its probability is maximum. Some complexity results
for MAPs have been derived, which however are only weakly related to our results
for causal explanations. In particular, computing a MAP in a Bayesian network isÞ�& -hard [49], and the same applies to computing a MAP approximation [1]; on the
other hand, this is feasible in polynomial time with an ÞW& oracle.

This result on computing a MAP is quite different from our results on % -partial
explanations, for two reasons: firstly, MAPs are computed from the set of all con-
texts, which is not part of the input. In this setting, % -partial explanations have
higher complexity. Secondly, MAPs are single contexts which maximize probabil-
ity for a given evidence, while % -partial explanations single out subsets of contexts
which sensibly respect relevant information [27].

From the computational side, it is more suitable to compare deciding 	]>t\T�_hBAR�~�
in a Bayesian network with our problem Partial Explanation under succinct context
sets, where � contains all possible contexts and 	 emerges from independent ex-
ogenous variables. However, the former problem is Þ�& -complete [7], while the
latter is, by our results, C�"D -complete and thus much harder. We may thus expect
a similar relationship between computing the explanatory power and the probabil-
ity 	a>`\T��hBA in a Bayesian network, which can be done in polynomial time with
the help of a #P oracle [43].
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8 Conclusion

In this paper, we have considered explanations in Halpern and Pearl’s structural-
model approach to causality from a computational perspective, and we have ob-
tained a number of complexity results which precisely characterize the intrinsic
difficulty of major computational tasks on explanations.

Our results give a clear picture of the complexity of explanations in the case of
general structural models, as well as under the restriction to the case where all
variables are binary. As we have shown, causal explanations reside at the third
level of the Polynomial Hierarchy (PH) in the basic setting, and thus are, computa-
tionally speaking, harder to compute than, for example, abductive explanations in
the standard logic-based setting, which are at the second level of PH. Intuitively,
causal explanations harbor three intermingled sources of complexity, which make
the concept difficult: (1) the, in general, exponential set of candidates \T�_h for an
explanation formed from variables \ in a given set \ ± of variables; (2) condition
AC2(b), which informally is a kind of validity test ensuring that \ alone is suffi-
cient to bring about the change of the event L to ¼�L , and thus impacts on L ; and
(3) minimality of explanations, which implies an exponential set of candidates in
condition EX3 / ES3 for spoiling a candidate explanation. The complexity of causal
explanations further increases, as demonstrated for the recognition problem, under
a natural concise form of model representation by two levels in PH. In particular,
the recognition problems was proved to be Cp"D -complete, and thus is, compared to
validity checking in classical propositional logic, a rather complex problem.

Some of our hardness results remain valid under further restrictions, such as a
boundedness condition on the causal model [14,18]. In particular, all hardness re-
sults from Tables 1–3 in Sections 3–5 hold for primitive events L . Thus, complex
events are not a source of complexity. However, to avoid a proliferation of results,
we did not further consider such restrictions here.

For “efficient” algorithms to generate explanations or “best” % -partial explanations,
we can conclude the following. Both must solve an inherent ! "$ -hard problem; thus,
simple backtracking is infeasible, as well as polynomial reductions to a SAT solver
or a computational logic system which can handle problems with complexity up to!#"� , such as DLV [13,36]. However, an explanation may be computed using nested
backtracking, or flat backtracking calling a subroutine for !U"� tasks (e.g., calls to
DLV). A further possible perspective are translations to QBF-solvers, which proved
valuable in other applications [42]. We can compute an % -partial explanation sim-
ilarly. Computing a best one amounts to an optimization problem, which can be
solved by binary search over the range [0,1] of % , and thus in polynomial time with
a !#"$ -oracle. A substantially faster algorithm seems unlikely to exist.

Once the basic results about the complexity of a framework are known, and in-
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tractability of some tasks has been evidenced, a natural next step of research is to
identify cases of lower complexity, and in particular to find islands of tractability.
For that, meaningful restrictions must be found which eliminate the various sources
of complexity, which is not straightforward.

While the complexity results for explanations established in this paper may look
discouraging, and leave us with little hope for tractable cases, it turned out that there
are meaningful restrictions of causal models for which explanations have polyno-
mial complexity. In a companion paper [15,16] to [14,18] and the present paper, we
describe nontrivial syntactic restrictions on causal models under which the notions
of weak causes and explanations are tractable. In particular, we have identified a hi-
erarchy of tractable classes, starting with simple causal trees, i.e., the causal graphs
are trees, over layered causal graphs, i.e., the causal graphs can be layered so as
to permit a step by step propagation of effects, to a general class of decompos-
able causal graphs. On such causal models, small weak causes under explanations
can be computed efficiently under further assumptions which are needed to gain
tractability. However, the technical definitions and the characterizations are far too
involved to be discussed here; we refer the interested reader to [15,16] for details.

Hence, there are some positive results on the computation of causal explanations
for certain instances already. It remains, however, to find other classes of instances
that have lower complexity, and in particular that guarantee tractability; delineating
the tractability frontier is a challenging task for future work. Likewise, the devel-
opment of suitable algorithms, continuing and extending the work of Hopkins [30],
is indispensable for making the structural-model approach amenable to efficient
implementation and use in practice.
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A Appendix: Proofs for Section 3

Proof of Theorem 3.3 (continued). Hardness for !s"$ is shown by a reduction from
deciding whether a given QBF �¿�m�­���ºþå�­^E� is valid, where � is a propositional
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formula on the variables �I� b ���54:9:9:9d45�¬�tg , þN� b þW�Y4:9:989d45þ�!Hg , and ^Ê� b ^��Y4:989:9 ,^�;1g . We construct E·�M>��#45X�45��A , \È�zX , �u�_^�>��pA , and L as in the statement of
the theorem such that � is valid iff some \ ± �Á\ and h ± w�^_>`\ ± A exist such that\ ± ��h ± is an explanation of L relative to � .

We define �Q� b �74d��Ó:4���Ó ± 4:9:9:9d4d�1�`4d�1� ± g , where ^_>��}AZ� b �}4:9:9:9�4�� D ��g and ^_>�8�AZ�b �}4:�¶g for all 8cwu�Q£ b �<g . Let ��� b 2�Ó84627Ó ± 4:989:9 , 2È�`462N� ± 462N� ãB�5g , where 27� (resp., 27� ± )
is the unique 2�w�^_>���A such that æ°�´>`2ºA (resp., æ°� ± >`2ºA ) holds, and æ°� (resp., æ�� ± ) for
every �<w b �}489:9:984l� D ��g (resp., �<w b �}4:989:9d4l��g ) is defined by:

æ��¿�»���G��½z��Óº�z�H½z��Ó ± ���?½ �×�Ý®B� >��x�°�J�H½���� ± �Q�»Aº4
æ�� ±º�»���G��½z��Óº�z�H½z��Ó ± �J�H½ �×�Ý®B� >��x�°�J�H½���� ± �Q�»Aº9

We define E·��>��?4YXZ45��A as follows. Let X��J�¿nW� ± nHþcnW^zn b \aÓq4m\aÓ ± 4 7 4 7 ± 45�ug ,
where ��±7� b ��� ± 4:9:9:9d45�¬� ± g , ^�>�8�A<� b �}4:�v4Y¦)g for all 8cw�^ , and ^_>�8�A<� b �}4:�¶g for
all 8�wzX�£�^ . Let

% �¸>F¼#�7±�½Å×<>= d 8@��N¦¶A©Â�> 7 �z�»AÆÂJ>`\uÓB���?½ 7 ���?½ Ç<B= d 8@��N¦vAº4
L ± � �¸>�æ°Ó�Â�æ°Ó ± j·>`\uÓB�z�W½ �×�Ý®B� �W�È��J�W� ± AÆÂ�> �Ç�Ý®B� >��H���I�?½~�W� ± �I�qAeAÆÂ 7 ± �Q�»Aº4
L ± � � �×�Ý®B� >9æ°�1Â`æ�� ± jk�W���J�HÂ¿�W� ± �Q�»Aº4
L ± $p�¸>�æ&�ÛãB�}j¥>�%l½ �×�Ý®B� �W�È��Q�W� ± AÆÂ�> �Ç�Ù®B� >��W�����?½~�W� ± ����AmAÆÂ 7 ± �z�»Aº4

where � ± is obtained from � by replacing each 8cw���naþ�nu^ by “ 8]��� ”. We are
now ready to define the functions ��� b � < �C8cw�Xug as follows:

� ��¬¨"v����� and � ¬¨"ÙÖ ���x� ± for all �<w b �¶4:9:9:9d4���g ,� �x�ºÜ#�P��Ó and � �ºÜ�Ö ����Ó ± ,� � < �J� for all 8lw�þÕn b&7 4 7 ± g ,� � < �z\uÓ DÄ7
for all 8lw�^ ,� � ³ ��� iff L<± � Â~L7±� Â�L7±$ is true.

Let \T�Q�Ina��±dn b \aÓq4m\aÓ ± g . Let L be �I�I� . Notice that L is primitive.

For every truth assignment ç to the variables in � , denote by ¡ �°�&çÆ>���A ¤ the substi-
tution ¡×�����&çÆ>����eA , 9:9:9d45�¬���&ç3>@�¬�éAÒ¤ , and we define %1è3�J%`¡ �°�&çÆ>���A ¤ . Let h7Ó©�z� , and
let 2�w�^_>���A with \aÓq>@2BA<�_h7Ó . Then, \uÓº��h7Ó is a weak cause of %1è under 2 iff�­þ@�º^G¼#�Õ¡ �°�&ç3>@��AÒ¤ is valid [14,18]. That is, \aÓº��h7Ó is not a weak cause of %1è
under 2 iff �ºþå�­^E�°¡×�¸�&ç3>@��AÒ¤ is valid. Thus, Proposition 2.5 implies the following:
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( � ) For every \�±-�T�Pn_��±)n b \uÓq4e\uÓ ± g with \aÓ3w�\�± , it holds that \_±d��\�±t>@2BA
is not a weak cause of % è under 2 iff �ºþJ�­^K�°¡ �°�&çÆ>���A ¤ is valid.

We now show that � is valid iff some \ ± �~\ and h ± w�^_>`\ ± A exist such that\�±d��h<± is an explanation of L relative to � .

>FØÕA Assume that some \ ± �Á\ and h ± w�^_>t\ ± A exist such that \ ± �zh ± is an expla-
nation of L relative to � . Then,

� h ± >�8
A<�z� for all 8lw�\ ± ��>@�Ina� ± n b \uÓ:g�A ,
as otherwise \ ± >`2BA���_h ± for all 2�w�� , and thus EX4 is violated. For every �Nwb �}4:9:989d4���g , it holds either \ ± >`2<�`A<��h ± or \ ± >@2<� ± A<��h ± . Thus, \ ± � b �W�F45�W� ± g¬��Qy
for all �<w b �v4:989:9d4l��g , as otherwise \_±d�_h<± is not a weak cause of L under any2�w b 2<��462<� ± g , and thus EX2 is violated. It follows that

� \uÓxw�\ ± and� � \ ± � b �W��46�W� ± g<�m���
for all �<w b �v4:989:9d4l��g , as otherwise \ ± �_h ± is not a weak cause of L under any2�w b 27Ó:4627Ó ± g , and thus EX2 is violated. It holds

� \uÓ ± w�\ ± ,
as otherwise \ ± >`2BA<�_h ± for all 2�w�� , and thus EX4 is violated. We have

� h ± >t\aÓ ± A<�Q� ,
as otherwise, by Proposition 2.5, \z± ±d��h<± ± is a weak cause of L under every 2�w�� ,
where \ ± ± �¡\ ± £ b \aÓ ± g and h ± ± �Th ± � \ ± ± , and thus EX3 is violated. Observe now
that \ ± ± �_h ± ± is not a weak cause of L under 2p��2x� ãB� , where \ ± ± �Ú\ ± £ b \uÓ ± g
and h ± ± � h ± � \ ± ± , as otherwise EX3 is violated. Let the truth assignment ç to the
variables in � be defined by ç3>�8�A0�P� iff 8lw�\ ± for all 8¿w�� . We now show that\ ± ± ��h ± ± is not a weak cause of %1è under 2 . Towards a contradiction, assume the
contrary. Thus, there exists some [Ë�zX�£-\z± ± , h7± ±�w�^_>t\�± ±ÝA , and Ì�w�^_>�[�A such
that ¼�%tè¯YÖ Ö×Í >`2ºA and %Sè¯ Ö Ö Í�ÎÏ >`2ºA for all Ð���zX�£U>`\ ± ± n][�A and Ð|#�ÑÐ��>@2BA . Here, we can
assume that h ± ± >t\uÓYA<�I� , h ± ± >�8�A<�z� for all 8lw�\ ± ± £ b \uÓ8g , b&7 ± g-n~>e>@�Ina� ± Ae£°\ ± ± A#�[ , and Ì�>�8�A��¥� for all 8lw b&7 ± gZn¿>e>@��na� ± A<£-\ ± ± A . Hence, it holds ¼�% ¯YÖ ÖÛÍ >@2BA
and %Æ¯ Ö Ö Í�ÎÏ >@2BA for all Ð����X�£Æ>t\ ± ± n][�A and Ð|
�ÑÐ��>`2ºA . Thus, ¼
L ¯YÖ ÖÛÍ >@2BA and L7¯ Ö Ö Í�ÎÏ >@2BA
for all Ð�N�zXI£U>`\ ± ± n][�A and Ð|#� Ð��>@2BA . As \ ± ± >@2BA<��h ± ± and L�>@2BA , it follows that\�± ±d��h<± ± is a weak cause of L under 2 , which is a contradiction. Hence, \J± ±d�zh<± ± is
not a weak cause of % è under 2 . By ( � ), it follows that �ºþJ�­^Å�Õ¡ �°�&çÆ>���A ¤ is valid.
That is, � is valid.

>FÔÕA Assume that � is valid. That is, there exists a truth assignment ç to the vari-
ables in � such that �ºþå�­^Å�Õ¡ �°�&ç3>@��AÒ¤ is valid. Define \ ± � b \aÓ84e\uÓ ± g-n b 8cw��k�

43



ç3>@��A<�J�1g�n b 8-±�w���±c�éç3>@��A<����g and h<±@>�8�A<�z� for all 8cw�\�± . We now show
that \�±��_h<± is an explanation of L relative to � . EX1 holds, as L�>`2BA for all 2�w�� .
EX2 holds, as \ ± ��h ± is weak cause of L under every 2�� ± with �<w b �}4:989:9d4l��g .
EX4 holds, as \ ± >@27ÓYA����h ± and \ ± >`2�Ó ± A<��h ± . We next show that EX3 holds. To-
wards a contradiction, assume the contrary. That is, there exists some \J± ± � \�±
such that \ ± ± ��h ± ± is a weak cause of L under every 2�w�� with \ ± ± >@2BA<��h ± ± , whereh ± ± �_h ± � \ ± ± . It holds \ ± ± � b �W��45�H� ± g¬��zy for all �<w b �¶4:9:9:9�4���g , as otherwise \ ± ± �_h ± ±
is not a weak cause of L under any 2�w b 2���462<� ± g . It follows that \aÓ3w�\ ± ± , as oth-
erwise \ ± ± �zh ± ± is not a weak cause of L under any 2�w b 2ºÓ84627Ó ± g . It thus follows\ ± ± ��\ ± £ b \uÓ ± g . Hence, \ ± ± �_h ± ± is a weak cause of L under 2��_2x�ÛãB� . That is,
some [Ë�zXI£�\ ± ± , h ± ± w�^_>t\ ± ± A , and Ì�w�^�>F[�A exist such that ¼�L ¯�Ö ÖÛÍ >@2BA andL7¯ Ö Ö Í�ÎÏ >@2BA for all Ð���zX�£H>`\ ± ± n][�A and Ð|
�ÑÐ��>`2BA . As ¼
L ¯5Ö Ö Í >`2ºA , it follows that7 ± w�[ and Ì�> 7 ± A<��� . As L7¯ Ö Ö Í�>`2ºA , for every 8lw�>���na� ± A<£�\ ± ± , it holds either8U>@2BA<��� or 8cw�[ and Ì�>�8�A<��� . As ¼�L ¯YÖ Ö×Í >@2BA , it thus follows that h7± ±@>�8�A<�_� for
all 8lw�\�± ±d£ b \uÓ8g . Hence, ¼Z% ¯YÖ Ö Í >@2BA and %Æ¯ Ö Ö Í�ÎÏ >`2ºA for all Ð���_X�£W>t\�± ±�na[¡A and
Ð|
�¥Ð��>`2ºA . That is, ¼Z%Sè¯ Ö Ö Í >`2BA and %Sè¯ Ö Ö Í�ÎÏ >@2BA for all Ð���zX�£U>`\ ± ± n][�A and Ð|
�ÑÐ��>@2BA .
As \ ± ± >`2ºA<�~h ± ± and %Sè)>`2BA , this shows that \ ± ± ��h ± ± is a weak cause of %Sè under 2 .
By ( � ), it follows that �ºþJ�­^K�°¡ �°�&çÆ>���A ¤ is not valid, which is a contradiction. This
shows that EX3 holds. �
Proof of Theorem 3.5 (continued). We define �p� b ��4��ZÓ:4���Ó ± 4:9:98984d��Ã¶4���Ã ± g , where^_>
�1AZ� b �14:9:9:9�4�� D �¶g and ^_>�8�AZ� b �}4:��g for all 8¿wu�z£ b �7g . Let ��� b 2�Ó84627Ó ± 4:989:9 ,2N�@4e2È� ± 462N� ãB�eg , where 27� (resp., 27� ± ) is the unique 2�w�^_>��pA such that æ°�´>`2ºA (resp.,æ�� ± >`2BA ) holds, and æ°� (resp., æ°� ± ) for every �<w b �}489:9:9�4�� D �¶g (resp., �<w b �}4:989:9d4l��g ) is
defined as follows:

æ��¿�»���G��½z��Óº�z�H½z��Ó ± ���?½ �×�Ý®B� >��x�°�J�H½���� ± �Q�»Aº4
æ�� ± �»���G��½z��Óº�z�H½z��Ó ± �J�H½ �×�Ý®B� >��x�°�J�H½���� ± �Q�»Aº9

We define E¥�¢>��?4YX�46��A as follows. The endogenous variables are given by X ��Knc��±:ncþMn b \uÓ , \aÓ ± 4 7 ± 45�ug , where ��±}� b �²� ± 4:989:9845�n� ± g and ^_>�8�A<� b �}4:�¶g for
all 8lw�X . Let

% �¡\uÓB�Q�HÂ¶� ± 4
L7± � �¸>�æ°Ó�Â�æ°Óe±dj·>`\uÓB�z�W½ �×�Ý®B� �W�È��J�W� ± AÆÂ�> �Ç�Ý®B� >��H���I�?½~�W� ± �I�qAeAÆÂ 7 ±d�Q�»Aº4
L7±� � �×�Ý®B� >9æ°�1Â`æ�� ±djk�W���J�HÂ¿�W� ± �Q�»Aº4
L ± $p�¸>�æ&�ÛãB�}j¥>�%l½ �×�Ý®B� �W�È��Q�W� ± AÆÂ�> �Ç�Ù®B� >��W�����?½~�W� ± ����AmAÆÂ 7 ± �z�»Aº4

where � ± is obtained from � by replacing each 8¿w��Inaþ by “ 8u��� ”. We are now
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ready to define the functions ��� b � < �C8cw�Xug as follows:

� ��¬¨"v����� and � ¬¨"ÙÖ ���x� ± for all �<w b �¶4:9:9:9d4���g ,� �x� Ü �P��Ó and � �ºÜ�Ö ����Ó ± ,� � < �J� for all 8lw�þÕn b&7 ±ég ,� � ³ ��� iff L<± � Â~L7±� Â�L7±$ is true.

Let \S�z��na��±dn b \aÓ84e\uÓ ± g . Let L be �I��� . Notice that L is primitive. For ev-
ery truth assignment ç to the variables in � , we denote by ¡×�°��ç3>���AÒ¤ the substitu-
tion ¡ �����&çÆ>����eA , 9:9:9d45�¬�+�&çÆ>��¬� AÒ¤ , and we define %Sèx�J%`¡ �°�&çÆ>���A ¤ . Let h7ÓB�J� , and
let 2�w�^_>���A with \aÓq>@2BA<�_h7Ó . Then, \uÓº��h7Ó is a weak cause of %1è under 2 iff�­þ�¼#�Õ¡ �°�&çÆ>���A ¤ is valid. That is, \aÓB�zh7Ó is not a weak cause of % è under 2 iff�ºþ��Õ¡ �°�&çÆ>���A ¤ is valid. Thus, Proposition 2.5 implies the following fact:

( � ) For every \ ± �T�Pn_� ± n b \uÓq4e\uÓ ± g with \aÓ3w�\ ± , it holds that \ ± ��\ ± >@2BA
is not a weak cause of %Sè under 2 iff �ºþ��Õ¡ �°�&çÆ>���A ¤ is valid.

Using ( � ), by a similar line of argumentation as in the proof of Theorem 3.3, it
follows that � is valid iff some \ ± �~\ and h ± w�^�>`\ ± A exist such that \ ± �zh ± is
an explanation of L relative to � . �

B Appendix: Proofs for Section 4

Proof of Theorem 4.3 (continued). We construct E �·>��?4YX�46��A , \ �kX , hÊw^_>`\zA , L , �u��^_>��pA , � , and % as in the statement of the theorem, such that \É��h
is an % -partial explanation of L relative to >��Z4�	�A iff the number of valid formulas
among �H��4:9:9:9d4��#Ã is even.

For �<w b �v4:9:9:9�4YÄ�g , define the causal models EN���M>��x��4YX­��46�x�`A as follows. The ex-
ogenous and endogenous variables are defined by �-��� b&7 ��g and X<�°�z�W�©n��W�ºnb þ#��4 % �Fg , respectively. Define ^_>�8�A<� b �}4:�v45¦.g for all 8lw���� , and ^_>�8�AU� b �}4:�¶g
for all 8�wJ�x�}n~X­�}£U�H� . We define

L<���M>9� ±� ½J:<>= ¬¨" 8m��Q¦vAÆÂ�>@þ#�°�J�vAÆÂN> % �����#½Áþ#�°���?½;A<>= ¬¨" 8m��J¦vA�4
where � ±� is obtained from �.� by replacing each 8lw�����na�W� by “ 8a�I� ”. The func-
tions in �x�º� b � �< �C8¿w�X<��g are defined as follows:

� � �Fz" � 7 � ,� � �< �J� for all 8lw b þ0��gsn¿�W� ,� � �< � % � D þ#� for all 8¿w��W� .
45



For each �<w b �v4:9:989d4YÄ7g , let \u�°� b&% ��g , and define h7�.w�^�>`\f�tA and 2<�»w�^�>��x�`A byh<�Ç> % �`A<�z� and 2<��> 7 �@A<�z� . Then, for every �<w b �v4:989:9d45Ä�g , \a����h<� is a weak cause
of L7� under 27� in EQ� iff �?� is valid (the construction is similar as in the proof of
Theorem 3.2, the only difference is that we have � �Fz" � 7 � here, instead of � �Fz" �Q� ).
Observe also that L���>@2BA holds for all 2�w�^_>����tA .
Define the causal model E¥�¢>��?4YX�46��A by �Q�N�?�°n�oqoqo@n���Ã}n b&7 g , where ^_> 7 AZ�b �}4:9:989d4YÄ7g , X��JXº�3nzoqoqo�n~X<Ã
n b 'Jg , and ���G���3nQoqoqoqnÁ�xÃ
n b �#Gsg , where

�#GI�T� iff > :� = ê ��Òìëìëìë Ò Ã�í æ��Bj L<�`A�½u> :� = ê ��Òìëìëìë Ò Ã�íÇÒ� even

æ ±� j L<��b<�mA�½u> :� = ê ��Òìëìëìë Ò Ã�íÇÒ� odd

æ ±� j ¦�A is true,

and æ�� and æ ±� are defined as follows for every ��w b �v489:9:9845Ä�g :
æ��-� > 7 �Q��AÆ½N> ×h = ê ��Òìëìëìë Ò Ã�í > 7 hº�J�»AmAº4
æ ±� � > 7 �J�vA©½�> 7 ������AÆ½�> ×h =�ê ��Òìëìëìë Ò Ã�í ÚÒê �+í > 7 hÆ�z�»AmAº9

For every �<w b �v4:989:984YÄ7g , let 27� (resp., 2 ±� ) be the unique 2�w�^_>���A such that æ���>@2BA
(resp., æ ±� >`2BA ). Let �I� b 'Jg , and let L be �I��� . Let ��� b 23�54:9:9:9d4627Ã�462 ± � 4:9:9:9d462 ±Ã g ,��>@2BA<�I�1��¦vÄ for all 2�w�� , and %��I�#��¦vÄ . Define \ � b&% �Y4:9:98984 % Ã�g and h �h©�©oqoqo´h7Ã ( �Ñ�Uoqoqom� ).
Observe that L is primitive, � is the uniform distribution over � , and L�>@2BA for all2�w�� . By Proposition 2.5, the following holds for all �<w b �v4:9:9:9�4YÄ�g , all \Q±��S\ ,
and h<±}�GhZ� \~± :

(i) If \u�x�K\ ± , then \ ± �zh ± is a weak cause of L under 2�� iff �?� is valid.

(ii) If � is even and \u��b<�0�K\~± , then \�±d��h<± is a weak cause of L under 27±�
iff �?��b<� is valid.

(iii) If � is odd, then \ ± �zh ± is not a weak cause of L under 2 ±� .
(iv) If \u�â��K\ ± , then \ ± �zh ± is not a weak cause of L under 2�� .
By Proposition 4.1, � o�Z®}¯ is the set of all 2�w�� such that either (a) \�>`2ºA����h , or
(b) \�>@2BA<�~h and \T�zh is a weak cause of L under 2 . By (i), it thus follows� o�-®}¯ � b 2 ± � 4:989:9 , 2 ± Ã gsn b 2<�Z���<w b �v4:9:9:9�4YÄ�g)4È�?� is valid g .
We now show that \É�_h is an % -partial explanation of L relative to >9�-4d�pA iff the
number of valid formulas among ����4:9:98984��#Ã is even.

>FÔÕA Assume that \T�_h is an % -partial explanation of L relative to >��Z4d�pA . In partic-
ular, \T�zh is an explanation of L relative to � o�Z®}¯ . Towards a contradiction, assume
that the number of valid formulas among ����4:9:9:9d4��#Ã is odd. Let iHw b �v4:989:9d45Ä�g
be the smallest index such that �îh is not valid. Notice that i is even. We define
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\�±d��\S£�\Hh and h<±8�_hZ� \�± . The set of all 2�w�� o�-®}¯ such that \_±t>@2BA<�~h<± is given
by � ± � b 2 ±h gHn b 2©�Y489:9:984e2?h�b<�6g (as ��h implies ��h�b<� , for every iWw b ¦.4:9:9:9�4YÄ�g ). By
(i) and (ii), \ ± ��h ± is a weak cause of L under every 2�w�� ± . That is, \ ± �_h ± is a
weak cause of L under every 2�w�� o�Z®}¯ with \ ± >`2ºA<�~h ± , which violates EX3, and
thus contradicts \T�_h being an explanation of L relative to � o�Z®}¯ .
>FØÕA Assume that the number of valid formulas among ����4:9:9:9d4��#Ã is even. We now
show that \T�_h is an % -partial explanation of L relative to >9�Z4l	�A . By Proposi-
tion 4.1, it is sufficient to show that (a) \T��h is an explanation of L relative to�/o�-®}¯ , and (b) ��>��/o�Z®}¯ ��\T��hBAºÅ_% . We first prove (a) by showing that EX1–EX4
hold. Clearly, EX1 and EX2 hold. Observe that 2x� ± w�� o�Z®}¯ . As �H� is valid, we also
have 2Æ��w�� o�-®}¯ . Hence, as \�>`2 ± � A���_h and \�>`2Æ�mA<��h , also EX4 holds. We next
show that EX3 holds. Towards a contradiction, assume that some \ ± � \ exists
such that \ ± ��h ± is a weak cause of L under all 2�w�� o�-®}¯ with \ ± >`2BA<��h ± , whereh<±}�GhZ� \�± . Let \²hxw�\É£�\�± such that iHw b �v4:989:9d45Ä�g is minimal. As 27±h w�� o�-®}¯ and\ ± >`2 ±h A<��h ± , it follows that \ ± ��h ± is a weak cause of L under 2 ±h . By (iii), i is
even. By (ii), ��h�b<� is valid. By (iv), 2?h does not belong to � o�Z®}¯ . That is, ��h is not
valid. But this contradicts the number of valid formulas among ����4:989:984��#Ã being
even. Thus, also EX3 holds. Clearly, (b) follows from EX4 and � being the uniform
distribution over � . �
Proof of Theorem 4.6 (continued). We construct E �·>��?4YX�46��A , \ �kX , hÊw^_>`\zA , L , �u��^_>��pA , and � as required, such that >��1�54:9:9:9d4l��Ã:A is the bit-vector
representation of the explanatory power of \T�zh multiplied with u Ãkb<�he®­Ó ¦ h .
For every �<w b �v4:9:989d4YÄ7g , define EJ����>��x��45X<��45�x�tA and \f�)�zX­� as in the proof of
Theorem 4.3. We define E·�M>��?4YXZ45��A by �Q�N�?��n�oqoqo@n²��Ã­n b&7 g , where ^_> 7 AZ�b �}4:9:989d4YÄ7g , X��JXº�3nzoqoqo�n~X<Ã
n b 'Jg , and ���G���3nQoqoqoqnÁ�xÃ
n b �#Gsg , where

�1GI�T� iff > :� = ê ��Òìëìëìë Ò Ã�í æ��Bj L<�`AÆ½J> :� = ê ��Òìëìëìë Ò Ã�í æ ±� j ¦�A is true,

and æ�� and æ°±� are defined as follows for every ��w b �v489:9:9845Ä�g :
æ��-� > 7 �Q��AÆ½N> ×h = ê ��Òìëìëìë Ò Ã�í > 7 hº�J�»AmAº4
æ ±� � > 7 �J�vA©½�> 7 ������AÆ½�> ×h =�ê ��Òìëìëìë Ò Ã�í ÚÒê �+í > 7 hÆ�z�»AmAº9

For every �<w b �v4:989:984YÄ7g , let 27� (resp., 2 ±� ) be the unique 2�w�^_>���A such that æ���>@2BA
(resp., æ ±� >@2BA ). Let �I� b 'Jg , and let L be ����� . We define �¤� b 23�Y4:9:98984627Ã°42 ± � 4:9:9:9d462 ±Ã g , ��>@2 ±� A<�z� for all �<w b �v489:9:9�4YÄ�g , and ��>`27�`A<�Q¦ ��b<� � u Ã�b<�hm®­Ó ¦ h for all�<w b �v489:9:9�4YÄ�g . We define \Ú� b&% ��4:9:989d4 % Ã�g and hl�ÊhÆ�BoqoqoÇh7Ã .
Observe that L is primitive. Moreover, L�>`2ºA for all 2�w�� , and for all ��w b �v4:989:9d45Ä�g :
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(i) \T�zh is a weak cause of L under 2�� iff �?� is valid.

(ii) If \�±B�K\ and h<±}�GhZ� \�± , then \�±d�_h<± is not a weak cause of L under 2�±� .
By Proposition 4.1, � o�Z®}¯ is the set of all 2�w�� such that either (a) \�>@2BA���~h ,
or (b) \I>@2BA<�_h and \É��h is a weak cause of L under 2 . By (i), it thus fol-
lows � o�Z®}¯ � b 2<± � 489:9:9�462<±Ã g-n b 2<�­���<w b �v4:9:98984YÄ�g)4V�?� is valid g . By (ii), \T�_h is an
explanation of L relative to � o�-®}¯ . Thus, \É��h is a partial explanation of L rela-
tive to >9�-4�	�A . Its explanatory power is the sum of all 	a>@2��`A<�Q¦ ��b<� � u Ãkb<�he®­Ó ¦ h with�<w b �v489:9:9�4YÄ�g such that �?� is valid. �
Theorem B.1 % -Partial Explanation is &
/1 + -complete in the binary case.

Proof. As for membership, recall that \T�zh is an % -partial explanation of L relative
to >��Z4�	�A iff (a) \T�_h is an explanation of L relative to � o�Z®}¯ , and (b) ��>9� o�-®}¯ �\T�zhBAºÅ_% . By Proposition 4.1, �to�-®}¯ is the set of all 2�w�� such that either (i)\�>@2BA²���h , or (ii) \�>@2BA<�~h and \É��h is a weak cause of L under 2 . Deciding (i)
is polynomial, and, by Theorem 2.6, deciding (ii) is in ÞW& in the binary case. Thus,
computing �/o�-®}¯ is in ,-& /. + in the binary case. Once �to�Z®}¯ is given, deciding (a) is
possible with two Þ�& -oracle calls, by Theorem 3.4, and deciding (b) is polynomial.
As two rounds of parallel Þ�& -oracle queries in a polynomial-time computation can
be replaced by a single one [3], the problem is in &?/1 + .

Hardness for &�/. + is shown by a reduction from the following &?/. + -complete prob-
lem [51]. Given Ä propositional formulas �1� , �<w b �v4:989:9d45Ä�g , where each �.� is de-
fined on the variables ����� b �W� Ò��Y489:9:984e�W� Ò !1"�g , decide whether the number of tau-
tologies among �7��4:989:9d4��1Ã is even. Without loss of generality, Ä is even, the ��� ’s
are pairwise disjoint, �7� is not a tautology, and for every iUw b �¶4:9:9:9d4YÄ�jI�¶g , if �>h is
a tautology, then also �>hmãB� [51]. We construct E¥�M>��?4YXZ45��A , \V�zX , h�w�^�>`\QA ,L , �u�_^�>��pA , � , and % as required, such that \T�zh is an % -partial explanation of L
relative to >��Z4�	�A iff the number of tautologies among �B�Y4:989:984|�.Ã is even. The con-
struction is similar to the one in the proof of Theorem 4.3. Roughly, we replace the
part for !0"� -hardness of deciding general weak cause by a new part for NP-hardness
of deciding binary weak cause.

For �<w b �v4:9:9:9�4YÄ�g , define the causal models EN���M>��x��4YX­��46�x�`A as follows. The ex-
ogenous and endogenous variables are defined by �Z��� b&7 �Fg and X­���z�H��n b&% �Fg ,
respectively, where ^�>�8�A<� b �14:�¶g for all 8¿wf����n]X­� . We define the functions in�x�º� b � �< �C8¿w�X<��g as follows:

� � �Fz" � 7 � ,� � �< �J� for all 8lw��W� .
We then define L7�-� % ���Q�?Â¸�)� ± , where �.� ± is obtained from �1� by replacing each8lw��W� by “ 8]��� ”. For each �ew b �v4:989:9d45Ä�g , let \a��� b&% �Fg , and define h<�)w�^_>t\u�tA
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and 27�Fwx^_>��x�`A by h<�´> % �tA<�Q� and 2<�´> 7 �tA<�Q� . Then, for every �mw b �¶4:9:9:9�4YÄ�g , \a����h<�
is a weak cause of L�� under 27� in EQ� iff �)� is not a tautology.

We define the causal model E¤��>��?4YXZ45��A as follows. The exogenous and endoge-
nous variables are given by �J�N�?�:n�oqoqorn���Ã)n b&7 g and X��NXº�:n�oqoqo n�X<Ã)n b 'Jg , re-
spectively, where ^_> 7 A<� b �}4:989:984YÄ7g and ^_>�'�A<� b �14:�¶g . The functions are given
by �P�G���3nQoqoqoqn~�xÃ
n b �#Gsg , where

�#GI�T� iff > :� = ê ��Òìëìëìë Ò Ã�í æ��Bj L<�`A�½u> :� = ê ��Òìëìëìë Ò Ã�íÇÒ� even

æ ±� j L<��b<�mA�½u> :� = ê ��Òìëìëìë Ò Ã�íÇÒ� odd

æ ±� j ¦�A is true,

and æ�� and æ°±� are defined as follows for every ��w b �v489:9:9845Ä�g :
æ��-� > 7 �Q��AÆ½N> ×h = ê ��Òìëìëìë Ò Ã�í > 7 hº�J�»AmAº4
æ ±� � > 7 �J�vA©½�> 7 ������AÆ½�> ×h =�ê ��Òìëìëìë Ò Ã�í ÚÒê �+í > 7 hÆ�z�»AmAº9

For every �<w b �v4:989:984YÄ7g , let 27� (resp., 2 ±� ) be the unique 2�w�^_>���A such that æ���>@2BA
(resp., æ ±� >`2BA ). Let �I� b 'Jg , and let L be �I��� . Let ��� b 23�54:9:9:9d4627Ã�462 ± � 4:9:9:9d462 ±Ã g ,��>@2BA<�I�1��¦vÄ for all 2�w�� , and %��I�1��¦vÄ . Define \T� b&% �Y4:9:98984 % Ã°g and h �h©�©989:9mh7Ã . Observe that L is primitive, that L�>`2BA for all 2�w�� , and that � is the
uniform distribution over � . By Proposition 4.1, � o�Z®}¯ is the set of all 2�w�� such
that either (a) \�>`2BA����h , or (b) \�>`2BA<��h and \É��h is a weak cause of L under 2 .
By Proposition 2.5, it thus follows � o�Z®}¯ � b 2 ± � 489:9:984e2 ±Ã gWn b 2<�W�1�<w b �v489:9:9�4YÄ�g)4z�)�
is not a tautology g .
By a line of argumentation similar to the one in the proof of Theorem 4.3, it follows
that \É��h is an % -partial explanation of L relative to >��Z4d�pA iff the number of
non-tautologies among ���Y4:989:9d4��1Ã is even, that is, as Ä is even, iff the number of
tautologies among �7�Y4:989:984|�.Ã is even. �
Theorem B.2 % -Partial Explanation Existence is ! "� -complete in the binary case.

Proof. As for membership in !s"� , by Theorem B.1, deciding whether \ ± �_h ± is
an % -partial explanation of L relative to >��Z4�	�A is in & /. + in the binary case. Thus,
guessing some \_±��Á\ and h7±°w�^_>`\�± A , and deciding whether \z±d��h<± is an % -
partial explanation of L relative to >9�Z4l	�A is in ! "� in the binary case.

Hardness for ! "� is shown by a reduction from Explanation Existence in the binary
case (see Theorem 3.5). Given an instance of it, let 	 be the uniform distribution
on � , and let %f�I� . Then, \ ± �_h ± is an % -partial explanation of L relative to >��Z4�	�A
iff \~±��zh<± is an explanation of L relative to � . �
Theorem B.3 Partial Explanation is &
/1 + -complete in the binary case.
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Proof. As for membership in & /1 + , recall that \T�_h is a partial explanation of L
relative to >9�-4�	�A iff (a) \T�_h is an explanation of L relative to � o�Z®}¯ , and (b) � o�Z®}¯
contains some 2 such that \�>`2BA<��h and ��>`2ºAR�Á� . By the proof of Theorem B.1,
computing � o�-®}¯ is in ,�& /. + in the binary case. Once � o�-®}¯ is given, checking (a)
is in �� in the binary case, by Theorem 3.4, and checking (b) is polynomial. As
two rounds of parallel ÞW& -oracle queries in a polynomial-time computation can be
replaced by a single one [3], Partial Explanation is in &?/. + in the binary case.

We next show &�/. + -hardness. If 	 is the uniform distribution over � , then \É��h is
a partial explanation of L relative to >9�Z4l	�A iff \T��h is a �� �C� -partial explanation of L
relative to >9�Z4l	�A . By the proof of Theorem B.1, deciding the latter is complete for&Z/1 + . Thus, deciding whether \É�_h is a partial explanation of L relative to >9�Z4l	�A
is &�/. + -hard, and hardness holds even if 	 is the uniform distribution over � . �
Theorem B.4 Explanatory Power is ,�& /1 + -complete in the binary case.

Proof. We compute � o�-®}¯ and ��>9� o�-®}¯ ��\T�_hBA . By the proof of Theorem B.1,
the former is in ,-& /1 + in the binary case, while the latter is polynomial. Thus,
Explanatory Power is in ,�& /. + in the binary case.

Hardness for ,-& /. + is shown by a reduction from the following ,�& /1 + -complete
problem. Given Ä propositional formulas �}� , �<w b �v4:9:9:9�4YÄ�g , where each �1� is defined
on the variables ����� b �W� Ò��54:9:9:9d46�W� Ò !1"�g , compute the vector >��.�Y4:989:984l�°ÃqAºw b �}4:��g Ã
such that �°���I� iff �)� is not a tautology, for all �<w b �v4:989:9d45Ä�g . Without loss of gen-
erality, the �W� ’s are pairwise disjoint, and ��� is not a tautology.

We construct E¥�¢>��?4YX�46��A , \V�zX , h�w�^_>t\QA , L , �u�_^_>��pA , and � as required,
such that >��)�Y4:9:98984l�°Ã:A is the bit-vector representation of the explanatory power of\T�zh multiplied with u Ãkb<�he®­Ó ¦ h . For every �<w b �v4:9:9:9�4YÄ�g , let EJ�@��>��x��4YX­��45�3�`A and\f�)�zX<� be defined as in the proof of Theorem B.1. The rest of the construction is
similar as in the proof of Theorem 4.6. We define the causal model E¥�M>��?4YXZ45��A
as follows. The exogenous and endogenous variables are given by �Q���s�3n�oqoqo°n��Ãsn b&7 g and X��QX©�xn�oqoqo�nzX<Ã0n b 'Jg , respectively, where ^_> 7 AU� b �}4:9:989d4YÄ7g
and ^�>�'_AZ� b �}4:�¶g . The functions are given by ���À�?��n~oqoqo�n���Ã�n b �#GUg , where

�1GI�T� iff > :� = ê ��Òìëìëìë Ò Ã�í æ��Bj L<�`AÆ½J> :� = ê ��Òìëìëìë Ò Ã�í æ ±� j ¦�A is true,

and æ�� and æ ±� are defined as follows for every ��w b �v489:9:9845Ä�g :
æ��-� > 7 �Q��AÆ½N> ×h = ê ��Òìëìëìë Ò Ã�í > 7 hº�J�»AmAº4
æ�±� � > 7 �J�vA©½�> 7 ������AÆ½�> ×h =�ê ��Òìëìëìë Ò Ã�í ÚÒê �+í > 7 hÆ�z�»AmAº9
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For every �<w b �v4:989:984YÄ7g , let 27� (resp., 2<±� ) be the unique 2�w�^_>���A such that æ���>@2BA
(resp., æ°±� >@2BA ). Let �I� b 'Jg , and let L be ����� . We define �¤� b 23�Y4:9:98984627Ã°42 ± � 4:9:9:9d462 ±Ã g , ��>@2 ±� A<�z� for all �<w b �v489:9:9�4YÄ�g , and ��>`27�`A<�Q¦ ��b<� �Ãu Ã�b<�hm®­Ó ¦ h for all�<w b �v489:9:9�4YÄ�g . We define \É� b&% �54:9:9:9d4 % Ã°g and hp�zh©�Boqoqomh7Ã .
Observe that L is primitive. Moreover, L�>`2ºA for all 2�w�� , and for all ��w b �v4:989:9d45Ä�g :

(i) \T�zh is a weak cause of L under 2�� iff �)� is not a tautology.

(ii) If \ ± �K\ and h ± �GhZ� \ ± , then \ ± �_h ± is not a weak cause of L under 2 ±� .
By Proposition 4.1, � o�Z®}¯ is the set of all 2�w�� such that either (a) \�>`2ºA����h , or
(b) \�>@2BA<�~h and \T�zh is a weak cause of L under 2 . By (i), it thus follows�/o�-®}¯ � b 2 ± � 4:989:98462 ±Ã gZn b 2<�<���<w b �¶4:9:9:9�4YÄ�g)4z�)� is not a tautology g . By (ii), \É��h
is an explanation of L relative to � o�Z®}¯ . Hence, \É��h is a partial explanation of L
relative to >9�-4�	�A . The explanatory power of \É��h is the sum of all 	]>`2B�tA<�Q¦ ��b<� �u Ãkb<�hm®­Ó ¦ h with �<w b �v4:9:9:9d4YÄ�g such that �.� is not a tautology. �

C Appendix: Proofs for Section 5

Proof of Theorem 5.1 (continued). Hardness for C "D is shown by a reduction from
the C "D -complete problem of deciding whether a given QBF �Ê�Û�B�m�­���ºþå�­^E�
is valid, where � is a propositional formula on the variables �Q� b ���54:9:9:9 , ��Ã�g ,��� b ����489:9:9�45�¬�tg , þN� b þW�Y4:989:9845þ�!Ug , and ^Ê� b ^]��4:9:9:9�45^�;.g . We construct E �>��?4YXZ45��A , \V�QX , h�w�^_>`\QA , �u�_^_>��pA , and L as in the statement of the theorem
such that \T�zh is an explanation of L relative to � iff � is valid.

We define the exogenous variables by �Q�Q�Én b �ZÓ:4��
�54d��� ± 4:9:98984d��Ã¶4���Ã ± g , where^_>�8�A<� b �}4:��g for all 8lwf� . We define the set of contexts by ��� b 2�w�^_>��pA���>9æ¶Ó.Âæ»�ÆÂ�æ��5A8>@2BA5g , where:

æ°Óz� ��Óº�Q�H½ Ã×�Ý®B� >��x���Q�H½z�x� ± �Q�»Aº4
æ»�Á� ��Óº�Q�H½ ÃÇ�Ý®B�

¾ >e>��������?½_�x� ± �z�»AÆÂ�>������z�H½z�x� ± ����AeA
½ ×h = ê ��Òìëìëìë Ò Ã�íab ê �+í >��RhÆ�z�W½_�sh ± �Q�»A À 4

æ°�z� ��Óº�I�?Â ÃÇ�Ý®B� >��x���I�?½z�x� ± �I��Aº9
We define E¥�¢>��#45X�45��A as follows. We define X��Q�pn-� ± nZþ�n�^�n b \uÓ�4 7 4 7 ± 45�ug ,
where � ± � b ��� ± 4:9:989846�WÃ ± g , ^_>�8�A<� b �}4:�v45¦.g for all 8lw�^ , and ^�>�8�A<� b �}4:�¶g for
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all 8lw�X�£
^ . Let

%k� >F¼#� ± ½Ä×<>= d 8���Q¦vAÆÂ�> 7 �J�vA©Â�>`\uÓB���#½ 7 �I�?½ Ç<>= d 8���Q¦vAº4
L ± � >�æ°ÓBj¸\uÓB�J�vA©½�>�æ°�Bjï¦�A

½Ú>�æ»�}j¥>�%l½ Ã×�Ý®B� �W�È��Q�H� ± AxÂJ> ÃÇ�Ý®B� >`�W���I�
½Á�W� ± ����AmA©Â 7 ±d�z�»Aº4
where � ± is obtained from � by replacing each 8¿w��Qnu�Inaþ�nu^ by “ 8u��� ”. We
are now ready to define the functions �P� b � < �c8lw�Xug as follows:

� ��ª?"v�N�x� and � ª£"ÝÖ �N��� ± for all �<w b �v4:9:9:9d4YÄ�g ,� �x�ºÜ#�P��Ó , and � < �Q� for all 8¿w�þKn b&7 4 7 ± g ,� � < �z\uÓ DÄ7
for all 8lw�^ ,� � ³ ��� iff L ± is true.

Let \T�z�Qnu� ± n b \uÓ8g , and let h�w�^�>`\QA be given by h�>�8
A<�z� for all 8cw�\ . LetL be �I��� . Notice that L is primitive. We now show that � is valid iff \É�_h is an
explanation of L relative to � .

We first show that EX1, EX2, and EX4 always hold. As L�>@2BA for all 2�w�� , EX1
always holds. For every 2�w�� with \�>@2BA<��h , it holds ævÓq>@2BA . Hence, \T�zh is a
weak cause of L under every 2�w�� with \�>@2BA<��h . That is, also EX2 always holds.
As some 23462 ± w�� exist such that \�>`2BA<��h and \�>`2 ± A����h , also EX4 always holds.
It thus remains to show that � is valid iff EX3 holds. Recall that EX3 says that for
every \ ±�� \ , some 2�w�� exists such that (i) \ ± >@2BA<��hZ� \ ± and (ii) \É�_hZ� \ ± is not
a weak cause of L under 2 . If \]Óð�w�\�± or \�±t� b �H��46�W� ± g-�Qy for some �<w b �v4:989:9d45Ä�g ,
then (i) and (ii) hold for some 2�w�� with æ¶��>@2BA . If \aÓ3w�\ ± , \ ± � b �H��46�H� ± g¬��zy for
all �<w b �v4:9:9:9d4YÄ�g , and �W��46�W� ± w�\ ± for some �<w b �¶4:9:9:9�4YÄ�g , then (i) and (ii) hold
for some 2�w�� with æ)�d>`2BA .
It thus remains to show that � is valid iff for every \ ±�� \ such that (a) \aÓzw\ ± and (b) � \ ± � b �W�F46�W� ± g<�m��� for all �<w b �v4:9:9:9�4YÄ�g , some 2�w�� exists such that
(i) \ ± >@2BA<�_hZ� \ ± and (ii) \ ± �_hZ� \ ± is not a weak cause of L under 2 .

For all truth assignments ñ and ç to the variables in � and � , respectively, denote
by ¡ �q�Cñ�>@�pA , �°�&çÆ>���A ¤ the substitution ¡����|�Cñ�>`���mAY4:9:9:9d46��Ã$�Cñ�>`��Ã8A�45���a�&ç3>@���eA�4:989:9 ,�¬���&ç3>@�¬�éAÒ¤ , and we define %#ò Ò è �Q%�¡ �q�Cñ�>@�pA , �¸�&ç3>@��AÒ¤ . Let h7Óº�Q� , and let 2 w^_>��pA such that \uÓ�>@2BA<��h7Ó . Then, \uÓº��h7Ó is a weak cause of % ò Ò è under 2 iff�­þ@�º^G¼#�Õ¡����Cñ�>`��AY45�°�&çÆ>���A ¤ is valid [14,18]. That is, \]ÓB�_h7Ó is not a weak cause
of % ò Ò è under 2 iff �ºþJ�­^K�°¡����CñZ>@��AY45�°�&çÆ>���A ¤ is valid. Thus, Proposition 2.5 im-
plies the following fact:

( � ) For every \ ± �Ê�MnÁ� ± n b \aÓdg with \uÓ3w�\ ± , it holds that \ ± �_\ ± >`2BA is not
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a weak cause of %#ò Ò è under 2 iff �ºþJ�­^K�°¡����&ñ�>@�pA�45�°��ç3>���AÒ¤ is valid.

>FÔÕA Assume that � is valid. Let \ ±�� \ such that (a) and (b) holds. Define the truth
assignment ñ to the variables in � by ñ�>`�p�tA<�Q� iff �H�)w�\ ± for all �<w b �v4:9:9:9�4YÄ�g .
As � is valid, there exists a truth assignment ç to the variables in � such that�ºþJ�­^K�°¡����&ñ�>@�pA�45�°��ç3>���AÒ¤ is valid. Let h ± ��hZ� \ ± , and let 2�w�^_>��pA be arbitrary
such that \ ± >`2ºA<�~h ± , æ)��>@2BA , and 2�>@���tA<�·çÆ>��W�`A for all �<w b �v4:989:9d4l��g . By ( � ), \ ± ��h ±
is not a weak cause of % ò Ò è under 2 . We now show that \ ± �zh ± is also not a weak
cause of L under 2 . Towards a contradiction, assume the contrary. Thus, some[ �_X�£�\ ± , h ± w�^_>`\ ± A , and Ì�w�^_>F[�A exist such that ¼�L ¯YÖ Í >@2BA and L7¯ Ö Í�ÎÏ >@2BA
for all Ð�N�_X�£U>t\ ± n][�A and Ð|
�¥Ð��>@2BA . As ¼
L ¯5ÖÛÍ >@2BA , it follows that �Mw�[ andÌ�>@��A<��� . As L7¯ Ö Í->`2BA , for every 8lw�>@�Qnf� ± A<£�\ ± , it holds either 8U>`2ºA<��� or8lw�[ and Ì�>�8�A<��� . As ¼�L ¯YÖ×Í >@2BA , it thus follows that h ± >�8�A<�z� for all 8 w\�±d£ b \uÓ8g . Hence, ¼Z% ¯YÖ Í >`2ºA and %3¯ Ö Í�ÎÏ >`2BA for all Ð�N�zX�£H>`\�±dna[�A and Ð|
�ÑÐ��>@2BA .
That is, ¼�% ò Ò è¯5ÖÛÍ >@2BA and % ò Ò è¯ Ö Í�ÎÏ >@2BA for all Ð� � X�£H>t\�±dn][�A and Ð| � Ð��>@2BA . As\ ± >`2BAp� h ± and % ò Ò è.>@2BA , this shows that \ ± �_h ± is a weak cause of % ò Ò è under 2 .
Equivalently, by ( � ), �ºþå�­^Å�Õ¡����Cñ�>`��AY45�°�&çÆ>���A ¤ is not valid, which is a contra-
diction. This shows that \_±d�_h<± is not a weak cause of L under 2 .

>FØÕA Assume that � is not valid. That is, there is a truth assignment ñ to the vari-
ables in � such that for every truth assignment ç to the variables in � , it holds that�ºþJ�­^K�°¡����&ñ�>@�pA�45�°��ç3>���AÒ¤ is not valid. Let \ ± � b \aÓdgZn b 8¿w��K� ñ�>�8�A<�_�1g�nb 8 ± w�� ± ��ñ�>�8�A<���¶g , and let h ± �ÊhZ� \ ± . Let 2�w�� be any context such that \ ± >`2ºAZ�h ± . We now show that \ ± ��h ± is a weak cause of L under 2 . If æ¶Óq>@2BA , then \ ± ��h ±
is trivially a weak cause of L under 2 . Assume now æ1�d>@2BA . Let ç be the truth
assignment to the variables in � with 2�>@�p�`A_� ç3>��H�`A for all �<w b �v4:9:989d4���g . As�ºþJ�­^K�°¡����&ñ�>@�pA�45�°��ç3>���AÒ¤ is not valid, by ( � ), \_±d�_h<± is a weak cause of %#ò Ò è un-
der 2 . Thus, some [Ë�zX�£°\_± , h<±�w�^_>t\�±ÝA , and Ì�w�^�>F[�A exist such that ¼Z% ò Ò è¯5ÖÛÍ >@2BA
and % ò Ò è¯ Ö Í�ÎÏ >@2BA for all Ð���zX�£U>`\ ± na[¡A and Ð|
�ÑÐ��>`2BA . Here, we can assume thath<±@>`\uÓYA<��� , h�±t>�8�A<�Q� for all 8cw�\�±�£ b \aÓdg , b ��gZn¿>e>`�Qnf�W±ÝA<£-\~±ÝA�� [ , andÌ�>�8
A<��� for all 8lw b �fg-nÁ>m>@�Qnf�W±ÝA<£�\�±ÙA . Hence, ¼Z% ¯YÖ×Í >`2BA and %Æ¯ Ö Í�ÎÏ >@2BA for allÐ���zX�£]>`\~±dn][�A and Ð|
�ÑÐ��>@2BA . Thus, ¼�L ¯5ÖÛÍ >@2BA and L7¯ Ö Í�ÎÏ >`2ºA for all Ð�Ñ� XT£>`\ ± na[�A and Ð|?�ÑÐ��>`2BA . As \ ± >`2ºA<��h ± and L�>@2BA , it follows that \ ± �_h ± is a weak
cause of L under 2 . �
Theorem C.1 Explanation is C "$ -complete for succinct context sets and binary
causal models.

Proof. As for membership in C "$ , recall that \É�_h is an explanation of L relative
to � iff EX1–EX4 hold. As argued in the proof of Theorem 5.1, deciding whether
EX1 and EX4 hold is in á8â - Þ�& and Þ�& , respectively, for succinct context sets. By
Theorem 2.6, deciding whether \T�zh is a weak cause of L under some 2�w�^�>��pA
is in Þ�& in the binary case. Thus, in EX2, deciding whether \T�zh is a weak cause
of L under every 2�w�� with \I>@2BA<�_h is in C�"� for succinct context sets and binary
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causal models. Hence, deciding whether some \Q± � \ exists such \�±d�zhZ� \�± is a
weak cause of L under every 2�w�� with \z±t>@2BA<�~hZ� \�± is in ! "$ for succinct context
sets and binary causal models. Thus, deciding whether EX3 holds is in C²"$ . In
summary, deciding whether EX1–EX4 hold is in Cp"$ for succinct context sets and
binary causal models.

Hardness for C "$ is shown by a reduction from the C "$ -complete problem of de-
ciding whether a given QBF �G�ó�B�m�­���ºþ�� is valid, where � is a propositional
formula on the variables �Q� b ���Y4:9:9:9d46��Ã°g , �I� b ���Y4:9:9:9d45�¬�tg , and þ�� b þ��54:9:9:9d4þ�!Ug . We construct E¥��>��?4YXZ45��A , \V�QX , h�w�^_>`\zA , ���z^_>��pA , and L as required
such that \É�_h is an explanation of L relative to � iff � is valid. The construction
is similar to the one in the proof of Theorem 5.1. Roughly, we replace the part
for !0"� -hardness of deciding general weak cause by a new part for NP-hardness of
deciding binary weak cause.

We define the exogenous variables by �Q�Q�Én b �ZÓ:4��
�54d��� ± 4:9:98984d��Ã¶4���Ã ± g , where^_>�8�A<� b �}4:��g for all 8lwf� . We define the set of contexts by ��� b 2�w�^_>��pA���>9æ¶Ó.Âæ»�ÆÂ�æ��5A8>@2BA5g , where:

æ°Óz� ��Óº�Q�H½ Ã×�Ý®B� >��x���Q�H½z�x� ± �Q�»Aº4
æ»�Á� ��Óº�Q�H½ ÃÇ�Ý®B�

¾ >e>��������?½_�x� ± �z�»AÆÂ�>������z�H½z�x� ± ����AeA
½ ×h = ê ��Òìëìëìë Ò Ã�íab ê �+í >��RhÆ�z�W½_�sh ± �Q�»A À 4

æ°�z� ��Óº�I�?Â ÃÇ�Ý®B� >��x���I�?½z�x� ± �I��Aº9
We define the causal model E¤��>��?4YXZ45��A as follows. The exogenous variables
are given by X��z�ÉnM�W±ÆnKþVn b \uÓ:4 7 ±r46�ug , where �W±u� b ��� ± 4:9:9:9d46��Ã ± g and^_>�8�A<� b �}4:��g for all 8lw�X . Let

%k��\aÓB�Q�WÂ`� ± 4
L ± � >�æ°ÓBj¸\uÓB�J�vA©½�>�æ°�Bjï¦�A

½Ú>�æ»�}j¥>�%l½ Ã×�Ý®B� �W�È��Q�H� ± AxÂJ> ÃÇ�Ý®B� >`�W���I�
½Á�W� ± ����AmA©Â 7 ± �z�»Aº4
where � ± is obtained from � by replacing each 8¿w��Qnf��naþ by “ 8u��� ”. We are
now ready to define the functions ��� b � < �C8cw�Xug as follows:

� ��ª?"v�N�x� and � ª£"ÝÖ �N��� ± for all �<w b �v4:9:9:9d4YÄ�g ,� �x�ºÜ#�P��Ó , and � < �Q� for all 8¿w�þKn b&7 ± g ,
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� � ³ ��� iff L<± is true.

Let \S�_�Qnu�H±dn b \uÓ8g , and let h�w�^_>t\QA be given by h�>�8
A<�z� for all 8lw�\ .
Let L be �I�I� . Notice that L is primitive. For all truth assignments ñ and ç
to the variables in � and � , respectively, we denote by ¡����CñZ>@��AY45�°�&çÆ>���A ¤ the
substitution ¡ ���|�CñZ>@���ÇA�4:9:989846�WÃ$�CñZ>@��Ã:A�45�²���&ç3>@���eA�489:9:9�45�¬���&ç3>@�¬� AÒ¤ , and we define%1ò Ò è �Q%�¡����CñZ>@��A , �°��ç3>���AÒ¤ . Let h�ÓB�J� , and let 2�w�^_>��pA such that \aÓ�>`2BA<�_h7Ó .
Then, \aÓB�zh7Ó is a weak cause of % ò Ò è under 2 iff �­þ�¼#�Õ¡����&ñ�>@�pA�45�°��ç3>���AÒ¤ is
valid. That is, \aÓB�_h7Ó is not a weak cause of % ò Ò è under 2 iff �ºþm�Õ¡����Cñ�>`��A ,�°�&çÆ>���A ¤ is valid. Thus, Proposition 2.5 implies the following fact:

( � ) For every \ ± �Ê�MnÁ� ± n b \aÓdg with \uÓ3w�\ ± , it holds that \ ± �_\ ± >`2BA is not
a weak cause of % ò Ò è under 2 iff �ºþ��Õ¡����&ñ�>@�pA�45�°��ç3>���AÒ¤ is valid.

Using ( � ), by a line of argumentation similar to the one in the proof of Theorem 5.1,
it follows that � is valid iff \T�zh is an explanation of L relative to � . �
Theorem C.2 Partial Explanation is C�"$ -complete for succinct context sets and
binary causal models.

Proof. As for membership in C�"$ , recall that \É�_h is a partial explanation of L rela-
tive to >��Z4�	�A iff (a) \T�zh is an explanation of L relative to � o�-®}¯ , and (b) \�>@2BA<�~h
and ��>@2BAR�Á� for some 2�w�� o�Z®}¯ . By Proposition 4.1, � o�Z®}¯ is the set of all 2�w��
such that either (i) \�>@2BA���~h , or (ii) \�>@2BA<�~h and \T�_h is a weak cause of L under2 . To check that (a) holds, we check that EX1–EX4 hold. Clearly, EX1 and EX2
always hold. The complement of EX3 says that some \Q± � \ exists such that for
every 2�w�� , it holds that \ ± >`2BA<��hZ� \ ± and 2�w��/o�-®}¯ implies that \ ± �_hZ� \ ± is a
weak cause of L under 2 . That is, some \ ± � \ exists such that for every 2�w�� ,
it holds either (a) \ ± >@2BA���_hZ� \ ± , or (b) \�>@2BA<��h and \É�_h is not a weak cause
of L under 2 , or (c) \ ± ��hZ� \ ± is a weak cause of L under 2 . By Theorem 2.6, de-
ciding weak cause is in ÞW& in the binary case. Thus, deciding whether EX3 does
not hold is in ! "$ for succinct context sets and binary causal models. Hence, decid-
ing whether EX3 holds is in C�"$ . EX4 says that some 23462 ± w�� o�-®}¯ exist such that\�>@2BA���~h and \�>@2 ± A<��h . Equivalently, some 23462 ± w�� exist such that \�>`2ºA���~h ,
and \�>`2 ± A<�_h and \É��h is a weak cause of L under 2 ± . Thus, deciding whether
EX4 holds is in Þ�& in the binary case. In summary, deciding whether (a) holds is inC "$ for succinct context sets and binary causal models. Finally, (b) says that some2�w�� exists such that \�>`2ºA<�~h , ��>`2ºAR�Á� , and \T�_h is a weak cause of L under2 . Thus, checking (b) is in Þ�& in the binary case. In summary, deciding whether
(a) and (b) holds is in C�"$ for succinct context sets and binary causal models.

Hardness for C�"$ is shown a reduction from the Cp"$ -complete problem of deciding
whether a given QBF �¢�E�B�m�­���ºþ�� is valid, where � is a propositional formula
on the variables �Q� b ���54:9:9:9d46��Ã�g , �M� b ���Y4:9:989 , �¬�tg , and þ�� b þW�Y4:9:9:9d45þ�!Ug . We
define E¥�M>��?4YXZ45��A , \È�zX , h�w�^�>`\QA , L , and �u�_^_>���A as in the proof of The-
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orem C.1, and let 	 be the uniform distribution over � . Observe that L is primi-
tive and that L�>@2BA holds for all 2�w�� . For every 2�w�� , either (i) \�>@2BA���~h , or (ii)\�>@2BA<�~h and \É�_h is a weak cause of L under 2 . By Proposition 4.1, \T��h is
a partial explanation of L relative to >��Z4�	�A iff (a) \É�_h is an explanation of L
relative to � , and (b) � contains some 2 such that \I>@2BA<�_h and ��>@2BAR�Á� . Here,
(a) implies (b). By the proof of Theorem C.1, \T�zh is an explanation of L relative
to � iff � is valid. In summary, \É�_h is a partial explanation of L relative to >9�Z4l	�A
iff � is valid. �

D Appendix: Proofs for Section 6

Proof of Theorem 6.4 (continued). It remains to prove that � is not valid iff> �¶A some 2�w�^�>��pA exists such that for every 23��w�^_>��
�ÇA , there exists a causal
formula ¡ �;¢k{¥¤:\T��h , where �¢�_X and \Èw�X , such that (i) >�EÀ462BA��� �;¡×�;¢¸{¥¤\T�zh and (ii) >�EI�Y462©�mA�� �Ä¡ �;¢¸{¨¤8\T�_h .

>FÔÕA Suppose that � is not valid. Let then ç be any truth assignment to � such that�­þq�º^Ã�->@�°�&çÆ>���AY45þ�46^cA is not valid, that is, �ºþH�­^c¼#��>��°�&çÆ>���AY45þ²45^cA is valid.
Let 2 be any context from ^_>��pA such that 2�>@�p�`A<�¯ç3>@�W�`A for all �<w b �v4:989:9d4l��g .
Consider now any context 23��w�^_>����eA . We then distinguish two cases as follows.
(a) If 2Æ�d>@�W�@A���¯ç3>@�W�`A for some �<w b �v489:9:984l��g , then >FE���462©�mA�� �³¡×[ä¢ôç3>@��AÒ¤��Q��� ,
while >FEG462BAm�� �r¡×[à¢ôç3>@��AÒ¤��Q��� , where [à¢ôç3>@��A abbreviates [��z¢ôç3>@���eA ,9:9:9d4Y[@�$¢ôç3>��n� A . (b) If 2©�d>��H�`A<�¯ç3>��H�@A for all �<w b �v4:9:9:9d4���g , then some truth as-
signment ç ± ± to ^ exists such that ��>��¸�&ç3>@��A�45þq�&ç ± >@þ�AY45^`�&ç ± ± >�^cAmA is false, whereç ± is the truth assignment to þ defined by ç ± >�þ#�tA<�z2©�d>@þ#�`A for all �<w b �v4:9:989d4lõ�g .
Hence, >�E���462©�´A����¡×[ö¢ÂçÆ>���AY45^Ô¢ôç ± ± >@^cAÒ¤��_��� , while >FEG462BAH�� �÷¡×[ö¢ÏçÆ>���A ,^Ô¢Âç ± ± >@^cAÒ¤°�~��� . In summary, if � is not valid, then >��¶A holds.

>FØÕA Suppose that >��¶A holds. That is, some 2�w�^_>��pA exists such that for every2©�ºw�^_>����mA , there exists a causal formula ¡ �;¢¸{¨¤8\T�_h , where �K�zX and \Vw�X ,
such that (i) >�EÀ462BA��� �Ä¡ �;¢¸{¨¤:\��zh and (ii) >�E���462©�mA�� �Ä¡ �;¢¸{¨¤8\¡�zh . In par-
ticular, some 2�w�^_>���A exists such that for every 2x��w�^_>����eA with 2Z���I�_2Æ�:��� ,
there exists a causal formula ¡ �;¢ {¥¤:\¡��h as above with (i) and (ii). Trivially,
(i) and (ii) implies \ø�w�� for all such 2Æ�ºw�^_>����mA . Moreover, as ���¿�z� �� �J�
for all \Vw�X�£ b ��g , it follows that \T�N� must hold for all such 23�Bw�^_>����mA .
It then follows that >FEÀ462BA�� �^¡×�²¢k{¥¤°[_�°�_2�>@�W�`A for all �<w b �¶4:9:9:9d4���g , since oth-
erwise >�EÀ462BA�� �^¡ �°¢¸{¥¤°����� and >�E���4e2Æ�ÇA�� �^¡ �;¢k{¥¤°���I� , for all 2Æ��w�^�>����eA
with 2�� �Ë�Q2©�q� � . This also shows that we have >�EÀ462BA��� �^¡ �;¢k{¨¤°�~�I� and that>FEI��4e2Æ�´A�� �Å¡ �;¢k{¥¤?�z�I� , and, moreover, that hp�I� must hold, for all 2x��w�^�>����eA
with 2Z���I�_2Æ�q� � . It then follows that for every truth assignment ç ± to þ defined
by ç ± >@þ#�`A<�_2©�d>�þ#�tA for all �<w b �v4:9:989d4lõ�g , there exists a truth assignment ç ± ± to ^
which is defined by >�E���462©�mA�� �Ä¡ �;¢¸{¨¤�^��°�¯ç ± ± >�^��`A for all �<w b �v4:9:9:9d46ß�g , such
that ��>@�°�&ç3>@��A�46þ��&ç ± >@þ�AY47^`�&ç ± ± >�^�AeA is false, where the truth assignment ç to �
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is defined by ç3>@���@A<�_2©�d>��W�tA for all �<w b �v4:9:9:9�4���g . This shows that �­���ºþ²�­^c¼#� is
valid. That is, �Á���º�°�­þq�º^Ã� is not valid. �
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