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This paper addresses complexity issues for important problems arising with disjunctive
logic programming. In particular, the complexity of deciding whether a disjunctive logic
program is consistent is investigated for a variety of well-known semantics, as well as the
complexity of deciding whether a propositional formula is satisfied by all models accord-
ing to a given semantics. We concentrate on finite propositional disjunctive programs
with as wells as without integrity constraints, i.e., clauses with empty heads; the prob-
lems are located in appropriate slots of the polynomial hierarchy. In particular, we show
that the consistency check is ΣP

2
-complete for the disjunctive stable model semantics

(in the total as well as partial version), the iterated closed world assumption, and the
perfect model semantics, and we show that the inference problem for these semantics is
ΠP

2
-complete; analogous results are derived for the answer sets semantics of extended

disjunctive logic programs. Besides, we generalize previously derived complexity results
for the generalized closed world assumption and other more sophisticated variants of the
closed world assumption. Furthermore, we use the close ties between the logic program-
ming framework and other nonmonotonic formalisms to provide new complexity results
for disjunctive default theories and disjunctive autoepistmic literal theories.

1 Introduction

Disjunctive logic programming is a generalization of logic programming, where the heads
of clauses may consist of disjunctions of atoms. This generalization has recently attracted
much interest by the research community, and several alternative semantics have been
proposed. A comprehensive survey can be found in the recent book by Lobo, Minker,
and Rajasekar [34].1

The aim of this paper is a complexity analysis of various semantics for disjunctive logic
programming in the propositional case. We consider the following semantics.

∗Parts of the results in this paper appeared in form of an abstract in the Proceedings of the Twelth
ACM SIGACT SIGMOD-SIGART Symposium on Principles of Database Systems (PODS-93), pp. 158–
167. Other parts appeared in shortened form in the Proceedings of the International Logic Programming
Symposium, Vancouver, October 1993 (ILPS-93), pp. 266–278. MIT Press.

1We use the term disjunctive logic program for what is elsewhere called a normal disjunctive logic
program with integrity constraints (which are disregarded in [34]). This terminology may differ from that
used elsewhere.
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• The Disjunctive Stable Model Semantics (DSM) defined by Przymusinski [49], which
adapts Gelfond and Lifschitz’s Stable Semantics [24] to disjunctive logic program-
ming.

• The Answer Set Semantics (ANSW) of Gelfond and Lifschitz [25] for the extension
of disjunctive logic programming by classical negation, which is an adaptation of
the stable model semantics to deal with negative literals. Informally, an answer set
can be seen as a kind of stable model of an extended disjunctive logic program.

• The Partial Disjunctive Stable Model Semantics (PDSM) by Przymusinski [49],
which extends the Well-Founded Semantics of van Gelder, Ross, and Schlipf [65].

• The Iterated Closed World Assumption (ICWA) by Gelfond, Przymusinska, and
Przymusinski [28].

• The Perfect Models Semantics (PERF) by Przymusinski [48].

• Various forms of the Closed World Assumption (CWA) including the Generalized
CWA (GCWA) by Minker [43], the Extended GCWA (EGCWA) by Yahya and
Henschen [67], the Careful CWA (CCWA) by Gelfond and Przymusinska [26], and
the Extended CWA (ECWA) by Gelfond, Przymusinska, and Przymusinski [28],
which coincides in the finite propositional case with McCarthy’s circumscription
(CIRC) [41, 42], and further variants such as the Disjunctive Database Rule (DDR)
of Ross and Topor [55], which is equivalent to the Weak GCWA (WGCWA) of
Rajasekar, Lobo, and Minker [51], and the Possible Models Semantics (PMS) of
Sakama [56], which is equivalent to Chan’s Possible Worlds Semantics (PWS) [13].

For each semantics S, we consider the following problems. Given a finite proposi-
tional disjunctive logic program P , decide whether P has a model under semantics S
(S-Consistency), and deciding whether a given propositional formula F is satisfied by
all legal models of P according to the semantics S (S-Entailment).

Basic complexity results for the last group (various forms of the CWA) have already
been derived in [60, 11, 13, 21]. In the present paper we sharpen some of the known
results and state, for the sake of completeness of the analysis, some minor new results.
All other results are novel.
This paper complements recent surveys on complexity results for nonmonotonic reason-

ing and logic programming [12, 59]. By the work of Apt, Blair, Cholak, Chomicki, Marek,
Nerode, Remmel, Schlipf, and Subrahmanian [1, 9, 7, 36, 35, 58, 59, 16] the complexity of
general logic programming is quite well-understood today. Practical methods for coping
with complexity in disjunctive logic programming have been investigated in [17, 18]. The
main results of the present paper state that S-Consistency is ΣP

2 -complete for DSM,
ANSW, PDSM and PERF while the problem is less complex for the other semantics (NP-
complete or, in case of ICWA, even polynomial) and furthermore that S-Entailment is
ΠP

2 -complete for all considered semantics except for some versions of CWA.
ΣP

2 -hardness of S-Consistency in case of DSM, ANSW, and PDSM may be intuitively
explained by an additional source of complexity in terms of a fixpoint condition on a model
which interacts with an independent minimality criterion. PERF similarly imposes a
nonmonotonic minimality condition on models.
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An intuitive explanation for ΠP
2 -hardness of S-Entailment is that due to some min-

imality criterion, the problem of identifying a disjunctive model is difficult and involves
an (at least) coNP-hard test. This constitutes a source of complexity “orthogonal” to the
source given by the potentially exponentially many candidates for a (disjunctive) model
of P . As a consequence of the results, under the widely accepted hypothesis that the
polynomial hierarchy does not collapse to some class below ΠP

2 , polynomial inference
algorithms using an oracle for classical inference do not exist.
Inference of a formula under GCWA or CCWA is an interesting problem: the best

upper bound we can provide by a nontrivial membership proof is ∆P
3 [O(log n)], which is

“mildly” harder than ΠP
2 or ΣP

2 . Completeness for this class would entail ΣP
2 -hardness;

however, it is not clear how to reduce a ΣP
2 -complete problem to this problem. Inference

of a literal under GCWA is in ΠP
2 , as it suffices in this case to check a restricted set of

models.
Chan [13] shows that inference under DDR, WGCWA, PWS, and PMS is tractable if

integrity clauses (i.e. clauses with empty heads) are not allowed; this in fact constitutes
the only cases of tractability for the considered semantics.
In addition, based on the complexity results for disjunctive logic programming, we are

able to derive new complexity results for nonmonotonic logics such as disjunctive default
logic [27] and autoepistemic logic [45].
The paper is organized as follows. After introducing basic concepts and notation in

Section 2, the analysis starts in Section 3 with PSM and PDSM. In Section 4, we deal
with the different versions of the CWA, and in Section 5 we analyze the ICWA-semantics
for stratified programs. After treating the Perfect Models Semantics in Section 6 and the
Answer Set Semantics for programs extended with classical negation in Section 7, we es-
tablish in Section 8 new complexity results for disjunctive default logic and autoepistemic
logic. Section 9 concludes the paper.

2 Preliminaries and Notation

A comprehensive treatment of disjunctive logic programming is given in [34], to which
the reader is referred for unexplained concepts. A disjunctive logic program clause (DLP
clause, or simply clause) C is a formula

a1 ∨ · · · ∨ an ← b1, · · · , bk,not bk+1, · · · ,not bm, m, n ≥ 0

where all ai and bj are atoms from a (fragment of a) first-order language, “,” denotes
conjunction, and “not” is a negation-by-default operator. An extension to DLP clauses,
which will be considered in Section 7, allows literals under classical negation instead of
atoms.
Notice that we also allow clauses with empty head (i.e. n = 0), which we call integrity

clauses.2 Integrity clauses without “not” are also called negative clauses.
Permitting integrity clauses does not affect the complexity of inference under the con-

sidered semantics in the general case, but most likely makes deciding whether a program

2If some designated atom f representing falsity is used, clauses in which the only atom in the head is
f are equivalent to integrity clauses.
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is consistent under a certain semantics more complex. We will highlight the difference of
allowing/disallowing integrity clauses in the analysis.
A disjunctive logic program (DLP) P is a finite collection of DLP clauses. A DLP P

is normal if “not” is allowed to occur in its clauses, and not -free if “not” does not occur
in P . A DLP P is positive if it is not -free and it contains no integrity clauses. A DLP
in which each clause has one (resp. at most one) atom in the head (n = 1 resp. n ≤ 1) is
called definite (resp. nondisjunctive).

Example 1

Consider the following propositional DLP P :

P = a ∨ b← c b← not a,not c

P contains no integrity clauses but is not positive, as “not” occurs in P .

In the rest of this paper, we restrict our considerations to finite propositional DLPs, i.e.
(finite) DLPs where the atoms are propositions. We omit the phrase “finite propositional”
when referring to a propositional DLP.
The various semantics of disjunctive logic programs we consider, as well as others not

treated here, can be alternatively characterized proof-theoretically, by fixpoints, or in
terms of models, cf. [34, 22]. We refer to model theoretic characterizations, which are
most useful for the purpose of this paper.
Interpretations and models of DLPs are restricted to Herbrand interpretations resp.

Herbrand models; thus “interpretation” and “model” refer to “Herbrand interpretation”
and “Herbrand model” throughout the text.
For any DLP P , we denote by A(P ) the set of propositional atoms of P and by M(P )

the set of all models of P if “not” is interpreted by classical negation. I |= F resp. C |= F
denotes satisfaction of a propositional formula F by an interpretation I resp. a collection
C of interpretations. Cn(F) denotes the set of all logical consequences from the set of
formulae F .
The models of a DLP P under a semantics S are a subset of M(P ), which we denote

by S(P ). P is called S-consistent iff S(P ) 6= ∅. A DLP P entails a propositional formula
F under semantics S iff S(P ) |= F .

Example 2

For the above program

P = a ∨ b← c b← not a,not c

we have M(P ) = {{b}, {a}, {a, b}, {a, c}, {b, c}, {a, b, c}}. Hence, M(P ) |= a ∨ b and
M(P ) 6|= ¬c.

For every DLP P , the partial order ≤ on M(P ) is defined by M ≤ M ′ iff M ⊆ M ′,
i.e., all atoms true in M are also true in M ′. M < M ′ stands for M ≤M ′ and M ′ 6≤M .
For any partition 〈P̂ ; Q̂; Ẑ〉 of A(P ), the preorder ≤P̂ ;Ẑ is defined by M ≤P̂ ;Ẑ M ′ iff

M ∩ Q̂ = M ′ ∩ Q̂ and M ∩ P̂ ⊆M ′ ∩ P̂ . Note that ≤P̂ ;Ẑ coincides with ≤ if P̂ = A(P ).
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Model M ∈ M(P ) is minimal (resp. 〈P̂ ; Ẑ〉-minimal) iff no M ′ ∈ M(P ) satisfies M ′ < M ,
(resp. M ′ ≤P̂ ;Ẑ M and M 6≤P̂ ;Ẑ M ′). The collection of all minimal (resp. 〈P̂ ; Ẑ〉-minimal)

models of P is denoted by MM(P ) (resp. MM(P ; P̂ ; Ẑ)).

Example 3

Consider the above program

P = a ∨ b← c b← not a,not c

again. Then, MM(P ) = {{a}, {b}}, and for the partition 〈{a}, {b}, {c}〉, we have
MM(P ; {a}; {c}) = {{b}, {b, c}, {a}, {a, c}}.

We assume that the reader has some background on the concept of NP-complete-
ness [23, 30]. Upon the class NP, the polynomial hierarchy (PH) has been defined as a
subrecursive analog to the Kleene arithmetical hierarchy. For any complexity class C,
let PC (resp. NPC) denote the decision problems for which there exists a polynomial-
time bounded deterministic (resp. nondeterministic) Turing-reduction to any problem
π ∈ C, i.e. the decision problems solvable in polynomial time by some deterministic (resp.
nondeterministic) oracle Turing machine with an oracle for any problem in C. The classes
∆P

k ,Σ
P
k , and ΠP

k of PH are defined as follows:

∆P
0 = ΣP

0 = ΠP
0 = P

and for all k ≥ 0,

∆P
k+1 = PΣP

k , ΣP
k+1 = NPΣP

k , ΠP
k+1 = coΣP

k+1.

In particular, NP = ΣP
1 , coNP = ΠP

1 , Σ
P
2 = NPNP, and ΠP

2 = coNPNP. The classical
NP-complete problem is to decide if a collection C = {Li,1 ∨ · · · ∨ Li,ni

: 1 ≤ i ≤ m}
of propositional clauses is simultaneously satisfiable (SAT). This problem is still NP-
complete if each clause Li,1 ∨ · · · ∨ Li,ni

in C contains only positive literals or only neg-
ative literals (MSAT) [23]. The most prominent ΣP

2 -complete problem is to decide the
validity of a formula from QBF2,∃, the set of quantified Boolean formulae of the form
∃x1 · · · ∃xn∀y1 · · · ∀ymE, where E = E(x1, . . . , xn,y1, . . . , ym) is a propositional formula
built from atoms x1, . . . , xn,y1, . . . , ym.

The classes ∆P
k have been refined by bounding the number of queries to the oracle

[66, 30]. ∆P
k+1[f(n)], k ≥ 1, denotes the class of decision problems that are polynomially

solvable with at most f(n) calls to a ΣP
k oracle, where f(n) is a function in the size n of

the problem instance. In particular, ∆P
k+1[O(log n)] allows logarithmically many oracle

queries.
In this paper, we consider the following problems on DLPs for different semantics S.

S-Consistency: Given a DLP P , decide if P is S-consistent.

S-Entailment: Given a DLP P and a propositional formula F , decide whether S(P ) |=
F .

The restriction of S-Entailment to the case in which F is a literal is of particular
importance. It appears that for each semantics the presented lower complexity bound
applies to this case.
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The notion of entailment in terms of consequence from all models under S is commonly
called cautious reasoning or skeptical reasoning. An alternative version of entailment is
in terms of consequence from some model under S, which is known as brave reasoning
or credulous reasoning. Complexity results for brave reasoning under the considered
semantics can be straightforwardly derived from our results on cautious reasoning. Hence,
we will not consider brave reasoning in our analysis.

3 Stable model semantics

The Stable model semantics for logic programs [24, 5] has been widely acknowledged and is
one of the most important semantics for logic programs. Concerning the computational
properties, Marek and Truszczyński [38] and independently Bidoit and Froidevaux [6]
showed that deciding whether a definite logic program has a stable model is NP-complete.
Marek and Truszczyński further showed that deciding whether an atom belongs to every
stable model of a definite logic program is coNP-complete [39].

The stable model semantics was generalized in a natural way to disjunctive logic pro-
grams by Przymusinski [49] and independently by Gelfond and Lifschitz in terms of answer
sets in the more general framework of extended DLPs (see Section 7). Besides the gen-
eralization of total (i.e. 2-valued) stable model semantics, Przymusinski presented in [48]
also a generalization of partial (i.e. 3-valued) stable semantics from definite programs
to disjunctive logic programs. Przymusinski demonstrated that the partial stable model
semantics coincides for definite programs with the well-founded semantics of van Gelder
et al. [65], and can be thus seen as proper generalization of the well-founded semantics to
disjunctive programs. Other generalizations of the well-founded semantics which we do
not examine here are presented in [54, 3]. We study in this section both total and partial
stable model semantics.
We start with total stable model semantics. Given a DLP P and an interpretation I,

the Gelfond-Lifschitz transformation P I of P with respect to I is defined as follows.

(i) if a1 ∨ · · · ∨ an ← b1, · · · , bk,not bk+1, · · · ,not bm ∈ P
and for all k < i ≤ m, bi /∈ I, then a1 ∨ · · · ∨ an ← b1, · · · , bk ∈ P I

(ii) nothing else is in P I .

Notice that P I is not -free, and that P I coincides with P if P is not -free.
An interpretation I is called a (disjunctive) stable model of P iff I ∈ MM(P I) [49].

DSM(P ) denotes the collection of all stable models of P , i.e.

DSM(P ) = {I : I ∈ MM(P I)}.

Example 4

Let
P = a ∨ b← c b← not a,not c a ∨ c← not b.

Consider I = {b}. Then,
P I = a ∨ b← c b← .
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Check that I is a minimal model of P I ; thus, I is a stable model of P .

Each stable model is in fact a model of P and has the following property.

Proposition 1 (cf. [49]3)
Every stable model of a DLP P is a minimal model of P , i.e. DSM(P ) ⊆ MM(P ).

Notice that DSM-Consistency is trivial if P is a positive DLP, since each such P has
a stable model. (M(P ) 6= ∅ and P I = P for any I holds in this case, hence the existence
of a stable model can be easily seen from the definition.) If the heads in the rules are
allowed to be empty, we obtain the following.

Proposition 2

DSM-Consistency restricted to instances of P which are not -free is NP-complete.

Proof. Let C be an instance of SAT. Each such C can be trivially rewritten as a logically
equivalent not -free DLP P and vice versa, such that C is satisfiable iff M(P ) 6= ∅. It holds
that P has a stable model iff MM(P ) 6= ∅, which is equivalent with M(P ) 6= ∅. From this,
the result follows.

The complexity of checking DSM-consistency remains unchanged if we allow nondis-
junctive programs besides not -free programs in the input. (Membership for nondisjunc-
tive programs in NP follows as P I is a collection of Horn clauses.) For DLPs which allow
disjunction in the head and simultaneous occurrence of “not”, we obtain the following
result.

Theorem 3

DSM-Consistency is ΣP
2 -hard. This holds even if P contains no integrity clauses and

“not” has a single occurrence in P .

Proof. We show this by the following reduction of deciding the validity of a quantified
Boolean formula

Φ = ∃x1 · · · ∃xn∀y1 · · · ∀ymE, n,m ≥ 1.

We may assume that E = D1∨· · ·∨Dr and each Di = Li,1∧Li,2∧Li,3 is a conjunction of
literals Li,j over atoms x1, . . . , xn, y1, . . . , ym; deciding if such a Φ is valid is still ΣP

2 -hard
[63]. Let v1, . . . , vn and z1, . . . , zm, w be new propositional atoms and define the following

3Although this proposition is formulated only for programs without integrity clauses, the proof applies
to the general case.
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DLP P :

xi ∨ vi ← for each i = 1, . . . , n

yj ∨ zj ← yj ← w zj ← w

w ← yj , zj for each j = 1, . . . ,m

w ← σ(Lk,1), σ(Lk,2), σ(Lk,3) for each k = 1, . . . , r

w ← not w

where σ maps literals from atoms x1, . . . , xn, y1, . . . , ym to atoms as follows:

σ(L) =







vi if L = ¬xi for some i = 1, . . . , n
zj if L = ¬yj for some j = 1, . . . ,m
L otherwise

Intuitively, vi corresponds to ¬xi and zj corresponds to ¬yj .
4

If M is a stable model of P , then w ∈ M must hold (this is assured by the clause
w ← not w). Thus PM consists of all clauses of P except w ← not w. Consequently,
for every 1 ≤ j ≤ m, yj and zj must be in M , which follows from the clauses yj ← w,
zj ← w. Further, for every i = 1, . . . , n it must hold that xi ∈ M or vi ∈ M , which
follows from the clause xi∨ vi ← ; from the condition M ∈ MM(PM ), however, it follows
that not both xi ∈ M and vi ∈ M hold, for otherwise M ′ = M − {vi} is a model of PM

such that M ′ < M . Consequently, exactly one of xi ∈M and vi ∈M must be true.
We show that P has a stable model iff the formula Φ is valid.
“⇒”: LetM be a stable model of P . Let the truth assignment ϕ to the atoms x1, . . . , xn

be defined by

ϕ(xi) =

{

true if xi ∈M
false if vi ∈M

, for i = 1, . . . , n.

Notice that ϕ is well-defined. Since M is a minimal model of PM , it follows that each
interpretation I that coincides with M on x1, v1, . . . , xn, vn and contains exactly one of
yj , zj for each j = 1, . . . ,m, and does not contain w, is not a model of PM . For otherwise
I would be a model of PM such that I < M , which contradicts that M is a stable model of
P . Since I is not model of PM , there must exist some i = 1, . . . , r such that I |= σ(Li,j),
for 1 ≤ j ≤ 3. It follows that for every extension of ϕ to the atoms y1, . . . , ym, Di is true
for some i = 1, . . . , k. Thus E evaluates to true. Consequently, ∃x1 · · · ∃xn∀y1 · · · ∀ymE,
i.e. Φ, is valid.
“⇐”: assume that Φ is valid. That is, there exists a truth assignment ϕ to the atoms

x1, . . . , xn such that every extension of ϕ to y1, . . . , ym satisfies E. Let I be the following
interpretation:

I = {xi : ϕ(xi) = true, i = 1, . . . , n} ∪ {vi : ϕ(xi) = false, i = 1, . . . , n} ∪

{y1, z1, . . . , ym, zm, w}.
4Actually the clauses w ← yj , zj are redundant and could be omitted. We include them for intelligi-

bility and ease of argumentation.
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Notice that P I are the clauses of P except w ← not w and that I is a model of P I . We
show that I is a minimal model of P I , which implies that I is a stable model of P . Assume
to the contrary that I /∈ MM(P I), i.e. there exists M ∈ M(P I) such that M < I. We
observe that M must coincide with I on x1, v1, . . . , xn, vn, that w /∈M , and that exactly
one of yj , zj is in M for every j = 1, . . . ,m. By the extension property of ϕ, however,
it follows that for the extension of ϕ to y1, . . . , ym defined by ϕ(yi) = true if M |= yi
and ϕ(yi) = false if M |= zi, 1 ≤ i ≤ m, there must exist some i = 1, . . . , k such that
M |= σ(Li,j), for 1 ≤ j ≤ 3. But this implies w ∈M , contradiction. Thus I is a minimal
model of P I , and consequently I is a stable model of P .

Since P is constructible from Φ in polynomial time, the theorem follows.

We obtain as a corollary the following result.

Corollary 4

DSM-Entailment is ΠP
2 -hard.

Proof. Let P ′ be the DLP obtained by adding to DLP P the clause p←, where the
atom p does not occur in P . Every stable model of P ′ satisfies p but does not satisfy ¬p.
Hence, DSM(P ′) |= ¬p if and only if DSM(P ′) = ∅, which is equivalent to DSM(P ) = ∅.
Theorem 3 implies that deciding DSM(P ) = ∅ is ΠP

2 -hard, from which the result follows.

It is important that this hardness result can be noticeably strengthened. In fact, the
result holds even if P is a positive DLP.

Theorem 5

DSM-Entailment is ΠP
2 -hard, even if P is positive and F is a literal.

Proof. Consider the DLP P from the proof of Theorem 3 and let P ′ be the program
P except the clause w ← not w. Recall that every stable model M of P must contain
w. Since PM = P ′, it holds that M is a minimal model of P ′. On the other hand,
every M ∈ MM(P ′) such that w ∈ M , is a stable model of P . Consequently, P has
a stable model iff P ′ has a minimal model M such that M |= w. Since P ′ is positive,
DSM(P ′) = MM(P ′); thus it holds that DSM(P ′) 6|= ¬w iff P is DSM-consistent. Since
deciding the latter is by Theorem 3 ΣP

2 -hard, the result follows.

Notice that disjunction in the heads of clauses is essential for our proof of this result.
If P is nondisjunctive, then DSM-Entailment is in coNP (notice that for any I, P I

is a collection of Horn clauses in this case), and by the well-known results for definite
programs coNP-complete.

Corollary 6

Let P be a positive DLP and let p be an atom. Deciding whether MM(P ) |= ¬p is ΠP
2 -hard.

Proof. As P is a positive DLP, DSM(P ) = MM(P ).

This result sharpens the result of Lemma 3.1 in [21] that deciding whether a literal ¬u
follows from the minimal models of a collection of propositional clauses is ΠP

2 -hard. The
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proof of the cited result involved integrity clauses.
Using these results, we establish the following complexity characterization of disjunctive

stable model semantics.

Theorem 7

DSM-Consistency is ΣP
2 -complete.

Proof. By Theorem 3 it remains to show membership in ΣP
2 .

A guess forM ∈ DSM(P ) can be verified in polynomial time with an NP oracle: Indeed,
it is easy to see that PM is computable in polynomial time. Testing M ∈ MM(PM ) is
in coNP (cf. [10]) and hence decidable with one query to an NP oracle. Consequently,
DSM-Consistency is in ΣP

2 .

Theorem 8

DSM-Entailment is ΠP
2 -complete.

Proof. By Theorem 5 it remains to show membership of the problem in ΠP
2 .

A guess for M ∈ DSM(P ) such that M 6|= F can be verified in polynomial time with an
NP oracle (cf. proof of Theorem 7). This means that the complement of DSM-Entailment

is in ΣP
2 , which implies that DSM-Entailment is in ΠP

2 .

Now let us turn attention to partial stable model semantics. We need to introduce the
concept of partial (i.e. 3-valued) Herbrand interpretation for a definition, cf. [49].
A partial (Herbrand) interpretation I is a consistent set of literals. Pos(I) (resp.

Neg(I)) denotes the set of positive (resp. negative) literals in I. The atoms of posi-
tive literals in I are considered to be true in I, while the atoms of negative literals are
considered to be false in I. All other atoms are considered to be undefined in I. The
set of atoms is extended by three distinguished atoms t,f,u, which are respectively true,
false, and undefined in every interpretation. Occurrence of these atoms in the head of
any program clause is not permitted.5

Each interpretation I can be seen as a function A → {0, 0.5, 1}, where A is the set of
atoms including t,f, and u, such that I(p) = 0 (resp. I(p) = 0.5, I(p) = 1) iff p is false
(resp. undefined, true) in I.

The truth value VI(F ) of a propositional formula in I is defined by recursion as follows.
If F is an atom, then VI(F ) = I(F ); if F = ¬G, then VI(F ) = 1− VI(G); if F = F1 ∧F2,
then VI(F ) = min(VI(F1), VI(F2)); if F = F1 ∨ F2, then VI(F ) = max(VI(F1), VI(F2));
and if F = F1 ← F2, then VI(F ) = 1 if VI(F1) ≥ VI(F2) and VI(F ) = 0 otherwise. Here
the maximum (resp. minimum) of the empty set is defined as 0 (resp. 1).

A partial interpretation I is a partial model of formula F iff VI(F ) = 1, i.e. I satisfies F .
The collection of all partial models of a DLP P is denoted by Mp(P ). The partial order
≤ is defined on Mp(P ) by M1 ≤M2 iff Pos(M1) ⊆ Pos(M2) and Neg(M1) ⊇ Neg(M2);
< and minimal partial models are defined in the obvious way. MMp(P ) denotes the set
of minimal partial models of P .

A partial interpretation I is called total if no atom (except u) is undefined in I. The

5As Przymusinski remarks, this assumption is not essential and could be dropped.
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projection of such an I to the nondistinguished atoms corresponds to a standard Herbrand
interpretation. For convenience, we will identify I with this standard interpretation and
vice versa.
Let P be a DLP and I be a partial interpretation. Przymusinski defines the quotient

P

I
of P modulo I as follows. Each occurrence of a literal not p in P is substituted by its

truth value in I where “not” is interpreted classically, i.e. if VI(not p) = 0 (resp. 0.5, 1),
then not p is replaced with f (resp. u, t).

This transformation properly generalizes the Gelfond-Lifschitz transformation; if I is
total and u does not occur in P , then P

I
is equivalent to the Gelfond-Lifschitz transfor-

mation P I .
A partial interpretation I of a DLP P is called a (disjunctive) partial stable model of

P iff I ∈ MMp(
P

I
). Then, define

PDSM(P ) = {I : I ∈ MMp(
P

I
)}.

Of course, partial stable models of P are models of P .

Proposition 9 (cf. [49]6)
Every partial stable model of a DLP P is a minimal partial model of P .

Example 5

Let
P = a ∨ b ∨ c← b← not a c← not b a← not c

and let I = {a}. It is easily checked that I is a partial model of P . Consider

P

I
= a ∨ b ∨ c← b← f c← u a← u.

I is not a minimal partial model of P

I
, however, since M = {a,¬b} is a model of P

I
and

M < I. Thus I is not a partial stable model of P . In fact, P has no such model.

Partial stable models of a DLP P can be forced to be total models. Denote by T (P )
the program obtained from P by adding for each atom p the clause ← p,not p.

Proposition 10

Let P be a DLP in which u does not occur.7 Each partial model of T (P ) is total, and,
moreover, the partial stable models of T (P ) are the stable models of P .

Proof. It is easy to see that each partial model of T (P ) is total. Hence the result
follows from Propositions 1 and 9.

Thus, if integrity clauses are permitted, DSM-Consistency and DSM-Entailment are
polynomially reducible to PDSM-Consistency and PDSM-Entailment, respectively.

6Again, this proposition is formulated only for programs without integrity clauses, but the proof
applies to the general case.

7Since we defined (total) stable models in a 2-valued context, this assumption is necessary.
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Not much surprising, consistency checking and entailment have for partial stable model
semantics the same upper bounds as for stable model semantics. The question remains
what happens if integrity clauses are excluded. As we will show, this does not lead to a
decrease in complexity.

Theorem 11

PDSM-Consistency is ΣP
2 -complete. ΣP

2 -hardness holds even if P does not contain
integrity clauses.

Proof. Membership in ΣP
2 is shown as follows. For any partial interpretation I and any

formula F , VI(F ) is efficiently computable and hence I |= F can be decided efficiently.
A guess for M ∈ PDSM(P ) can be verified in polynomial time with an NP oracle for the
following: P

M
can be computed efficiently. Furthermore, testing whether M ∈ MMp(

P
M
)

can be done by using an NP oracle to decide whether there exists no M ′ ∈Mp(
P
M
) such

that M ′ < M .
Hardness is shown by a polynomial transformation of deciding whether the DLP P in

the proof of Theorem 3 has a (total) stable model. Let P ′ be the DLP which consists of
the following clauses.

(1) w ← not w

(2) w ← r for every atom r distinct from w.

(3) C ′ = a1 ∨ · · · ∨ an ← b1, · · · , bm,not w for each clause

C = a1 ∨ · · · ∨ an ← b1, · · · , bm from P .

We show first that in any partial stable model M of P ′, w must be undefined and no
(nondistinguished) atom can be true. Clearly, w cannot be false in any model of P ′.
Assume that w is true in M . Then P ′

M
is equivalent to the program that consists of all

clauses w ← r from P ′. M is not a minimal partial model of this program, however.
Hence, M is not a partial stable model of P ′, contradiction. Consequently, w is undefined
in M . The clauses w ← r enforce that no atom r from P can be true in M ; hence we are
done.
Because not w occurs in the body of each rule C ′, the partial stable models of P ′

intuitively correspond 1-1 to the stable models of P , where “undefined” (resp. “false”) in
partial models corresponds to “true” (resp. “false”) in total models.
We show that if M is a stable model of P then the partial interpretation M ′ = Neg(M)

(recall that we identify M with the corresponding partial interpretation) is a partial stable
model of P ′. As M is a stable model of P , w ∈M . Hence, w is undefined in M ′. Notice
that P ′

M ′
contains each clause C from P except w ← not w, augmented by u in the body.

Since M satisfies C, it follows that M ′ satisfies C ′. Thus, M ′ is a partial model of P ′

M ′
.

We show that M ′ ∈ MMp(
P ′

M ′
). Assume that there exists a partial model I of P ′

M ′
such

that I < M ′. w must be undefined in I, and hence no atom is true in I. Let J be the total
interpretation that satisfies Neg(J) = Neg(I). It follows that J is a model of PM such
that J < M . Hence, M 6∈ MM(PM ), thus M is not a stable model of P , contradiction.
Consequently, M ′ ∈ MMp(

P ′

M ′
). It follows that M ′ is a partial stable model of P ′.
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In the same way it can be shown that if M is a partial stable model of P ′, then the
total interpretation M ′ such that Neg(M ′) = Neg(M) is a stable model of P .

Consequently, P ′ is PDSM-consistent iff P is DSM-consistent. Since P ′ is constructible
in polynomial time, the result follows.

We conclude this section by considering the entailment problem. The following lemma,
which is among the results in [48], relates minimal and stable models of positive DLPs.

Lemma 12

Let P be a positive DLP in which u does not occur. Then all partial stable models are
total, and PDSM(P ) = DSM(P ) = MM(P ).

We use this lemma for the following characterization of inference from partial stable
models.

Theorem 13

PDSM-Entailment is ΠP
2 -complete, and ΠP

2 -hard even if P is positive and F is a literal.

Proof. The hardness part follows immediately from Lemma 12 and Corollary 6.
The membership part is as follows. A guess for M ∈ PDSM(P ) such that M 6|= F

can be verified in polynomial time with an NP oracle (cf. the proof of Theorem 11).
Consequently, deciding PDSM(P ) 6|= F is in ΣP

2 , from which the result follows.

4 Closed world reasoning and extensions

One of the first and most well-known rules for inferring negative information was Reiter’s
Closed World Assumption (CWA) [52] for positive definite programs. Informally, CWA
adds to P each literal ¬x such that M(P ) 6|= x. This is not suitable for disjunctive logic
programs, since the result of applying CWA may be inconsistent.8 Several generalizations
and extensions of CWA to disjunctive logic programs have been proposed in the literature,
e.g. [43, 26, 67, 28], as well as improvements to some of those extensions [55, 51, 56, 13].
Complexity results for these semantics in the case of finite propositional theories have
been derived in [60, 11, 21, 13]. In this section, we succinctly introduce various semantics
and apply results of the previous section to slightly sharpen known results, and, for the
sake of completeness, we collect some easy new results.
Minker adapted the CWA for disjunctive logic programs by introducing the Generalized

CWA (GCWA) in [43], which adds all literals ¬x to P such that atom x is false in all
minimal models of P . The respective models of P can be characterized as follows.

GCWA(P ) = {M ∈ M(P ) : ∀x ∈ A(P ).MM(P ) |= ¬x⇒M |= ¬x}

The Careful Closed World Assumption (CCWA) of Gelfond and Przymusinska [26] gener-
alizes the GCWA as follows. For any partition 〈P̂ ; Q̂; Ẑ〉 of the atoms A(P ), each literal

8It is interesting to note that deciding whether CWA-Consistency is coNP-hard and in ∆P
2
[O(log n)],

but not in coDP (coDP ⊇ NP ∪ coNP) unless the polynomial hierarchy collapses [21].
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¬x, x ∈ P , is added to P such that MM(P ; P̂ ; Ẑ) |= ¬x. Thus,

CCWAP̂ ;Ẑ(P ) = {M ∈ M(P ) : ∀x ∈ A(P ).MM(P ; P̂ ; Ẑ) |= ¬x⇒M |= ¬x}

Notice that if P̂ = A(P ), then CCWA is identical to GCWA.
The Extended GCWA (EGCWA) was introduced by Yahya and Henschen [67] for in-

ferring negative clauses. P is augmented by each clause

← a1, · · · , an

that is true in every minimal model of P . It holds that

EGCWA(P ) = MM(P ).

The EGCWA is generalized by the Extended CWA (ECWA) of Gelfond et al. [28] in the
following way. For any partition 〈P̂ ; Q̂; Ẑ〉 of A(P ),

ECWAP̂ ;Ẑ(P ) = MM(P ; P̂ ; Ẑ).

ECWA reduces to EGCWA in case Q = Z = ∅. ECWA is equivalent to circumscription
(CIRC) of McCarthy [41, 42] as defined by Lifschitz in [32]. For 〈P̂ ; Q̂; Ẑ〉, define the
following formula

CIRC(P ; P̂ ; Ẑ) = P [P̂ ; Ẑ] ∧ ¬∃P̂ ′Ẑ ′(P [P̂ ′; Ẑ ′] ∧ (P̂ ′ < P̂ ))

(cf.[32] for details). Then CIRCP̂ ;Ẑ(P ) is the collection of models of CIRC(P ;P̂ ;Ẑ). In

case of finite propositional DLPs, it holds that CIRCP̂ ;Ẑ(P ) = MM(P ; P̂ ; Ẑ) [28].
It follows from the definitions that each of these semantics S is independent of the

syntactical representation of a program. Thus it may be assumed that P is not -free. (In
fact, e.g. GCWA was originally defined for such programs.) Furthermore, it is well-known
that for each such S, P is S-consistent iff P is consistent. Consequently,

Proposition 14

If a DLP P contains no integrity clauses, then P is S-consistent for every semantics S
among GCWA, CCWA, EGCWA, ECWA, and CIRC.

In this case, S-Consistency is trivial. It becomes most likely more complex if integrity
clauses are permitted.

Proposition 15

S-Consistency is NP-complete for every semantics S among GCWA, CCWA, EGCWA,
ECWA, and CIRC.

The following result has been established previously.

Proposition 16 ([21])
S-Entailment is in ΠP

2 for S among EGCWA, ECWA,9 and CIRC and in ∆P
3 [O(log n)]

for S among GCWA and CCWA.
9In [11] a proof of membership of ECWA-Entailment in ΠP

2
is already sketched.
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Furthermore, ΠP
2 -hardness was shown in [21] as a lower bound of S-Entailment for

each of these semantics. This improved on previous coNP-hardness and NP-hardness
results [60, 11]. From Corollary 6, we obtain the following slight sharpening of this result.

Theorem 17

S-Entailment where P is a positive DLP is ΠP
2 -hard for every S among GCWA, CCWA,

EGCWA, ECWA, and CIRC.

The GCWA has the undesirable feature that it interprets, if possible, the disjunction
p ∨ q ← exclusively, i.e. adopts the models in which exactly one of p and q is true
and rejects the inclusive interpretation, i.e. the model in which both p and q are true.
Ross and Topor introduced in [55] a semantics called Disjunctive Database Rule (DDR),
which interprets disjunction inclusively. Independently, Rajasekar et al. developed the
Weak GCWA (WGCWA) [51] to cope with the same problem. It turned out that DDR
semantics and the WGCWA are equivalent [51].
We need an additional concept for a definition of DDR. Given a DLP P and an inter-

pretation I of P , define

TP (I) = {a1, . . . , an : a1 ∨ · · · ∨ an ← b1, · · · , bk ∈ P

and bj ∈ I, for all j = 1, . . . , k},

and

TP ↑0 = ∅, TP ↑n+ 1 = TP (TP ↑n), and TP ↑ω =
∞
⋃

n=0

TP ↑n.

The Disjunctive Database Rule (DDR) can be characterized as follows. Assume that P is
a not -free DLP. Then,

DDR(P ) = {M ∈ M(P ) : ∀x ∈ A(P )− TP ↑ω.M |= ¬x}.

Informally, DDR adds to P all literals ¬x where atom x does not occur in T ↑ω. Notice
that, unlike the above semantics, DDR is syntax-dependent.

Example 6

Consider the logically equivalent programs P1 and P2:

P1 = a←

P2 = a ∨ b← a← .

Then, TP1
↑ω = {a} and TP2

↑ω = {a, b}. Hence, DDR(P1) |= ¬b, while DDR(P2) 6|= ¬b.

The complexity of consistency checking is easily determined. Ross and Topor show that
P is DDR-consistent if P is consistent. Since the converse is obvious, DDR-Consistency

and WGCWA-Consistency are trivial if P does not contain integrity clauses, as P is
consistent in this case. In the general case, we obtain by the NP-hardness of MSAT the
following simple result.
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Proposition 18

DDR-Consistency and WGCWA-Consistency are NP-complete.

Next we consider entailment. It is not hard to see that TP ↑ ω can be computed
efficiently; hence, the complexity of DDR-Entailment and WGCWA-Entailment is also
easy.

Proposition 19

DDR-Entailment and WGCWA-Entailment are coNP-complete.

Notice that Chan proved that if F is a literal, then DDR-Entailment is coNP-complete
in general, but polynomial if no integrity clauses are present [13].

Chan improved the DDR semantics by taking care of negative clauses in P , which are
not respected by DDR.

Example 7

Consider the program
P = a ∨ b← ← a, b c← a, b.

Then DDR(P ) 6|= ¬c, which is not very intuitive.

Under Chan’s Possible Worlds Semantics (PWS), however, PWS(P ) |= ¬c as suggested
by intuition.
Independently, Sakama developed his Possible Models Semantics (PMS) [56] for dis-

junctive programs. Chan showed that PMS and PWS are in fact equivalent.
For space reasons, we provide here only a characterization of the PMS. A split program

of a DLP P is any program obtained if every clause

a1 ∨ · · · ∨ an ← b1, · · · , bm, n ≥ 2,

in P is replaced for some nonempty N ⊆ {1, . . . , n} by the Horn clauses

ap ← b1, · · · , bm, for all p ∈ N.

Let SP(P ) be the family of all split programs of P . Let P be a not -free DLP. Then,

PMS(P ) = {M ∈ MM(P ′) : P ′ ∈ SP(P )}.

Notice that the PMS coincides with the DDR if P is positive; hence, PMS and PWS are
syntax dependent. Chan has shown [13] that if P is consistent, then P is PWS-consistent;
the converse follows from the definition. From the NP-hardness of MSAT, we thus obtain
the following.

Proposition 20

PWS-Consistency and PMS-Consistency are NP-complete.

Concerning entailment, Chan has shown [13] that if F is a literal, then PWS-Entailment

is coNP-complete in general, but is polynomial if integrity clauses are excluded. We obtain
the following.



T.Eiter and G.Gottlob / Computational Cost of Disjunctive Logic Programs 17

Theorem 21

PWS-Entailment and PMS-Entailment are coNP-complete.

Proof. It remains to show the membership part, which can be done as follows. A guess
for M ∈ PMS(P ) can be verified in polynomial time as follows.10 Guess P ′ ∈ SP(P ) to
verify M . Since P ′ is a collection of Horn clauses, P ′ has in case of consistency a unique
minimal model M ′, which is efficiently computable. If M ′ = M , then M ∈ PMS(P )
holds. Thus, deciding PMS(P ) 6|= F is in NP, which implies membership of the problems
in coNP.

5 Stratified disjunctive programs

The concept of stratification, which had been discussed by Chandra and Harel [14], was
introduced for logic programs independently by Apt, Blair, and Walker [2] and by van
Gelder [64]; Przymusinski generalized it to DLPs (without integrity clauses) [48]. A DLP
P without integrity clauses is stratified iff it is possible to partition the atoms into strata
〈S1, . . . , Sr〉, such that for every clause

a1 ∨ · · · ∨ an ← b1, · · · , bk,not c1, · · · ,not cm

in P there exists a constant c, 1 ≤ c ≤ r, such that

Stratum(ai) = c, for all 1 ≤ i ≤ n,

Stratum(bj) ≤ c, for all 1 ≤ j ≤ k, and

Stratum(cl) < c, for all 1 ≤ l ≤ m,

where Stratum(x) = i iff x ∈ Si. Any such 〈S1, . . . , Sr〉 is a stratification of P .11 It is
well-known that a stratification of a DLP P can be efficiently found. In particular, every
positive DLP is stratified by choosing S = 〈A(P )〉.
Gelfond et al. [28] defined the Iterated CWA (ICWA) as iterated application of ECWA to

a stratified DLP. Let 〈P̂ ; Q̂; Ẑ〉 be a partition of A(P ) and S = 〈S1, . . . , Sr〉 a stratification
of P , and let Pi be the clauses from P that contain only atoms from Sj , j ≤ i in their

heads . Furthermore, let P̂i = P̂ ∩ Si, Ẑi = Ẑ ∩ (S1 ∪ · · · ∪ Si).
The ICWA of P can be characterized as follows (cf. [28]).

ICWAP̂1;Ẑ1
(P1) = ECWAP̂1;Ẑ1

(P1),

ICWAP̂1>···>P̂n+1;Ẑn+1
(Pn+1) =

ECWAP̂n+1;Ẑn+1
(Pn+1 ∪ F(ICWAP̂1>···>P̂n;Ẑn

(Pn))), n > 0,

ICWAP̂1>···>P̂r;Ẑ
(P ) = ICWAP̂1>···>P̂r;Ẑr

(Pr),

where F(M) is some DLP P ′ such that M(P ′) =M.
10Chan follows a different proof.
11It is not clear how to extend the concept of stratification to programs with integrity clauses in a

reasonable way. Hence, we do not consider such an extension.
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Stratifiability of a program assures consistency; this is maintained for ICWA under
arbitrary partitions of A(P ).

Proposition 22 ([28])
Let P be a DLP P (without integrity clauses) stratified by S. Then, for any partition
π = 〈P̂ ; Q̂; Ẑ〉 of A(P ), P is ICWA-consistent with respect to S and π.

Thus ICWA-Consistency is trivial.12 Now let us consider entailment of a formula.
Recall that a positive DLP P is stratified by taking S = 〈A(P )〉. Thus for any partition
〈P̂ ; Q̂; Ẑ〉, we have ICWAP̂ ;Ẑ(P ) = ECWAP̂ ;Ẑ(P ). From Theorem 17 we hence obtain
the following.

Theorem 23

ICWA-Entailment, given a stratification S and a partition 〈P̂ ; Q̂; Ẑ〉 of A(P ), is ΠP
2 -

hard, even if P is positive and F is a literal.

By results in [28, Section 6], the models under ICWA can be described by the intersec-
tion of certain applications of ECWA.

Lemma 24 ([28])
For any DLP P stratified by S and any partition 〈P̂ ; Q̂; Ẑ〉,

ICWAP̂1>···>P̂r;Ẑ
(P ) =

⋂r

i=1 ECWAP̂i;P̂i+1∪···∪P̂r∪Ẑ(P ).

The next lemma, which is implicitly used in [21], immediately follows from the results
on circumscription in [10] and the equivalence of CIRC and ECWA in the propositional
case.

Lemma 25

Let P be a DLP, let 〈P̂ ; Q̂; Ẑ〉 be a partition of A(P ), and let M ∈ M(P ). Deciding
whether M ∈ ECWAP̂ ;Ẑ(P ) is in coNP.

We thus obtain the following result.

Theorem 26

ICWA-Entailment, given a stratification S = 〈S1, . . . , Sr〉 and a partition 〈P̂ ;Q̂;Ẑ〉 of
A(P ), is ΠP

2 -complete.

Proof. By Theorem 23 it remains to show the membership part.
A guess for a model M ∈ ICWAP̂1>···>P̂r;Ẑ

(P ) such that M 6|= F can be verified in
polynomial time with an NP oracle: Indeed, from Lemma 24 M ∈ ICWAP̂1>···>P̂r;Ẑ

(P )
iff M ∈ ECWAP̂i;P̂i+1∪···∪P̂r∪Ẑ(P ), for all 1 ≤ i ≤ r. Each of these membership tests
is by Lemma 25 possible with a query to an NP oracle. Hence, membership of ICWA-

12However, notice that integrity clauses are not permitted, and that S-Consistency is trivial for many
other semantics in this case, too.
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Entailment in ΠP
2 follows.

6 Perfect model semantics

Perfect model semantics was proposed by Przymusinski in [48] to capture the meaning of
normal logic programs which are not stratifiable. It involves a preference relation among
models based on the structure of the clauses which is, like ICWA, in the spirit of minimal
model semantics.
For a DLP P without integrity clauses, the priority relation < on atoms [48] is defined

using an auxiliary relation � as follows. For each clause

a1 ∨ · · · ∨ an ← b1, · · · , bk,not c1, · · · ,not cm

from P , it holds that

(i) ai < cj , for all 1 ≤ i ≤ n, 1 ≤ j ≤ m,

(ii) ai � bj , for all 1 ≤ i ≤ n, 1 ≤ j ≤ k, and

(iii) ai � aj for all 1 ≤ i, j ≤ n.

Now < and � are the smallest extensions to (i)–(iii) which satisfy a < b ⇒ a � b and
which are closed under transitivity, i.e. a � b, b � c ⇒ a � c and a � b, b < c (resp.
d < a) ⇒ a < c (resp. d < b). Intuitively, x < y means that y has higher priority than x.

We naturally extend this definition to general DLPs, in which integrity clauses are
simply ignored for defining � and <. Notice that this generalization has no effect on the
complexity of the considered problems in the general case.

Definition 27

The preference order ≪ on M(P ) is defined by M1 ≪ M2 iff M1 6= M2 and for each
x ∈M1 −M2 there exists y ∈M2 −M1 such that x < y.

Notice that M1 < M2 ⇒ M1 ≪ M2. It is not hard to find an algorithm that, given a
pair of atoms x, y, decides x < y efficiently. Consequently,

Proposition 28

Given P and M1,M2 ∈ M(P ), M1 ≪M2 is efficiently decidable.

A model M of P such that no M ′ ∈ M(P ) is preferred over M , i.e. M ′ ≪M , is called
perfect. The perfect model semantics is defined as follows.

PERF(P ) = {M ∈ M(P ) : ∀M ′ ∈ M(P ).M ′ 6≪M}.

Przymusinski has shown the following properties.
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Proposition 29 ([48])
PERF(P ) ⊆ MM(P ), and M ∈ MM(P ) is perfect iff there exists no M ′ ∈ MM(P ) such
that M ′ ≪M .

Notice that the program
P = p← not p

which is not stratifiable, has the perfect model {p}. However, not every consistent (and
hence MM-consistent) program P has a perfect model.

Example 8

The program
P = q ← ¬p p← ¬q

has no perfect model: MM(P ) = {{p}, {q}} and {p} ≪ {q}, {q} ≪ {p}.

To our best knowledge, no complexity results for PERF-Consistency and PERF-
Entailment have been derived so far, for the general case as well as for the restrictions
to definite and nondisjunctive programs.
The following result provides a lower bound for the problem of consistency checking in

the general case.

Theorem 30

PERF-Consistency is ΣP
2 -hard, even if P does not contain integrity clauses.

Proof. We show this by a reduction of deciding the validity of a quantified Boolean
formula

Φ = ∃x1 · · · ∃xn∀y1 · · · ∀ymE, n,m ≥ 1,

where E = D1 ∨ · · · ∨ Dr and each Di = Li,1 ∧ Li,2 ∧ Li,3 is a conjunction of literals
Li,j over atoms x1, . . . , xn, y1, . . . , ym. The reduction is similar to the one in the proof of
Theorem 3. Let v1, . . . , vn and z1, . . . , zm, w, w′ be new propositional atoms and define
the following DLP P :

xi ∨ vi ← for each i = 1, . . . , n

yj ∨ zj ← yj ← w,w′ zj ← w,w′

w ← yj , zj w′ ← yj , zj for each j = 1, . . . ,m

w ∨ w′ ← σ(Lk,1), σ(Lk,2), σ(Lk,3) for each k = 1, . . . , r

w ← not w′ w′ ← not w

where σ is as in the proof of Theorem 3, i.e. it maps literals from atoms x1, . . . , xn,
y1, . . . , ym to atoms as follows:

σ(L) =







vi if L = ¬xi for some i = 1, . . . , n
zj if L = ¬yj for some j = 1, . . . ,m
L otherwise
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Again, vi intuitively corresponds to ¬xi and zj to ¬yj .
We make the following observations (1)–(3). (1) For any model M of P , if M |= yj ∧ zj

for some 1 ≤ j ≤ m or M |= w∧w′, then M |= w∧w′ and M |= yj ∧ zj for all 1 ≤ j ≤ m.
(2) If M ∈ MM(P ), then M satisfies exactly one of xi and vi, for every 1 ≤ i ≤ n. (3)
For every 1 ≤ i ≤ n, there exists no atom p such that xi < p or vi < p, and for each atom
q from {w,w′, y1, z1, . . . , ym, zm}, q < w and q < w′.

We show that P has a perfect model iff the formula Φ is valid.
“⇒′′: Let M be a perfect model of P . Then, since M ∈ MM(P ), from (2) M satisfies

exactly one of xi and vi, for every 1 ≤ i ≤ n. It holds that M |= w ∧ w′. For if not,
then assume, since M |= w ∨ w′, that M |= w. The symmetry between w and w′ in P
implies that M ′ = M − {w} ∪ {w′} is another minimal model of P . This model satisfies
M ′ ≪ M , hence M is not a perfect model of P , which is a contradiction. The case
M |= w′ is analogous. Thus M |= w ∧w′, and hence yj , zj ∈M , for each 1 ≤ j ≤ m. Let
the truth value assignment ϕ to x1, . . . , xn be defined by

ϕ(xi) =

{

true if xi ∈M
false if vi ∈M

, for i = 1, . . . , n.

Since M is a perfect (and hence a minimal) model of P , for every extension of ϕ to
y1, . . . , ym, there must exist a k from 1, . . . , r such that ϕ satisfies Lk,j , for each 1 ≤ j ≤ 3.
For otherwise, there would exist a model M ′ of P such that M ′ < M and hence M ′ ≪M .
(M ′ is straightforwardly constructed from ϕ and assigns w and w′ false.) This M ′ invokes
a contradiction that M is a perfect model of P . Consequently, Φ is valid.

“⇐”: Suppose Φ is valid. Let ϕ be a truth value assignment to x1, . . . , xn such that
every extension of ϕ to y1, . . . , ym satisfies E. Let I be the following interpretation:

I = {xi : ϕ(xi) = true, 1 ≤ i ≤ n} ∪ {vi : ϕ(xi) = false, 1 ≤ i ≤ n} ∪

{y1, z1, . . . , ym, zm, w, w′}

Then, I is a model of P , and in fact a minimal model of P . Let M be any minimal
model of P distinct from I. (2) implies that there must exist an i from 1, . . . , n such that
xi ∈M − I or vi ∈M − I. From (3) it follows that M 6≪ I. Thus from Proposition 29 it
follows that I is a perfect model of P .

Since P can be constructed in polynomial time, the result follows.

We obtain the following complexity characterization of PERF-Consistency.

Theorem 31

PERF-Consistency is ΣP
2 -complete.

Proof. By Theorem 30 it remains to show membership in this class.
A guess M for a perfect model of P can be verified with an NP oracle in polynomial

time. Indeed, deciding whether there exists no M ′ ∈ M(P ) such that M ′ ≪M is in coNP
as deciding ≪ is polynomial.

An interesting issue is the complexity of PERF-Consistency for nondisjunctive DLPs.
Recall that it is NP-complete to decide whether a nondisjunctive program (with or without
integrity clauses) has a stable model. If integrity clauses were permitted, then, under the
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above definition of <, PERF-Consistency would be still ΣP
2 -hard. (The program P in

the proof of Theorem 30 can be easily rewritten such that the transformation works in
this case.) However, the complexity of this problem is unclear if integrity clauses are not
permitted. The problem remains intractable (coNP-hard), but it is questionable whether
it is still ΣP

2 -hard. We provide a result that gives some evidence that for such programs
the problem is not in NP ∪ coNP.
We show this by a reduction from UMINSAT, which is the problem to decide if a

collection C = {C1, . . . , Cn} of propositional clauses has a unique minimal satisfying
truth assignment, i.e. whether a logically equivalent DLP P has a unique minimal model.
The following has been shown in [21].

Proposition 32

UMINSAT is coNP-hard and, unless the polynomial hierarchy collapses, UMINSAT does
not belong to coDP .

coDP is a complexity class that contains –most likely properly– NP ∪ coNP [15]. We
note the following lemma.

Lemma 33

UMINSAT is polynomially transformable to deciding whether a definite DLP has a unique
minimal model.

Proof. Let a, b, and c be new atoms not occurring in C. Let P be a DLP logically
equivalent to C ∪{¬c}. Clearly, P has a unique minimal model iff C has a unique minimal
satisfying truth assignment. Let the DLP P ′ contain the following clauses:

(1) a← not b, c

(2) x← c for each atom x occurring in C, and

(3) c← ¬Ci for each Ci ∈ C,

where ¬Ci is the conjunction of the opposites of all literals in Ci. Notice that

M(P ′) = {I, I ∪ {a}, I ∪ {b}, I ∪ {a, b} : I ∈ M(P )} ∪

{A(P ) ∪ {a}, A(P ) ∪ {b}, A(P ) ∪ {a, b}}.

Thus it follows that P ′ has a unique minimal model iff P has a unique model, and the
lemma follows.

Theorem 34

PERF-consistency for definite DLPs is coNP-hard and, unless the polynomial hierarchy
collapses, not in NP ∪ coNP.

Proof. Let P be a DLP as in Lemma 33. Let p be a new atom not occurring in P , and
let P ′ be the DLP obtained from P by adding for each pair of atoms q, r that occur in P
the clause

q ← not r, p.
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This clause assures that q < r holds in P ′. Notice that no minimal model of P ′ contains
p. Thus, for any distinct minimal models M and M ′ of P ′, M ≪M ′ and M ′ ≪M holds.
Hence it follows from Proposition 29 that P ′ has a perfect model iff P ′ has a unique
minimal model. It holds that P ′ has a unique minimal model iff P has a unique minimal
model. Consequently, P ′ has a perfect model iff P has a unique minimal model. Thus
the result follows.

Now let us consider the complexity of entailment. For the lower bound of PERF-
Entailment, we make use of the following property.

Proposition 35 ([48])
If P is a positive DLP, then PERF(P ) = MM(P ).

Theorem 36

PERF-Entailment is ΠP
2 -complete. ΠP

2 -hardness holds even if P is positive and F is a
literal.

Proof. Membership in ΠP
2 holds as a guess for M ∈ PERF(P ) such that M 6|= F can

be verified in polynomial time with an NP oracle (cf. proof of Theorem 30). Hardness for
ΠP

2 under the asserted restriction follows from Corollary 6 and Proposition 35.

As for PERF-Consistency, it is open whether the complexity of PERF-Entailment

is for definite DLPs the same as in the general case. (If P is nondisjunctive, the problem
remains ΠP

2 -hard.) The problem is trivially coNP-hard if F is an arbitrary formula;
whether this applies to the case where F is a literal remains unclear. From Theorem 34,
we obtain the following interesting lower bound.

Theorem 37

PERF-Entailment where P is definite and F is a literal is NP-hard and, unless the
polynomial hierarchy collapses, not in NP ∪ coNP.

Proof. Let P be a definite DLP P and p an atom not occurring in P . Then, PERF(P ∪
{p ←}) |= ¬p iff P is not PERF-consistent. Since deciding the latter is coNP-hard and
not in NP ∪ coNP by Theorem 34, the result follows.

7 Classical negation

Gelfond and Lifschitz [25] pointed out that traditional logic programming does not al-
low to deal directly with incomplete information, which is a shortcoming for convenient
knowledge representation. In order to overcome this limitation, they introduced extended
definite logic programs, which permit classical negation besides negation as default. They
defined the answer set semantics for such programs, which is in the spirit of stable model
semantics. Moreover, they considered also the generalization of extended definite logic
programs by allowing for disjunction in the rule heads, and suitably generalized the answer
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set semantics for the resulting extended disjunctive logic programs (EDLPs). Przymusin-
ski proposed in [49] an extension of DLPs which is basically equivalent to EDLPs with
answer set semantics.
Gelfond and Lifschitz emphasized that the answer set semantics of extended definite

programs can be equivalently described by a reduction of such programs into a fixpoint
nonmonotonic formalism, and described such a reduction to Reiter’s default logic [53].
The view of extended definite programs as default theories led Ben-Eliyahu and Dechter to
apply techniques developed for answering queries on default theories to EDLPs [4]. They
showed that answer set semantics for the large class of headcycle-free EDLPs can be
efficiently expressed in propositional logic in polynomial time. Generalizing the results of
Marek and Truszczyński [38, 39] and Bidoit and Froidevaux [6], they obtained that for this
class the problems of deciding whether an answer set exists and whether a set of literals
occurs in any (resp. every) answer set is efficiently reducible to deciding satisfiability (resp.
provability) of a propositional formula. A similar efficient reduction for the class of all
propositional EDLPs was left as an open issue in [4], which has been resolved (unless the
polynomial hierarchy collapses at its first level) in [20].
An extended disjunctive logic program (EDLP) is a collection of rules of the form

L1| · · · |Lk ← Lk+1, . . . , Lm,not Lm+1, . . . ,not Ln,

where n ≥ m ≥ k ≥ 0 and each Li is a literal under classical negation “¬”, and “not”
is a negation-by-default operator. The symbol “|” is used to distinguish the nonstandard
“effective” disjunction in the head of a rule from standard logical disjunction. A rule with
empty head (k = 0) is called integrity rule. An EDLP P in which “not” does not occur
is called not -free. We consider here finite propositional EDLPs in which all atoms are
propositions, and omit the phrase “finite propositional” in the sequel.

Answer sets of EDLPs are defined as follows. Let a context [4] be any subset of Lit, the
set of literals under ¬ from the atoms of P . Let P be a not -free EDLP. Call a context S
closed under P [40] iff for each rule L1| · · · |Lk ← Lk+1, . . . , Lm in P , if Lk+1, . . . , Lm ∈ S,
then for some i = 1, . . . , k, Li ∈ S. An answer set of P is any in terms of ⊆ minimal
context S such that (1) S is closed under P and (2) if S is inconsistent, then S = Lit.
An answer set of a general EDLP P is defined as follows. Let the reduct of P with

respect to context S (denoted by Red(P, S)) be the EDLP obtained from P by deleting

(i) each rule that has not L in its body for some L ∈ S, and

(ii) all subformulae of the form not L of the bodies of the remaining rules.

Any context S which is an answer set of Red(P, S) is an answer set of P . By ANSW(P )
we denote the collection of all consistent answer sets of an EDLP P . An EDLP P is
ANSW-consistent iff ANSW(P ) 6= ∅, and P entails a propositional formula F (P |= F )
iff F ∈ Cn(S) for each S ∈ ANSW(S).
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Example 9

Consider the following EDLP borrowed from [49], which states that everyone is pronounced
not guilty unless proven otherwise:

innocent | guilty ← charged
¬guilty ← not proven
charged ←

P has the single answer set {¬guilty, innocent, charged}. Neither proven nor ¬proven
appears in the answer set, which informally means that nothing is known about proven,
and both not proven, not (¬proven) are assumed by default.

The problems ANSW-Consistency and ANSW-Entailment are defined analogous to
the problems S-Consistency and S-Entailment for standard DLPs. Notice that the
complexity of these problems for general EDLPs, the latter stated for instances where F
is a conjunction of literals, was left open in [4].
We provide the solution using the correspondence between stable models of disjunctive

logic programs and answer sets of EDLPs. Let for every DLP clause

C = a1 ∨ · · · ∨ an ← b1, · · · , bk,not bk+1, · · · ,not bm

be e(C) the rule
a1| · · · |an ← b1, . . . , bk,not bk+1, . . . ,not bm,

and denote by e(P ) the collection of all e(C) for C ∈ P .

Lemma 38

Let P be a DLP and M be an interpretation. Then, M is a stable model of P iff M is a
consistent answer set of e(P ). 13

Proof. Notice that for any interpretation I, e(P I) = Red(e(P ), I), and that each answer
set of e(P ) contains only positive literals, i.e. corresponds to some interpretation. Since
negation does not occur in P I resp. Red(e(P ), I), it follows for every interpretation J ⊆ I,
that J is closed under Red(e(P ), I) if J is a model of P I and vice versa. Consequently, J
is a minimal model of P I iff J is a minimal context which is closed under Red(e(P ), I).
Hence it follows that I is a stable model of P iff I is a consistent answer set of e(P ).

Theorem 39

ANSW-Consistency is ΣP
2 -complete. ΣP

2 -hardness holds even if “¬” does not occur in
P and P contains no integrity clauses.

Proof. Membership in ΣP
2 is shown as follows. A guess S for a consistent answer set

S of P can be verified in polynomial time with an NP oracle: Red(P, S) is efficiently
computable, and deciding whether S′ ⊂ S exists such that S′ is closed under Red(P, S)
is possible with a call to the NP oracle. Hardness for ΣP

2 under the asserted restriction
follows from Lemma 38 and Theorem 3.

13M is seen as a subset of the Herbrand base, i.e. as a set of positive literals.
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Theorem 40

ANSW-Entailment is ΠP
2 -complete. ΠP

2 -hardness holds even if “¬” does not occur in
P , P contains no integrity rule, and F is a literal.

Proof. Membership in ΠP
2 follows since a guess S for a consistent answer set S of

P such that S 6|= F can be verified in polynomial time with an NP oracle (cf. proof of
Theorem 39). Hardness for ΠP

2 under the asserted restriction can be easily derived from
Theorem 39. Let P ′ be the program resulting from a “¬”-free program P that contains
no integrity clauses by adding the clause p ∨ q ← , where p and q are new atoms. Then,
clearly ANSW(P ′) |= p iff ANSW(P ) = ∅; hence, the result follows.

We conclude this section with a remark on implications of our results to a recent
extension of logic programming. Marek, Rajasekar, and Truszczyński propose in [37]
an extension of EDLPs in which the atomic formulae Li in a rule are from a class F
of propositional formulae (which includes all atoms) instead from Lit, and define the
concept of answer set (in their terms stable answer set) accordingly. They report that
deciding whether a program P has a stable answer set is in ΣP

2 , and that deciding whether
every stable answer set of P entails a formula F ∈ F is in ΠP

2 . They conjecture that
the problems are ΣP

2 -complete resp. ΠP
2 -complete if F consists of all atoms only. Their

framework, however, reduces in this case to EDLPs and answer sets as above. Thus from
Theorem 39 this conjecture is easily proved.

8 Application to Nonmonotonic Logics

It is well-known that logic programming is closely related to various forms of nonmono-
tonic reasoning, and that logic programs can be equivalently expressed in nonmonotonic
formalisms by use of transformations, cf. [46]. We exploit this relation to obtain new
complexity results for nonmonotonic logics.
In particular, we consider in this section applications of the above complexity results

for disjunctive logic programming to disjunctive default logic [27] and autoepistemic logic
[45, 38]. We assume that the reader is familiar with Reiter’s default logic [53] and Moore’s
autoepistemic logic [45].

8.1 Disjunctive default logic

Disjunctive default theory has been proposed in [27] as a generalization to default logic
to overcome difficulties of default logic in handling disjunctive information. A disjunctive
default is a rule of the form

α : β1, . . . , βm

γ1| · · · |γn
,

where α, β1, . . . , βm, γ1, . . . , γn, (n,m ≥ 0) are quantifier-free first-order formulae. α is
the prerequisite, the βi are the justifications, and the γj are the consequents. The familiar
default rule of Reiter’s formalism is obtained for n = 1. A disjunctive default rule allows
to effectively conclude one of the γi’s (rather than their disjunction) if α is derivable and
¬β1,. . . ,¬βm are not derivable. The symbol “|” denotes as in EDLPs effective disjunction.
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A disjunctive default theory is a set of disjunctive defaults. The semantics of a disjunctive
default theory is defined in terms of its extensions, which are deductively closed sets of
formulae defined analogous to extensions of Reiter’s default logic (cf. [27] for details). We
consider in the following finite disjunctive default theories over a propositional language.
The main reasoning tasks for disjunctive default logic are the following. Given a dis-

junctive default theory D, decide (i) whether D has an extension; (ii) whether a given
formula ϕ belongs to some extension of D; and (iii) whether a given formula ϕ belongs
to every extension of D.
By very recent results in [37], (i) and (ii) are in ΣP

2 and (iii) is in ΠP
2 . Notice that

the same upper bounds have been established for the corresponding problems in Reiter’s
default logic [29, 62].
Since disjunctive default logic properly generalizes Reiter’s default logic, it follows from

the results in [29, 62] that (i) and (ii) are ΣP
2 -hard and that (iii) is ΠP

2 -hard if arbitrary
propositional formulae are permitted to appear in the defaults.

Our results on EDLPs allow to sharpen these lower bounds considerably, namely to
disjunctive default theories where α and all βi and γj are conjunctions of literals. Notice
that for classical default logic, under this restriction (i) and (ii) are in NP and (iii)
is in coNP (this can be easily shown from the constructive fixed-point characterization
of extensions). Moreover, by the results in [31], the problems are also hard and hence
complete for the respective classes.
As shown in [27], a propositional EDLP P can be transformed into an equivalent

disjunctive default theory embD(P ) by replacing every rule

L1| · · · |Lk ← Lk+1, . . . , Lm,not Lm+1, . . . ,not Ln,

with the disjunctive default

Lk+1 ∧ · · · ∧ Lm : Lm+1, . . . , Ln

L1| · · · |Lk

, (1)

where L is the opposite literal of L.

Proposition 41 ([27, Theorem 7.2])
Let P be a propositional EDLP. Then S is an answer set of P iff S is the set of literals
from an extension of embD(P ).

Applying this embedding and our results on EDLPs in the previous section, we arrive at
the following sharpening of the lower bounds for the main reasoning tasks in disjunctive
default logic.

Theorem 42

Let D be a finite propositional disjunctive default theory such that each prerequisite α and
all justifications βi and consequents γj occurring in D are conjunctions of literals. Then,
deciding (i) whether D has an extension is ΣP

2 -hard; (ii) whether a given literal L belongs
to some extension of D is ΣP

2 -hard; and (iii) whether a given literal L occurs in every
extension of D is ΠP

2 -hard.
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Proof. Let P be an EDLP in which “¬” does not occur and which does not contain
any integrity rule. Each answer set of P must be consistent. Hence from Proposition 41
each extension of embD(P ) is consistent in this case. Thus (i) follows from Theorem 39.
To show (ii), add the clause p ← to P , where p is a new atom not occurring in P ,
and let L be p; hence (ii) follows from Theorem 39. (iii) follows from Theorem 40.

As seen from the proof, the result of Theorem 42 remains valid if all justifications
and consequents occurring in D must be literals and extensions must be consistent, i.e.
“extension” is replaced by “consistent extension”. Notice that Theorem 42 extends to
completeness results.

8.2 Autoepistemic logic

Recall that E is an autoepistemic expansion [45] of an autoepistemic theory T , i.e. a set
of formulae from a modal language with modal operator L, iff

E = Cn(T ∪ {Lϕ : ϕ ∈ E} ∪ {¬Lϕ : ϕ /∈ E})

[49] offers a transformation by which any DLP P without integrity clauses can be embed-
ded into an equivalent autoepistemic theory embA(P ). For every clause

a1 ∨ · · · ∨ an ← b1, . . . , bk,not bk+1, . . . ,not bm

of P , the formula

b1 ∧ · · · ∧ bk ∧ ¬Lbk+1 ∧ · · · ∧ ¬Lbm ⇒ a1 ∨ · · · ∨ an, (2)

is in embA(P ), and for every propositional atom p the formula

p⇒ Lp

is in embA(P ), which contains nothing else. It is easy to see that every stable set (cf. [38]
for a definition) which contains embA(P ), and hence every stable expansion of embA(P ),
contains p or ¬p for every atom p.

Przymusinski has shown the following property of embA(P ).

Proposition 43 ([49])
Let P be a DLP without integrity clauses. There is a 1-1 correspondence between the
stable models of P and the stable expansions of embA(P ), such that atom p is true in a
stable model iff p belongs to the corresponding stable expansion.

The main reasoning tasks in autoepistemic logic are the following. Given an autoepis-
temic theory T , decide (i) whether T has an expansion; (ii) whether a given formula ϕ
belongs to some expansion of T ; and (iii) whether ϕ belongs to every expansion of T .
Niemelä [47] showed that in case of a finite propositional T , (i) and (ii) are in ΣP

2 and
(iii) is in ΠP

2 . Gottlob complemented these upper bounds with respective hardness results
[29]; his proof, however, required that complex formulae can occur in T .
Our results on stable model semantics lead by virtue of the embedding embA(·) to the

following noticeable sharpening of these hardness results. Call an autoepistemic theory a
disjunctive autoepistemic literal theory (DALT) if it contains only disjunctions D1 ∨ · · · ∨
Dn, where each Di is a modal literal LB or ¬LB, where B is a literal, or Di is a literal.
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Theorem 44

Given a finite propositional DALT T , deciding (i) whether T has a stable expansion is
ΣP

2 -hard; (ii) whether a given atom p belongs to some stable expansion of T is ΣP
2 -hard;

and (iii) whether a given atom p belongs to every stable expansion of T is ΠP
2 -hard.

Proof. Let P be a DLP without integrity clauses. Notice that each stable expansion of
embA(P ) is consistent. We apply Theorem 3 and Proposition 43. (i) follows immediately.
To show (ii) and (iii), let p be a new atom which does not occur in P ; p belongs to some
stable expansion of embA(P ∪{p←}) iff P has a stable model, which proves (ii). Further,
p belongs to every stable expansion of embA(P ∪ {p ← p}) iff P has no stable model,
which proves (iii).

As seen from the proof, Theorem 44 holds also if only consistent stable expansions are
permitted, i.e. “expansion” is replaced by “consistent expansion”. By the results in [47],
the hardness results extend to completeness results.
To conclude this section, we mention that the results of this paper have further appli-

cations to variants of standard autoepistemic logic. For example, the above embedding
embA(·) also can be applied to moderately grounded expansions and parsimonious sta-
ble expansions [19]. Notice that based on the results of [19], Schaerf was able to derive
similar complexity results for these variants of autoepistemic logic [57]. Furthermore,
complexity results for restricted fragments of reflexive autoepistemic logic [61] and 3-
valued autoepistemic logic [50] can be obtained by embeddings of EDLPs into reflexive
autoepistemic logic [33, 40] and of DLPs into 3-valued autoepistemic logic [49].

9 Conclusion

In this paper we have analyzed the computational cost of important problems for dis-
junctive logic programming in the case of finite propositional programs. In particular,
the complexity of deciding whether a disjunctive logic program (DLP) has a model under
semantics S (S-Consistency) and the complexity of deciding whether a propositional
formula is a consequence of all models of a DLP under semantics S (S-Entailment) have
been studied for various well-known semantics S of DLPs. Besides sharpenings of know
results, new results for the disjunctive stable model semantics (for models (DSM) as well
as partial models (PDSM)) and the Perfect Model Semantics (PERF) have been derived.
Furthermore, the complexity of the corresponding problems for extended disjunctive logic
programs (EDLPs) under the answer set semantics has been settled. Our results provide
the solutions to problems left open in [4] and to a conjecture in [37]. In particular, the
question in [4] whether stable semantics can be transformed for all EDLPs in polynomial
time into satisfiability or provability of a propositional formula has a negative answer
unless the polynomial hierarchy collapses at its first level.
It appeared that S-Consistency is ΣP

2 -complete for DSM, PDSM, ANSW, and PERF,
and NP-complete for all remaining semantics except the Iterated Closed World Assump-
tion (ICWA), which was restricted to programs without integrity clauses, i.e. clauses with
empty heads. Under this restriction S-Consistency remains ΣP

2 -hard for DSM, PDSM,
ANSW, and PERF, but becomes polynomial for all other semantics. An intuitive expla-
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nation of ΣP
2 -hardness of DSM resp. PDSM are two interacting sources of complexity:

The (potentially exponential) number of candidates M for a stable model and, due to
a minimality condition on M , the difficulty of checking whether a candidate is a stable
model. Analogous explanations applies to ANSW and PERF.
S-Entailment turned out to be ΠP

2 -hard for all considered semantics except the Dis-
junctive Database Rule (DDR) (resp. the equivalent Weak Generalized Closed World
Assumption (WGCWA)) and the Possible Models Semantics (PMS) (resp. the equivalent
Possible Worlds Semantics (PWS)), for which the problem is coNP-complete. For all
ΠP

2 -hard semantics the problem is also known to be in ΠP
2 except the Generalized Closed

World Assumption (GCWA) and the Careful Closed World Assumption (CCWA), for
which ∆P

3 [O(log n)] is the currently best known upper bound. It was shown that the ΠP
2 -

hardness results still hold under the restriction that the program contains no integrity
clauses, that negation does not occur in the program, and that F is a literal. In this
case, the problem was known to be polynomial for DDR, WGCWA, PMS, and PWS.
An intuitive explanation of ΠP

2 -hardness are two sources of complexity: The (potentially
exponential) number of candidates for a model which does not satisfy F and, due to some
minimality criterion, the difficulty of verifying that a classical model is a model under the
particular semantics. This difficulty is caused by disjunctions in the heads of clauses or,
in some case, alternatively by integrity clauses.
We believe that this paper supports a better understanding of the computational prop-

erties of finite propositional DLPs. Exact complexity characterizations of tasks in logic
programming help to gain insight into obstacles to efficient logic programming; the reader
is referred to [12, 59] for more on this issue.
The results of this paper and recent complexity results for nonmonotonic logics (cf. [12]

for an overview) imply as a byproduct that queries to DLPs resp. EDLPs can be efficiently
translated into reasoning tasks in many forms of nonmonotonic reasoning. For disjunctive
default theory and autoepistemic logic we obtained new complexity results by such trans-
formations. Vice versa, the results imply that reasoning tasks in many nonmonotonic
formalisms can be efficiently reduced to disjunctive logic programming. The computa-
tional relationship underlines the close connection between disjunctive logic programming
and nonmonotonic logics, and supports that logic programming is a competitive tool for
knowledge representation.

Acknowledgements

The authors would like to thank Helmut Veith and an anonymous referee for their valuable
comments on this paper.

References

[1] K. Apt and H. Blair. Arithmetic Classification of Perfect Models of Stratified Programs. In R. Kowal-
ski and K. Bouwen, editors, Proceedings of the Fifth Joint International Conference and Symposium
on Logic Programming (JICSLP-88), pages 766–779. MIT Press, 1988.

[2] K. Apt, H. Blair, and A. Walker. Towards a Theory of Declarative Knowledge. In Minker [44],



T.Eiter and G.Gottlob / Computational Cost of Disjunctive Logic Programs 31

pages 89–148.
[3] C. Baral, J. Lobo, and J. Minker. Generalized Disjunctive Well-Founded Semantics for Logic Pro-

grams: Declarative Semantics. In Z. Ras, M. Zemenkova, and M. Emrich, editors, Proceedings
Fourth International Symposium on Methods for Intelligent Systems (ISMIS-90), pages 465–473,
October 1990.

[4] R. Ben-Eliyahu and R. Dechter. Propositional Semantics for Disjunctive Logic Programs. In Pro-
ceedings Joint International Conference and Symposium on Logic Programming JICSLP-92, pages
813–827, Washington DC, November 1992. Full paper to appear in Annals of Mathematics and
Artificial Intelligence.

[5] N. Bidoit and C. Froidevaux. General Logic Databases and Programs: Default Semantics and
Stratification. Information and Computation, 19:15–54, 1991.

[6] N. Bidoit and C. Froidevaux. Negation by Default and Unstratifiable Programs. Theoretical Com-
puter Science, 78:85–112, 1991.

[7] H. Blair and C. Cholak. The Complexity of Local Stratification. Technical report, School of
Computer and Information Sciences, Syracuse University, 1992.

[8] H. Blair, W. Marek, A. Nerode, and J. Remmel, editors. Informal Proceedings of the Workshop on
Structural Complexity and Recursion-Theoretic Methods in Logic Programming, Washington DC,
November 1992. Cornell University, Mathematical Sciences Institute.

[9] H. Blair, W. Marek, and J. Schlipf. The Expressiveness of Locally Stratified Programs. Technical
Report 92-8, Mathematical Sciences Institute, Cornell University, 1992. Annals of Mathematics and
Artificial Intelligence 1995, to appear.

[10] M. Cadoli. The complexity of model checking for circumscriptive formulae. Information Processing
Letters, 44:113–118, 1992.

[11] M. Cadoli and M. Lenzerini. The Complexity of Closed World Reasoning and Circumscription.
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