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Abstract. Abduction is a fundamental mode of reasoning, which has taken on in-
creasing importance in Artificial Intelligence (AI) and related disciplines. Com-
puting abductive explanations is an important problem, and there is a growing
literature on this subject. We contribute to this endeavor by presenting new re-
sults on computing multiple resp. all of the possibly exponentially many expla-
nations of an abductive query from a propositional Horn theory represented by
a Horn CNF. Here the issues are whether a few explanations can be generated
efficiently and, in case of all explanations, whether the computation is possible in
polynomial total time(or output-polynomial time), i.e., in time polynomial in the
combined size of the input and the output. We explore these issues for queries in
CNF and important restrictions thereof. Among the results, we show that comput-
ing all explanations for a negative query literal from a Horn CNF is not feasible
in polynomial total time unlessP = NP, which settles an open issue. However,
we show how to compute under restriction to acyclic Horn theories polynomi-
ally many explanations in input polynomial time and all explanations in polyno-
mial total time, respectively. Complementing and extending previous results, this
draws a detailed picture of the computational complexity of computing multiple
explanations for queries on Horn theories.

Keywords: Computational logic, abduction, propositional logic, Horn theories, poly-
nomial total time computation, NP-hardness.

1 Introduction
Abduction is a fundamental mode of reasoning, which was extensively studied by C.S.
Peirce [19]. It has taken on increasing importance in Artificial Intelligence (AI) and
related disciplines, where it has been recognized as an important principle of common-
sense reasoning (see e.g. [3]). Abduction has applications in many areas of AI and
Computer Science including diagnosis, database updates, planning, natural language
understanding, learning etc. (see e.g. references in [10]), where it is primarily used for
generating explanations.

In a logic-based setting, abduction can be viewed as the task to find, given a set of
formulasΣ (thebackground theory) and a formulaχ (thequery), a minimal set of for-
mulasE (anexplanation) from a set of hypothesesH such thatΣ plusE is satisfiable
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and logically entailsχ. Often considered is a scenario whereΣ is a propositional Horn
theory,χ is a single literal or a conjunction of literals, andH contains literals (see [24,
10] and references therein). For use in practice, the computation of abductive explana-
tions in this setting is an important problem, for which well-known early systems such
as Theorist [20] or ATMS solvers [6, 22] have been devised. Since then, there has been a
growing literature on this subject, indicating the need for efficient abductive procedures.
We refer to [18], which gives an excellent survey on intimately closely related problems
in computational logic. Note that much effort has been spent on studying various input
restrictions, cf. [14, 4, 13, 25, 8, 7, 10, 23, 24].

While computingsomeexplanation of a queryχ has been studied extensively in the
literature, the issue of computing multiple or evenall explanations forχ has received
less attention. This problem is important since often one would like to select one out of
a set of alternative explanations according to a preference or plausibility relation; this
relation may be based on subjective intuition and thus difficult to formalize. As easily
seen, exponentially many explanations may exist for a query, and thus computing all ex-
planations inevitably requires exponential time in general, even in propositional logic.
However, it is of interest whether the computation is possible inpolynomial total time
(or output-polynomial time), i.e., in time polynomial in the combined size of the input
and the output. Furthermore, if exponential space is prohibitive, it is of interest to know
whether a few explanations (e.g., polynomially many) can be generated in polynomial
time, as studied by Selman and Levesque [24].

Computing some explanation for a queryχ which is a literal from a Horn theory is
a well-known polynomial problem. Selman and Levesque conjectured [24] that gener-
atingO(n) many explanations for a positive literal is NP-hard, wheren is the number
of propositional atoms in the language, even if it is guaranteed that there are only few
explanations overall. As shown in [11], this conjecture is not true unlessP=NP. This
follows from the result of [11] that all explanations for an atom can be generated in
polynomial total time.

The status of generating all explanations for a negative literalχ = q from a Horn
CNFϕ, however, remained open in [11]. Moreover, it was unclear whether a resolution-
style procedure similar to the one for query atoms in [11] could solve the problem in
polynomial total time. In this paper, we provide a negative answer to this question, by
showing that given a collection of explanations for a queryχ = q from a Horn CNFϕ,
deciding whether there is an additional explanation is NP-complete. Consequently, the
existence of a polynomial total time algorithm for computing all explanations implies
P=NP. However, for the well-known class of acyclic Horn theories (see e.g. [5, 24, 21,
1]) we present an algorithm which enumerates all explanations forq with incremental
polynomial delay (i.e., in time polynomial in the size of the input and output so far),
and thus solves the problem in polynomial total time. Compared to explanations for an
atomic queryq, intuitively cyclic dependencies between atoms make the problem diffi-
cult. For completeness, a resolution-style procedure as in [11] needs to consider besides
the input and output clauses also auxiliary clauses (see Example 7), whose derivation
may cause a lot of overhead, since it is not a priori clear which such clauses are needed.

We furthermore address computing all explanations for queriesχ beyond literals,
where we consider CNF and important special cases such as a clause and a term (i.e., a



conjunction of literals). Note that the explanations for single clause queries correspond
to the minimal support clauses for a clause in Clause Management Systems [22]. In the
light of the negative results from above, we aim at elucidating the tractability frontier
and present positive as well as negative results for such queries.

Our results shed new light on the computational nature of abduction and Horn the-
ories in particular. They imply that, e.g., generating all minimal support clauses for a
given clause (cf. [22]) from an acyclic Horn CNF is feasible in polynomial total time.
The intractability result for negative literal queriesq is somewhat unexpected, and the
tractability result for acyclic Horn theories is more difficult to obtain than in case of
atomic queries. As a byproduct, we also obtain results for computing all prime impli-
cates of Horn theories containing a certain literal, which complement and refine previ-
ous results for computing all prime implicates of a Horn theory [2].

For space reasons, some proofs are omitted; we refer to the extended version [12].

2 Preliminaries and Notation

We assume a standard propositional language with atomsx1, x2, . . . , xn from a setAt,
where eachxi takes either value1 (true) or0 (false). Negated atoms are denoted byxi,
and the opposite of a literal` by `. Furthermore, we useA = {` | ` ∈ A} for any set of
literalsA and setLit = At ∪At.

A clause is a disjunctionc =
∨

p∈P (c) p ∨
∨

p∈N(c) p of literals, whereP (c) and
N(c) are the sets of atoms occurring positively and negated inc andP (c) ∩ N(c) =
∅. Dually, a term is conjunctiont =

∧
p∈P (t) p ∧

∧
p∈N(t) p of literals, whereP (t)

andN(t) are similarly defined. We also view clauses and terms as sets of literals
P (c) ∪ N(c) andP (t) ∪ N(t), respectively. A clausec is Horn, if |P (c)| ≤ 1; def-
inite, if |P (c)| = 1; andnegative(resp.,positive), if |P (c)| = 0 (resp.,|N(c)| = 0). A
conjunctive normal form (CNF) is a conjunction of clauses. It isHorn (resp.,definite,
negative, positive), if it contains only Horn clauses (resp., definite, negative, positive
clauses). AtheoryΣ is any finite set of formulas; it isHorn, if it is a set of Horn
clauses. As usual, we identifyΣ with ϕ =

∧
c∈Σ c, and writec ∈ ϕ etc.

A modelis a vectorv ∈ {0, 1}n, whosei-th component is denoted byvi. ForB ⊆
{1, . . . , n}, we letxB be the modelv such thatvi = 1, if i ∈ B andvi = 0, if i /∈ B,
for i∈{1, . . . , n}. Satisfactionv |= ϕ and logical consequenceϕ |= c, ϕ |= ψ etc. are
defined as usual (i.e.,ϕ(v) = 1 etc.).

Example 1.The CNFϕ = (x1∨x4)∧(x4∨x3)∧(x1∨x2)∧(x4∨x5∨x1)∧(x2∨x5∨x3)
overAt = {x1, x2, . . . , x5} is Horn. The vectoru = (0, 1, 0, 1, 0) is a model ofϕ. ut

The following proposition is well-known.

Proposition 1. Given a Horn CNFϕ and a clausec, deciding whetherϕ |= c is possi-
ble in polynomial time(in fact, in linear time, cf.[9]).

Recall that two clausesc andc′ resolve on a pair of literalsx, x if x, x ∈ c ∪ c′ and
c ∪ c′ \ {x, x} is a legal clause (thus,x must occur in exactly one ofc andc′, and same
for x); c andc′ resolve if their is a pair of literalsx, x on which they resolve. Note that
this pair, if it exists, is unique. In that case, we denote byc⊕c′ the clausec∪c′ \{x, x},
which is theirresolvent(otherwise,c⊕ c′ is undefined). Aresolution proofof a clause



c from a CNFϕ is a sequencec1, c2, . . . , cl of clauses such thatcl = c and, for all
i = 1, . . . , l, eitherci ∈ ϕ or ci = cj ⊕ ck for clausescj andck such thatj, k < i.
It is well-known that resolution proofs are sound and complete with respect to clause
inference in the following sense (cf. [18]): For any CNFϕ and clausec, ϕ |= c holds
iff there is a clausec′ ⊆ c which has a resolution proof fromϕ. For further background
on resolution, we refer to [17, 16].

2.1 Abductive explanations

The notion of an abductive explanation can be formalized as follows (cf. [24, 10]).

Definition 1. Given a (Horn) theoryΣ, called the background theory, a CNFχ (called
query), anexplanation ofχ is a minimal set of literalsE ⊆ Lit such that

(i) Σ ∪ E |= χ, and
(ii) Σ ∪ E is satisfiable.

Example 2.Reconsider the Horn CNFϕ = (x1 ∨ x4)∧ (x4 ∨ x3)∧ (x1 ∨ x2)∧ (x4 ∨
x5 ∨ x1) ∧ (x2 ∨ x5 ∨ x3) from above. Suppose we want to explainχ = x2 from
A = {x1, x4}. Then, we find thatE = {x1} is an explanation. Indeed,Σ∪{x1} |= x2,
andΣ ∪{x1} is satisfiable; moreover,E is minimal. On the other hand,E′ = {x1, x4}
satisfies (i) and (ii) forχ = x2, but is not minimal. ut

More restricted forms of explanations require thatE must be formed over a given set
of abducible letters (cf. [24]); however, in such a setting, generating all explanations is
easily seen to becoNP-hard for the cases that we consider from results in the literature.

The following characterization of explanations is immediate by the monotonicity of
classical logic.

Proposition 2. For any theoryΣ, any queryχ, and anyE ⊆ Lit, E is an explanation
for χ fromΣ iff the following conditions hold: (i)Σ ∪E is satisfiable, (ii)Σ ∪E |= χ,
and (iii) Σ ∪ (E \ {`}) 6|= χ, for every` ∈ E.

From Proposition 2, we thus obtain the following easy lemma.

Lemma 1. Given a Horn CNFϕ, a setE ⊆ Lit, and a CNF queryχ, deciding whether
E is an explanation forχ w.r.t.A is possible in polynomial time.

3 Intractability of Negative Literal Queries
In this section, we show that computing all explanations of a negative queryχ = q is
not possible in polynomial total time unlessP = NP. This result follows by standard
arguments from the following theorem.

Theorem 1. Given a Horn CNFϕ, a queryχ = q, and explanationsE1, E2, . . . ,Ek

for χ, deciding whetherχ has some additional explanationEk+1 different from each
Ei, 1 ≤ i ≤ k, is NP-complete. Hardness holds even ifϕ is definite Horn.

In the proof of Theorem 1, we use the following well-known lemma, which links prime
implicates of a theory to explanations. Recall that aprime implicateof a theoryΣ is a
minimal (w.r.t. inclusion) clausec such thatΣ |= c. Let us call an explanationE for a
literal queryχ = ` trivial , if E = {`}.



Lemma 2 (cf. [22, 15]).Given a theoryΣ, a setE ⊆ Lit is a nontrivial explanation
of a query literalχ iff the clausec =

∨
`∈E ` ∨ χ is a prime implicate ofΣ.

Noteχ = ` has a trivial explanation iffΣ 6|= ` andΣ 6|= `, which can be checked in
polynomial time. Hence, as for NP-hardness we can without loss of generality focus on
generating the nontrivial explanations ofq, i.e., all prime implicates containingq.

Proof of Theorem 1. As for membership in NP, an additional explanationEk+1 can be
guessed and, by Lemma 1, be verified in polynomial time.

We show the NP-hardness by a reduction from 3SAT. Letγ = c1∧· · ·∧cm,m ≥ 2,
be a 3CNF over atomsx1, . . . , xn, whereci = `i,1 ∨ `i,2 ∨ `i,3. We introduce for each
clauseci a new atomyi, for eachxj a new atomx′j (which intuitively corresponds to
xi), and special atomsq andz. The Horn CNFϕ contains the following clauses:

1. ci,j = q ∨ `?i,j ∨ yi, for all i = 1, . . . ,m andj = 1, 2, 3;
2. di,j = `?i,j ∨ yi ∨ yi+1, for all i = 1, . . . ,m andj = 1, 2, 3;
3. xi ∨ x′i ∨ z, for all i = 1, . . . , n;
4. e = y1 ∨ y2 ∨ · · · ∨ ym ∨ z,

where`?i,j = xk if `i,j = xk and`?i,j = x′k if `i,j = xi, andym+1 = y1.
Note thatϕ is definite Horn, and thus all prime implicates ofϕ are definite Horn.

Informally, the clausesci,j anddi,j stand for selection of literal̀i,j in clauseci. The
clause in 4., which is needed to produce any negative prime implicatec containingq,
and the minimality of a prime implicate will effect that a literal is chosen from each
clauseci, and the clauses in 3. will ensure that the choice is consistent, such thatγ is
satisfied. Since the positive prime implicates containingq are just the clausesci,j , the a
further prime implicate ofϕ containingq exists iffγ is satisfiable.

We establish the following properties ofϕ.

Lemma 3. Any prime implicatec of ϕ such thatq ∈ N(c) andP (c) 6= {z} is of the
form ci,j , wherei ∈ {1, . . . ,m} andj ∈ {1, 2, 3}.
Lemma 4. Any prime implicatec ofϕ such thatP (c) = {z} andq ∈ N(c) satisfies (i)
{xi, x

′
i} 6⊆ N(c), for all i = 1, . . . , n, and (ii) yi /∈ N(c), for all i = 1, . . . ,m.

From Lemma 3, it is now easy to see that all prime implicates ofϕ given by the clauses
in 1. correspond to nontrivial explanations ofq, and from Lemma 4 that an additional
nontrivial explanation forq exists if and only if some prime implicate ofϕ of form
c = q ∨

∨
xi∈X xi ∨

∨
x′

i
∈X′ x′i ∨ z exists iff the CNFγ is satisfiable. As for the

last equivalence, note that for each smallest (w.r.t.⊆) choice`i ∈ ci of a consistent
collection of literals`1, . . . , `m, we have an additional prime implicate ofϕ of form
q ∨

∨
`i
`?i ∨ z. Conversely, each additional prime implicatec containingq gives rise to

a consistent set of literals{xj | xi,j ∈ N(c)} ∪ {xj | x′i,j ∈ N(c)} which satisfiesγ.
Clearly,ϕ is constructible in polynomial time fromγ. Sinceϕ is definite, this proves
the NP-hardness under the asserted restriction. ut

We note thatϕ in the hardness proof of Theorem 1 remains Horn upon switching the
polarity of z. From this easilyNP-completeness of deciding the existence of an expla-
nation forχ = q formed of only positive literals follows, even if all other explanations
are given. This contrasts with respective tractability results for acyclic theories (implied
by the next section) and for atomic queriesχ = q on arbitrary Horn CNFs [11].



4 Negative Literal Queries on Acyclic Horn Theories

Since as shown in the previous section, a polynomial total time procedure for generat-
ing all explanations of a negative literal query is infeasible in general unless P=NP, it
becomes an issue to find restricted input classes for which this is feasible. In this sec-
tion, we show a positive result for the important class of acyclic Horn theories, which
has been studied extensively in the literature (see, e.g., [5, 24, 21, 1]).

We first recall the concept of acyclic Horn theories (see e.g. [5, 24]).

Definition 2. For any Horn CNFϕ over atom setAt, its dependency graph is the di-
rected graphG(ϕ) = (V,E), whereV = At andE = {xi → xj | c ∈ ϕ, xi ∈ N(c),
xj ∈ P (c)}, i.e.,E contains an arc from each atom in a negative literal to the positive
literal in a clause (if such a literal exists). A Horn CNFϕ is acyclic if G(ϕ) has no
directed cycle.

Example 3.As easily seen, the edges ofG(ϕ) for the CNFϕ in Examples 1 and 2 are
x1 → x2, x4 → x1, x5 → x1, x2 → x3, andx5 → x3. Hence,ϕ is acyclic. ut

Since the trivial explanationE = {q} can be easily generated (if it applies), we focus on
generating all nontrivial explanations. For a negative query on an acyclic Horn theory,
this is accomplished by AlgorithmN-EXPLANATIONS in Figure 1. It first converts the
input into an equivalent prime Horn CNFϕ?, and then applies a restricted resolution
procedure, in which pairs(c, c′) of clauses are considered of which at least one is a
prime implicate containingq and the other is either a clause of this form or a clause
from the converted inputϕ?. In case their resolventd := c ⊕ c′ exists and, as implied
by condition (ii) in Definition 1, includes only prime implicates containingq, any such
prime implicated′ is computed. Ifd′ is recognized as a new prime implicate which has
not been generated so far, a corresponding explanation is output and the set of candidate
pairs is enlarged.

Example 4.Reconsiderϕ = (x1∨x4)∧ (x4∨x3)∧ (x1∨x2)∧ (x4∨x5∨x1)∧ (x2∨
x5 ∨ x3), and applyN-EXPLANATIONS for χ = x1. All clauses ofϕ are prime except
x4 ∨ x5 ∨ x1, which contains the prime implicatex4 ∨ x5. Thus,ϕ? = (x1 ∨ x4) ∧
(x4 ∨ x3)∧ (x1 ∨ x2)∧ (x4 ∨ x5)∧ (x2 ∨ x5 ∨ x3), andS contains the clausesx1 ∨ x4

andx1 ∨ x2; the corresponding explanationsE1 = {x4} andE2 = {x2} are output. In
Step 2, the pair(x2 ∨ x5 ∨ x3, x1 ∨ x2) is found inO which satisfies condition (i) in
Def. 1. Moreover, (ii) is satisfied, sinceϕ? 6|= x5 ∨ x3. Thus, a prime implicate within
d = x1 ∨ x5 ∨ x3 is computed; in fact,d is prime. Therefore,E3 = {x5, x3} is output
andd is added toS, and thenO is enlarged. Eventually, the pair(x3∨x4, x1∨x5∨x3)
fromO, which satisfies condition (i), will be considered. However,ϕ? |= x4 ∨ x5, and
thusS remains unchanged. Hence, the output ofN-EXPLANATIONS isE1,E2, andE3.
As can be seen, these are all nontrivial explanations forx1 fromϕ. ut

We remark that our algorithm is similar in spirit to an algorithm for computing all
prime implicates of a Horn CNF in polynomial total time [2]. Our algorithm solves a
more constrained problem, though.

In the rest of this section, we show that AlgorithmN-EXPLANATIONS generates
all explanations in polynomial total time. For that, we first show its correctness, which
splits into a soundness and completeness part, and then analyze its time complexity.



Algorithm N-EXPLANATIONS

Input : An acyclic Horn CNFϕ and an atomq.
Output : All nontrivial explanations of the queryχ = q from ϕ.

Step 1. ϕ? := ∅, S := ∅, andO := ∅;
Step 2. for eachc ∈ ϕ do

add any prime implicatec′ ⊆ c of ϕ to ϕ?;
for each c′ ∈ ϕ? with q ∈ N(c′) andc′ /∈ S do
begin output({` | ` ∈ c′ \ {q}};

S := S ∪ {c′}; O := O ∪ {(c, c′) | c ∈ ϕ?, q /∈ P (c)}
end;

Step 3. whilesome(c, c′) ∈ O existsdo
begin O := O \ {(c, c′)};

if (1) c andc′ resolve and (2)ϕ? 6|= (c⊕ c′ \ {q})
then begin d := c⊕ c′;

compute any prime implicated′ ⊆ d of ϕ;
if d′ /∈ S then
begin output({` | ` ∈ d′ \ {q}}; S := S ∪ {d′};

O := O∪{(d′′, d′) | d′′ ∈ ϕ?, q /∈ P (d′′)}∪{(d′′, d′) | d′′ ∈ S}
end

end
end. ut

Fig. 1.Algorithm computing all nontrivial explanations of a queryχ=q on an acyclic Horn theory

As for soundness, it is easily seen that AlgorithmN-EXPLANATIONS produces out-
put only if d′ is some prime implicate ofϕ? (and thus ofϕ) such thatq ∈ N(d′). Thus,
from Lemma 2, we immediately obtain

Lemma 5 (Soundness ofN-EXPLANATIONS). Algorithm N-EXPLANATIONS outputs
only nontrivial explanations forq fromϕ.

It is much more difficult to show the completeness, i.e., that AlgorithmN-EXPLANA -
TIONS actually generates all nontrivial explanations. Intuitively, the difficulty stems
from the fact that the restricted resolution procedure retains only prime clauses con-
taining q, and, moreover, may skip relevant prime implicatesd′ ⊆ c ⊕ c′ in Step 3 if
condition (ii) fails, i.e.,c⊕ c′ is an implicate ofϕ (which is tantamount to the condition
that c ⊕ c′ contains some prime implicate ofϕ that does not containq). To see that
no explanation is missed requires a careful analysis of how the desired explanations
are generated, and leads to a nontrivial argument which takes the complex interaction
between clauses into account.

We need a number of preliminary technical lemmas on which our proof builds,
which are interesting in their own right. In what follows, we call a Horn clausec definite,
if P (c) 6= ∅. Furthermore, for any literal̀, a clausec is a`-clauseif c contains̀ .

The following propositions are well-known.

Proposition 3. Let c1, c2 be Horn implicates of a Horn CNFϕ that resolve. Then,
c = c1 ⊕ c2 is Horn, and ifc1 contains a negative implicate ofϕ, then alsoc1 ⊕ c2
contains a negative implicate ofϕ.



Proposition 4 (cf. [2]).Every prime implicatec of a Horn CNFϕ has an input resolu-
tion proof from it, i.e., a resolution proofc1, c2, . . . , cl (= c) such that eitherci ∈ ϕ or
ci = cj ⊕ ck wherej, k < l and eithercj ∈ ϕ or ck ∈ ϕ, for all i ∈ {1, . . . , l}.

We start with the following lemma.

Lemma 6. Letϕ be a prime Horn CNF, and letc be any prime implicate ofϕ such that
c /∈ ϕ. Then,c = c1 ⊕ c2, wherec1 is a prime implicate contained inϕ, and either (i)
c2 is a prime implicate ofϕ, or (ii) c2 = c∪ {`} wherec1 \ {`} ⊂ c andc is the unique
prime implicate ofϕ contained inc2.

Note that item (ii) is needed in this lemma, as shown by the following example.

Example 5.Consider the Horn CNFϕ = (x0 ∨ x1 ∨ x2)(x2 ∨ x3)(x3 ∨ x0). As easily
checked,ϕ is prime and has a further prime implicatex1∨x3, which can not be derived
as the resolvent of any two prime implicates ofϕ. Note thatϕ is acyclic. ut

Next we state some important properties of acyclic Horn CNFs under resolution.

Proposition 5. Letϕ be an acyclic Horn CNF, and letc = c1 ⊕ c2 wherec1, c2 ∈ ϕ.
Then,ϕ′ = ϕ ∧ c is acyclic Horn, and the dependency graphsG(ϕ) andG(ϕ′) have
the same transitive closure. Furthermore, any subformulaϕ′′ ⊆ ϕ is acyclic Horn.

Thus, adding repeatedly clauses derived by resolution preserves the acyclicity of a CNF,
and, moreover, the possible topological sortings of the dependency graph.

The following proposition captures that for an acyclic Horn CNF, resolution cannot
be blocked because of multiple resolving pairs ofxi andxi of literals.

Proposition 6. Letϕ be an acyclic Horn CNF, and letc1 andc2 be any implicates of
ϕ derived fromϕ by resolution. Then,c1 andc2 do not resolve iffP (c1) ∩N(c2) = ∅
andP (c2) ∩N(c1) = ∅.

We define an ordering on Horn clauses as follows. Suppose that≤ imposes a total
ordering on the atoms (xi1 ≤ xi2 ≤ · · · ≤ xin ). Then, for any Horn clausesc1 andc2,
definec1 ≤ c2 iff c1 = c2 or one of the following conditions holds:

(i) P (c1) 6= ∅ andP (c2) = ∅;
(ii) P (c1) = {xi} andP (c2) = {xj} andxi < xj ;

(iii) P (c1) = P (c2) andmaxN(c1)4N(c2) ∈ c1, where “4” denotes standard sym-
metric difference (i.e.,S14S2 = (S1 ∪ S2) \ (S1 ∩ S2)).

As usual, we writec1 < c2 if c1 ≤ c2 andc1 6= c2, c1 > c2 for c2 < c1 etc. Note
that≤ orders first all definite Horn clauses along their positive literals, followed by the
negative clauses. Notice thatc1 ⊂ c2 impliesc2 < c1, for any Horn clausesc1 andc2.

The following proposition is not difficult to establish:

Proposition 7. Every total ordering≤ of the atomsAt induces a total ordering≤ of
all Horn clauses overAt as described.

With respect to acyclic Horn CNFsϕ, in the rest of this paper we assume an arbitrary but
fixed total ordering≤ of the atoms which is compatible with some topological sorting
of the dependency graphG(ϕ).



Proposition 8. Letc1 andc2 be Horn clauses such thatc = c1⊕c2 exists. Then,c1 < c
andc2 < c hold.

Corollary 1. Letϕ be an acyclic Horn CNF, and letc, c1 andc2 be any implicates of
ϕ derived fromϕ such thatc ⊆ c1 ⊕ c2. Then,c > c1 andc > c2 holds.

Consequently, in any input resolution proof of a clause from an acyclic Horn CNF the
derived clauses increase monotonically. As for the derivation of prime implicates, we
find for such CNFs a more general form than in Lemma 6:

Lemma 7. Letϕ be an acyclic prime Horn CNF, and letc be any prime implicate ofϕ
such thatc /∈ ϕ. Then, there are prime implicatesc1 andc2 of ϕ and, for somek ≥ 0,
prime implicatesd1, d2, . . . , dk and literals `1, `2, . . . , `k, respectively, such that: (i)
c1, d1, . . . , dk ∈ ϕ, and (ii) c = c1 ⊕ e1, whereei = c ∪ {`i} = di ⊕ ei+1, for
i ∈ {1, . . . , k}, andek+1 = c2, such thatei contains the single prime implicatec.

An immediate consequence of this result is that prime implicates of an acyclic Horn
CNF can be generated from two prime implicates as follows.

Corollary 2. Letϕ be an acyclic prime Horn CNF, and letc be any prime implicate of
ϕ such thatc /∈ ϕ. Then, there exist prime implicatesc1 andc2 ofϕ which resolve such
that either (i)c = c1 ⊕ c2 or (ii) c1 ⊕ c2 = c ∪ {`}, where` /∈ c andc is the unique
prime implicate ofϕ contained inc1 ⊕ c2.

In Example 5, the further prime implicatex1 ∨ x3 can be derived as in case (ii) of
Corollary 2: Forc1 = x0 ∨ x1 ∨ x2 andc2 = x2 ∨ x3, we havec1⊕ c2 = x1 ∨ x3 ∨ x0,
andc = x1 ∨ x3 is the unique prime implicate ofϕ contained inc1 ⊕ c2.

After the preparatory results, we now show that AlgorithmN-EXPLANATIONS is
complete. Using an inductive argument on clause orderings, we show that all explana-
tions are generated by taking into account possible derivations of prime implicates as
established in Lemma 7 and Corollary 2. However, an inductive proof along≤ encoun-
ters two major difficulties: First, the resolventc = c1 ⊕ c2 of two clauses islarger
thanc1 andc2, thus we cannot simply rearrange resolution steps and appeal to smaller
clauses. Second, AlgorithmN-EXPLANATIONS does not generate prime implicatesd′

by a resolution step alone, but usingminimizationin Step 3; that is, a prime implicate
includedin the resolventd = c ⊕ c′. A respective statement is much more difficult to
prove than the one ifd were prime.

In order to overcome these difficulties, we use a more sophisticated ordering of
clause pairs(c, c′) and establish as a stepping stone the following key lemma. For ease
of reference, let us say that resolvable implicatesc1 andc2 of a Horn CNFϕ satisfy the
(technical) property (∗), if the following conditions hold:

1. At least one ofc1 andc2 is prime.
2. If ci is not prime, then it is of formci = c′ ∪ {`}, wherec′ is the unique prime

implicate ofϕ contained inci (i ∈ {1, 2}), andci occurs in some derivation ofc′

as in Lemma 7.
3. There is no implicatec′1 ⊂ c1 (resp.,c′2 ⊂ c2) of ϕ such thatc = c′1 ⊕ c2 (resp.,
c = c1 ⊕ c′2).



Lemma 8 (Key Lemma).Let ϕ be a prime acyclic Horn CNF, and letc1 and c2 be
resolvable clauses satisfying(∗) such thatq ∈ c := c1⊕ c2. Suppose thatci ∈ S if ci is
prime andq ∈ N(ci) (resp.,c′i ∈ S if ci = c′i ∪ {`i} wherec′i is prime andq ∈ N(c′i))
for i ∈ {1, 2}. Then at least one of the following conditions hold:(i) c \ {q} is an
implicate ofϕ, or (ii) c contains aq-clause fromS.

Proof. (Outline) We prove the statement using an inductive argument which involves
clause orderings and takes into account how the clausesc1 andc2 are recursively gen-
erated. Depending on the shape ofc1 andc2, we consider different cases.

Consider first the case in which bothc1 andc2 containq. Then, w.l.o.g.c = q ∨ a∨
b (∨xi), c1 = q ∨ a ∨ x (∨xi), andc2 = b ∨ x ∨ q. Here,a andb are disjunctions of
negative literals, whilex is a single atom; “(∨xi)” means the optional presence ofxi.

Both c1 andc2 contain a unique prime implicatec′1 resp.c′2 of ϕ (where possibly
c′i = ci). If q ∈ c′i, then by assertion we havec′i ∈ S. Thus, if bothc′1 andc′2 contain
q, Algorithm N-EXPLANATIONS considersc′1 ⊕ c′2, which implies the statement. No
other cases are possible, since eitherc′1 or c′2 must containq (sincec1 or c2 is prime)
and condition 3 of (∗) excludes that exactly one ofc′1 andc′2 containsq. This proves the
statement if bothc1 andc2 containq.

For the other cases, assume thatq ∈ c1 andq /∈ c2 and prove the statement by
induction along the lexicographic ordering of the pairs(c1, c2), where the clausesc1
are inreverseordering≥ and the clausesc2 in regular ordering≤. We distinguish the
following cases:

Definite/Negative Case 1 (DN1):c = q ∨ a ∨ b (∨xi), c1 = q ∨ a ∨ x (∨xi), and
c2 = b ∨ x. That is, theq-clausec is generated by resolving aq-clausec1 with a
non-q-clausec2, where the positive resolution literalx is in c2.

Definite/Negative Case 2 (DN2):c = q ∨ a ∨ b (∨xi), c1 = q ∨ a ∨ x, andc2 =
b ∨ x (∨xi). That is, theq-clausec is generated by resolving aq-clausec1 with a
non-q-clausec2, where the positive resolution literalx is in c1.

The statement is shown by a careful analysis of parent clauses ofc1 and c2, and by
reordering and adapting resolution steps. DN1 recursively only involves cases of the
same kind (in fact, for negativec1 we need to appeal only to smaller instances(c′1, c

′
2)

wherec′1 is negative), while DN2 recursively involves itself as well as DN1. ut

By combining Lemma 8 with Proposition 8 and Corollary 2, we obtain by an inductive
argument on the clause ordering≤ the desired completeness result.

Lemma 9 (Completeness ofN-EXPLANATIONS). Algorithm N-EXPLANATIONS out-
puts all nontrivial explanations for a queryχ = q from an acyclic Horn CNFϕ.

Proof. We prove by induction on≤ thatS contains eachq-prime implicatec of ϕ.
(Basis) Letc be the least prime implicate ofϕ which containsq. From Proposition 8
and Corollary 2, we conclude thatc ∈ ϕ must hold. Hence,c ∈ S.
(Induction) Suppose the claim holds for allq-prime implicatesc′ of ϕ such thatc′ < c,
and considerc. By Corollary 2, there exist prime implicatesc1 andc2 such that either (i)
c = c1⊕ c2 or (ii) c is the unique prime implicate contained inc1⊕ c2 = c∪{`} where
` /∈ c. By Proposition 8 and the induction hypothesis, we haveci ∈ S if q ∈ N(ci)



holds fori ∈ {1, 2}. Consequently,c1 andc2 satisfy the conditions of Lemma 8. Hence,
either (a)c1 ⊕ c2 \ {q} is an implicate ofϕ, or (b)c1 ⊕ c2 contains aq-clausec′ from
S. Sinceq ∈ N(c) andc is the unique prime implicate contained inc1 ⊕ c2, we have
(b). It follows from the uniqueness ofc thatc′ = c, which proves the statement. ut

We are now in a position to establish the main result of this section. Let‖ϕ‖ denote the
size (number of symbols) of any CNFϕ.

Theorem 2. Algorithm N-EXPLANATIONS incrementally outputs, without duplicates,
all nontrivial explanations ofχ = q from ϕ. Moreover, the next output (respectively
termination) occurs withinO(s · (s + m) · n · ‖ϕ‖) time, wherem is the number of
clauses inϕ, n the number of atoms, ands the number of explanations output so far.

Proof. By Lemmas 5 and 9, it remains to verify the time bound. Computing a prime
implicatec′ ⊆ c andd′ ⊆ d of ϕ in Steps 2 and 3, respectively, is feasible in time
O(n · ‖ϕ‖) (cf. Proposition 1), and thus the outputs in Step 2 occur withO(m ·n · ‖ϕ‖)
delay. As for Step 3, note thatO contains only pairs(c, c′) wherec ∈ ϕ? ∪ S and
c′ ∈ S such that the explanation corresponding toc′ was generated, and each such pair
is added toO only once. Thus, the next output or termination follows withins · (s+m)
runs of the while-loop, wheres is the number of solutions output so far. The body of
the loop can be done, using proper data structures, inO(n · ‖ϕ‖) time (for checking
d′ /∈ S efficiently, we may storeS in a prefix tree). Thus, the time until the next output
resp. termination is bounded byO(s · (s+m) · n · ‖ϕ‖). ut

Corollary 3. Computing polynomially many explanations for a negative queryχ = q
from an acyclic Horn CNFϕ is feasible in polynomial time (in the size of the input).

We conclude this section with some remarks on AlgorithmN-EXPLANATIONS.

(1) As for implementation, standard data structures and marking methods can be
used to realize efficient update of the setsO andS, to determine resolvable clauses, and
to eliminate symmetric pairs(c, c′) an(c′, c) in O.

(2) Algorithm N-EXPLANATIONS is incomplete for cyclic Horn theories, as shown
by the following example.

Example 6.Consider the Horn CNFϕ = (x0 ∨ x1 ∨ x2)(x0 ∨ x1 ∨ x3)(x1 ∨ x2 ∨
x3)(x1 ∨ x2 ∨ x3)(x2 ∨ x3 ∨ x4) overx0, . . . , x4. Note that all clauses inϕ are prime,
and thatx2 andx3 are symmetric. There are three further prime implicates, viz.c1 =
x1 ∨ x2 ∨ x4, c2 = x1 ∨ x3 ∨ x4, andc3 = x0 ∨ x1 ∨ x4. Thus,q = x0 has the
nontrivial explanationsE1 = {x1, x2}, E2 = {x1, x3}, andE3 = {x1, x4}. Apply
then algorithmN-EXPLANATIONS on inputϕ andq = x0. While it outputsE1 andE2,
it misses explanationE3. ut
Algorithm N-EXPLANATIONS may be extended to handle this example and others cor-
rectly by adding in Step 2 prime implicates toϕ? which are generated in polynomial
time (e.g., by minimizing clauses derived by resolution proofs fromϕ? whose number
of steps is bounded by a constant).

(3) Algorithm N-EXPLANATIONS is no longer complete if we constrain the resolu-
tion process to input resolution, i.e., consider only pairs(c, c′) in Step 3 where at least
one of c and c′ is from ϕ (which means that in the update ofO in Step 3, the part
“{(d′′, d′) | d′′ ∈ S}” is omitted). This is shown by the following example.



Example 7.Consider the Horn CNFϕ = (x0 ∨ x1)(x1 ∨ x2 ∨ x3)(x1 ∨ x3 ∨ x4)
over x0, . . . , x4. As easily seen,ϕ is acyclic. Moreover,ϕ is prime. There are three
further prime implicates containingx0, viz. c1 = x0 ∨ x2 ∨ x3, c2 = x0 ∨ x3 ∨ x4,
andc3 = x0 ∨ x2 ∨ x4. Hence,q = x0 has the nontrivial explanationsE1 = {x1},
E2 = {x2, x3},E3 = {x3, x4}, andE4 = {x2, x4}. If at least one of the clauses(c, c′)
in Step 3 must be fromϕ, thenE2 andE3 are generated from(x1∨x2∨x3, x0∨x1) and
(x1 ∨x3 ∨x4, x0 ∨x1), respectively, whileE4 is missed: The pairs(x1 ∨x3 ∨x4, x0 ∨
x2 ∨ x3) and(x1 ∨ x2 ∨ x3, x0 ∨ x3 ∨ x4) yield the same resolventx0 ∨ x1 ∨ x2 ∨ x4,
for whichϕ? 6|= (c⊕ c′ \ {q}) fails sincex1 ∨x2 ∨x4, which is the resolvent of the last
two clauses inϕ, is an implicate. Note thatE4 is generated from each of the excluded
symmetric pairs(x0 ∨ x2 ∨ x3, x0 ∨ x3 ∨ x4) and(x0 ∨ x3 ∨ x4, x0 ∨ x2 ∨ x3). ut

In terms of generating prime implicates, this contrasts with the cases of computing all
prime implicates of a Horn CNF and all prime implicates that contain a positive literal
q , for which input-resolution style procedures are complete, cf. [2, 11].

5 Compound Queries
In this section, we consider generating all explanations for queries beyond literals. The-
orem 1 implies that this problem is intractable for any common class of CNF queries
which admits a negative literal. However, also for positive CNFs, it is intractable.

Theorem 3. Deciding whether a given CNFχ has an explanation from a Horn CNFϕ
is NP-complete. Hardness holds even ifχ is positive andϕ is negative (thus acyclic).

Proof. Membership inNP easily follows from Lemma 1. Hardness is shown via a
reduction from the classical EXACT HITTING SET problem. LetS = {S1, . . . , Sm}
be a collection of subsetsSi ⊆ U of a finite setU . Constructχ =

∧
i

( ∨
u∈Si

)
and

ϕ =
∧

i

∧
x6=y∈Si

(x ∨ y). Thenχ has an explanation fromϕ iff there exists an exact
hitting set forS, i.e., a setH ⊆ U such that|H ∩ Si| = 1 for all i ∈ {1, . . . ,m}. ut

For important special cases of positive CNFs, we obtain positive results. In particular,
this holds if the queryχ is restricted to be a clause or a term.

Theorem 4. Computing polynomially many (resp., all) explanations for a queryχ
which is either a positive clause or a positive term from a Horn CNFϕ is feasible
in polynomial time (resp., polynomial total time).

Proof. Let us first consider the case in whichχ is a positive clausec =
∨

x∈P (c) x.
Then letϕ∗ = ϕ ∧

∧
x∈P (c)(x ∨ x∗), wherex∗ is a new letter. As easily seen,ϕ∗ is a

Horn CNF and there is a one-to-one correspondence between explanations for a queryχ
fromϕ and the ones forx∗ formϕ∗ (except for a trivial explanationx∗). This, together
with the result in [11] that all explanations for a queryχ = q whereq is an atom from
a Horn CNF can be generated with incremental polynomial delay, proves the theorem.

Similarly, if χ is a positive termt =
∧

x∈P (t) x, one can consider explanations for
x∗ from the Horn CNFϕ∗ = ϕ ∧ (

∨
x∈P (t) x ∨ x∗), wherex∗ is a new letter. ut

In case of acyclic Horn theories, the positive result holds also in the case where negative
literals are present in a clause query.



Queryχ CNF single literal single clause single term

Horn theoryΣ, by general positive atomq q positive general positive general

Horn CNFϕ NPTT NPTT PTTa NPTT PTT NPTT PTT NPTT

Acyclic Horn CNFϕ NPTT NPTT PTTa PTT PTT PTT PTT –
a By the results of [11].

Table 1. Complexity of computing all abductive explanations for a queryχ from a Horn theory
(PTT = polynomial total time, NPTT = not polynomial total time unless P=NP)

Theorem 5. Computing polynomially many (resp., all) explanations for a queryχ = c
wherec is a clause from an acyclic Horn CNFϕ is feasible in polynomial time (resp.,
polynomial total time).

Proof. Let χ =
∨

x∈P (c) x ∨
∨

x∈N(c) x. Then letϕ∗ = ϕ ∧
∧

x∈P (c)(x ∨ x∗) ∧∧
x∈N(c)(x ∨ x∗), wherex∗ is a new letter. It is not difficult to see thatϕ∗ is an acyclic

Horn CNF, and there is a ono-to-one correspondence between explanations for a query
χ fromϕ and the ones forx∗ fromϕ∗ (except for a trivial explanationx∗). This together
with Theorem 2 proves the theorem. ut

Note that explanations for a single clause queryχ = c correspond to the minimal sup-
port clauses forc as used in Clause Management Systems [22]. Thus, from Theorems 1
and 5 we obtain that while in general, generating all minimal support clauses for a
given clausec is not possible in polynomial total time unlessP = NP, it is feasible
with incremental polynomial delay for acyclic Horn theories.

The presence of negative literals in a queryχ = t for a termt from an acyclic
Horn theory is more involved; a similar reduction technique as for a clause to a single
literal seems not to work. We can show that generating all nontrivial explanationsE
(i.e.,E ∩ χ = ∅) for a term is intractable; the case of all explanations is currently open.

6 Conclusion
We considered computing all abductive explanations for a queryχ from a propositional
Horn CNFϕ, which is an important problem that has many applications in AI and Com-
puter Science. We presented a number of new complexity results, which complement
and extend previous results in the literature; they are compactly summarized in Table 1.

We showed the intractability of computing all abductive explanations for a negative
literal queryχ from a general Horn CNFϕ (thus closing an open issue), while we pre-
sented a polynomial total time algorithm for acyclic Horn CNFs. Since this amounts to
computing all prime implicates ofϕ which containq, we have obtained as a byproduct
also new results on computing all such prime implicates from a Horn CNF. Note that
our intractability result contrasts with the result in [2] that all prime implicates of a
Horn CNF are computable in polynomial total time. Furthermore, our results on clause
queries imply analogous results for generating all minimal support clauses for a clause
in a Clause Management System [22].

It remains for further work to complete the picture and to find further meaningful
input classes of cyclic Horn theories which permit generating a few resp. all explana-
tions in polynomial total time. For example, this holds for clause queries from quadratic



Horn CNFs (i.e., each clause is Horn and has at most 2 literals) and for literal queries
from Horn CNFs in which each clause contains the query literal. Another issue is a
similar study for the case of predicate logic.
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