In: Proc. 12th Annual Conference of the EACSL (CSL 2003), J. Makowsky and
M. Baaz, editors, LNCSE 2003 Springer.

Generating all Abductive Explanations for
Queries on Propositional Horn Theorie$

Thomas Eiter and Kazuhisa Makino

L Institut fir Informationssysteme, Technische Univérsitvien,
FavoritenstrafBe 9-11, A-1040 Wien, Austegter@kr.tuwien.ac.at
2 Division of Systems Science, Graduate School of Engineering Science, Osaka University,
Toyonaka, Osaka, 560-8531, Japarakino@sys.es.osaka-u.ac.jp

Abstract. Abduction is a fundamental mode of reasoning, which has taken on in-
creasing importance in Atrtificial Intelligence (Al) and related disciplines. Com-
puting abductive explanations is an important problem, and there is a growing
literature on this subject. We contribute to this endeavor by presenting new re-
sults on computing multiple resp. all of the possibly exponentially many expla-
nations of an abductive query from a propositional Horn theory represented by
a Horn CNF. Here the issues are whether a few explanations can be generated
efficiently and, in case of all explanations, whether the computation is possible in
polynomial total timeor output-polynomial timg i.e., in time polynomial in the
combined size of the input and the output. We explore these issues for queries in
CNF and important restrictions thereof. Among the results, we show that comput-
ing all explanations for a negative query literal from a Horn CNF is not feasible
in polynomial total time unlesB = NP, which settles an open issue. However,
we show how to compute under restriction to acyclic Horn theories polynomi-
ally many explanations in input polynomial time and all explanations in polyno-
mial total time, respectively. Complementing and extending previous results, this
draws a detailed picture of the computational complexity of computing multiple
explanations for queries on Horn theories.

Keywords: Computational logic, abduction, propositional logic, Horn theories, poly-
nomial total time computation, NP-hardness.

1 Introduction

Abduction is a fundamental mode of reasoning, which was extensively studied by C.S.
Peirce [19]. It has taken on increasing importance in Artificial Intelligence (Al) and
related disciplines, where it has been recognized as an important principle of common-
sense reasoning (see e.g. [3]). Abduction has applications in many areas of Al and
Computer Science including diagnosis, database updates, planning, natural language
understanding, learning etc. (see e.g. references in [10]), where it is primarily used for
generating explanations.

In a logic-based setting, abduction can be viewed as the task to find, given a set of
formulasX’ (thebackground theorfyand a formulay (thequery), a minimal set of for-
mulasE (anexplanation from a set of hypothesed such that¥ plus F is satisfiable

* This work was supported in part by the Austrian Science Fund (FWF) Project Z29-N04, by a
TU Wien collaboration grant, and by the Scientific Grant in Aid of the Ministry of Education,
Science, Sports, Culture and Technology of Japan.

and logically entailg. Often considered is a scenario whérés a propositional Horn
theory, x is a single literal or a conjunction of literals, afilcontains literals (see [24,

10] and references therein). For use in practice, the computation of abductive explana-
tions in this setting is an important problem, for which well-known early systems such
as Theorist [20] or ATMS solvers [6, 22] have been devised. Since then, there has been a
growing literature on this subject, indicating the need for efficient abductive procedures.
We refer to [18], which gives an excellent survey on intimately closely related problems
in computational logic. Note that much effort has been spent on studying various input
restrictions, cf. [14, 4, 13, 25, 8,7, 10, 23, 24].

While computingsomeexplanation of a query has been studied extensively in the
literature, the issue of computing multiple or evahexplanations for has received
less attention. This problem is important since often one would like to select one out of
a set of alternative explanations according to a preference or plausibility relation; this
relation may be based on subjective intuition and thus difficult to formalize. As easily
seen, exponentially many explanations may exist for a query, and thus computing all ex-
planations inevitably requires exponential time in general, even in propositional logic.
However, it is of interest whether the computation is possiblgalynomial total time
(or output-polynomial timg i.e., in time polynomial in the combined size of the input
and the output. Furthermore, if exponential space is prohibitive, it is of interest to know
whether a few explanations (e.g., polynomially many) can be generated in polynomial
time, as studied by Selman and Levesque [24].

Computing some explanation for a queryvhich is a literal from a Horn theory is
a well-known polynomial problem. Selman and Levesque conjectured [24] that gener-
ating O(n) many explanations for a positive literal is NP-hard, wherie the number
of propositional atoms in the language, even if it is guaranteed that there are only few
explanations overall. As shown in [11], this conjecture is not true urite®$P. This
follows from the result of [11] that all explanations for an atom can be generated in
polynomial total time.

The status of generating all explanations for a negative litera! g from a Horn
CNF ¢, however, remained open in [11]. Moreover, it was unclear whether a resolution-
style procedure similar to the one for query atoms in [11] could solve the problem in
polynomial total time. In this paper, we provide a negative answer to this question, by
showing that given a collection of explanations for a quer¢ g from a Horn CNFp,
deciding whether there is an additional explanation is NP-complete. Consequently, the
existence of a polynomial total time algorithm for computing all explanations implies
P=NP. However, for the well-known class of acyclic Horn theories (see e.g. [5, 24, 21,
1]) we present an algorithm which enumerates all explanationg fath incremental
polynomial delay (i.e., in time polynomial in the size of the input and output so far),
and thus solves the problem in polynomial total time. Compared to explanations for an
atomic queryy, intuitively cyclic dependencies between atoms make the problem diffi-
cult. For completeness, a resolution-style procedure as in [11] needs to consider besides
the input and output clauses also auxiliary clauses (see Example 7), whose derivation
may cause a lot of overhead, since it is not a priori clear which such clauses are needed.

We furthermore address computing all explanations for queribeyond literals,
where we consider CNF and important special cases such as a clause and aterm (i.e., a

conjunction of literals). Note that the explanations for single clause queries correspond
to the minimal support clauses for a clause in Clause Management Systems [22]. In the
light of the negative results from above, we aim at elucidating the tractability frontier
and present positive as well as negative results for such queries.

Our results shed new light on the computational nature of abduction and Horn the-
ories in particular. They imply that, e.g., generating all minimal support clauses for a
given clause (cf. [22]) from an acyclic Horn CNF is feasible in polynomial total time.
The intractability result for negative literal querigss somewhat unexpected, and the
tractability result for acyclic Horn theories is more difficult to obtain than in case of
atomic queries. As a byproduct, we also obtain results for computing all prime impli-
cates of Horn theories containing a certain literal, which complement and refine previ-
ous results for computing all prime implicates of a Horn theory [2].

For space reasons, some proofs are omitted; we refer to the extended version [12].

2 Preliminaries and Notation

We assume a standard propositional language with atgms, . . ., ,, from a setAt,
where each; takes either valué (true) or0 (false). Negated atoms are denotedzhy
and the opposite of a literélby ¢. Furthermore, we usé = {¢ | ¢ € A} for any set of
literals A and setLit = At U At.

A clause is a disjunction = \/,cp(.y PV Ve () P Of literals, whereP(c) and
N(c) are the sets of atoms occurring positively and negatedand P(c) N N(c) =
0. Dually, a term is conjunctiot = A p, P A Apen() P Of literals, whereP(t)
and N(t) are similarly defined. We also view clauses and terms as sets of literals
P(c) U N(c) and P(t) U N(¢), respectively. A clause is Horn, if |P(c)| < 1; def-
inite, if |P(c)| = 1; andnegative(resp.,positive, if |P(c)| = 0 (resp.,|N(c)| = 0). A
conjunctive normal form (CNF) is a conjunction of clauses. Kn (resp.,definite,
negative, positivg if it contains only Horn clauses (resp., definite, negative, positive
clauses). Atheory X is any finite set of formulas; it islorn, if it is a set of Horn
clauses. As usual, we identiy with ¢ = A _ 5, ¢, and writec € ¢ etc.

A modelis a vectorv € {0, 1}", whosei-th component is denoted hy. For B C
{1,...,n}, we letz” be the modeb such that; = 1, if i € B andv;, = 0, if i ¢ B,
forie{1,...,n}. Satisfactiorv = ¢ and logical consequencel= ¢, ¢ |= ¢ etc. are
defined as usual (i.eg(v) = 1 etc.).

Example 1.The CNFp = (T1VZ4) A(T4VT3) A(T1Va2) A(T4VT5 V1)A(T2VT5VE3)
overAt = {x1,x2,...,25} is Horn. The vector, = (0, 1,0, 1,0) is a model ofp. O

The following proposition is well-known.

Proposition 1. Given a Horn CNFp and a clause:, deciding whethep = c is possi-
ble in polynomial timein fact, in linear time, cf[9]).

Recall that two clausesand ¢’ resolve on a pair of literals, z if ,7 € ¢ U ¢ and
cUc \ {z,z} is a legal clause (thus,must occur in exactly one efandc¢’, and same
for z); c andc’ resolve if their is a pair of literals, z on which they resolve. Note that
this pair, if it exists, is unique. In that case, we denote by’ the clause U’ \ {z, T},
which is theirresolvent(otherwisec ¢ ¢’ is undefined). Aresolution proofof a clause

c from a CNFy is a sequencey, cs, ..., ¢; Of clauses such tha = ¢ and, for all
i=1,...,1, eitherc; € p orc; = ¢; ® ¢ for clauses:; andcy, such thatj, k& < 4.

It is well-known that resolution proofs are sound and complete with respect to clause
inference in the following sense (cf. [18]): For any CiFand clause;, ¢ = ¢ holds

iff there is a clause’ C c which has a resolution proof from. For further background

on resolution, we refer to [17, 16].

2.1 Abductive explanations
The notion of an abductive explanation can be formalized as follows (cf. [24, 10]).

Definition 1. Given a (Horn) theory, called the background theory, a CNKcalled
query), anexplanation ofy is a minimal set of literald? C Lit such that

() YUE E x, and
(i) X U E is satisfiable.

Example 2.Reconsider the Horn CNE = (Z1 VZ4) A (T4 VZ3) A (T1 V 22) A (Tg V
Ts V 1) A (T2 V Ty V x3) from above. Suppose we want to explajin= x5 from
A = {x1,24}. Then, we find thall = {x;} is an explanation. Indeed; U {x,} | xo,
andX U {z,} is satisfiable; moreovefF; is minimal. On the other handy’ = {z1, T4}
satisfies (i) and (ii) fory = x5, but is not minimal. a0

More restricted forms of explanations require thanust be formed over a given set
of abducible letters (cf. [24]); however, in such a setting, generating all explanations is
easily seen to beoNP-hard for the cases that we consider from results in the literature.
The following characterization of explanations is immediate by the monotonicity of
classical logic.

Proposition 2. For any theory’’, any queryy, and anyE C Lit, E is an explanation
for x from X iff the following conditions hold: (i’ U F is satisfiable, (i)X U E' = x,
and (i) X U (E \ {¢}) ~ x, foreveryl € E.

From Proposition 2, we thus obtain the following easy lemma.

Lemma 1. Given aHorn CNFkp, a setll C Lit, and a CNF query, deciding whether
Eis an explanation fory w.r.t. A is possible in polynomial time.

3 Intractability of Negative Literal Queries

In this section, we show that computing all explanations of a negative queryq is
not possible in polynomial total time unleBs= NP. This result follows by standard
arguments from the following theorem.

Theorem 1. Given a Horn CNFp, a queryy = g, and explanationg,, Fs, ..., Fj
for x, deciding whether has some additional explanatid, ; different from each
E;, 1 <11 <k, isNP-complete. Hardness holds everpifs definite Horn.

In the proof of Theorem 1, we use the following well-known lemma, which links prime
implicates of a theory to explanations. Recall thatrimne implicateof a theoryX' is a
minimal (w.r.t. inclusion) clause such that™' |= c. Let us call an explanatioR for a
literal queryy = ¢ trivial, if E = {¢}.

Lemma 2 (cf. [22, 15]).Given a theory¥, a setEl C Lit is a nontrivial explanation
of a query literaly iff the clausec = \/,., £ V x is a prime implicate of..

Note x = ¢ has a trivial explanation iff [~ ¢ and X (% ¢, which can be checked in
polynomial time. Hence, as for NP-hardness we can without loss of generality focus on
generating the nontrivial explanationsgfi.e., all prime implicates containing

Proof of Theorem 1As for membership in NP, an additional explanatigp, ; can be
guessed and, by Lemma 1, be verified in polynomial time.

We show the NP-hardness by a reduction from 3SAThLetc; A+ Ay, m > 2,
be a 3CNF over atoms, . . ., x,, wherec; = ¢; 1 V £; 2 V £; 3. We introduce for each
clausec; a new atony;, for eachz; a new atomr; (which intuitively corresponds to
T;), and special atomgandz. The Horn CNFyp contains the following clauses:

1ocj=qVel,;Vy,foralli=1,...,mandj =1,2,3;
2.dij =L ;Vyi VY, foralli=1,...,mandj =1,2,3;
3.z, va, v foralli=1,... n;

4. e=y, VY, V---V7, V2,

wherel; ; =z if £; j = x5, andl; ; = x) if ;5 =T;, andym 11 = Y1.

Note thaty is definite Horn, and thus all prime implicates pfare definite Horn.
Informally, the clauses; ; andd; ; stand for selection of literé; ; in clausec;. The
clause in 4., which is needed to produce any negative prime impliozapatainingg,
and the minimality of a prime implicate will effect that a literal is chosen from each
clausec;, and the clauses in 3. will ensure that the choice is consistent, such ihat
satisfied. Since the positive prime implicates contairgiage just the clauses ;, the a
further prime implicate ofp containingg exists iff v is satisfiable.

We establish the following properties @f

Lemma 3. Any prime implicate: of ¢ such thaty € N(¢) and P(c) # {z} is of the
forme; j, wherei € {1,...,m} andj € {1,2,3}.

Lemma 4. Any prime implicate: of ¢ such thatP(c) = {z} andq € N(c) satisfies (i)
{zi 2} £ N(c),foralli=1,...,n,and (ii)y; € N(c), foralli=1,...,m.

From Lemma 3, it is now easy to see that all prime implicates given by the clauses
in 1. correspond to nontrivial explanationsgfand from Lemma 4 that an additional
nontrivial explanation foig exists if and only if some prime implicate ¢f of form

¢ =7V V,exTi VVyex @i V 2 exists iff the CNFy is satisfiable. As for the
last equivalence, note that for each smallest (wtchoicel; € ¢; of a consistent
collection of literals?y, ..., ¢,,, we have an additional prime implicate gfof form
VvV, 7V z. Conversely, each additional prime implicateontainingg gives rise to
a consistent set of literalse; | z;,; € N(c)} U {T; | z; ; € N(c)} which satisfiesy.
Clearly, ¢ is constructible in polynomial time from. Sincey is definite, this proves
the NP-hardness under the asserted restriction. O

We note thatp in the hardness proof of Theorem 1 remains Horn upon switching the
polarity of z. From this easilyNP-completeness of deciding the existence of an expla-
nation fory = g formed of only positive literals follows, even if all other explanations
are given. This contrasts with respective tractability results for acyclic theories (implied
by the next section) and for atomic querjes= ¢ on arbitrary Horn CNFs [11].

4 Negative Literal Queries on Acyclic Horn Theories

Since as shown in the previous section, a polynomial total time procedure for generat-
ing all explanations of a negative literal query is infeasible in general unless P=NP, it
becomes an issue to find restricted input classes for which this is feasible. In this sec-
tion, we show a positive result for the important class of acyclic Horn theories, which
has been studied extensively in the literature (see, e.g., [5, 24, 21, 1)).

We first recall the concept of acyclic Horn theories (see e.g. [5, 24]).

Definition 2. For any Horn CNFy over atom setdt, its dependency graph is the di-
rected graphG(¢) = (V, E), whereV = AtandE = {z; — z; | c € p,x; € N(c),

z; € P(c)}, i.e., E contains an arc from each atom in a negative literal to the positive
literal in a clause (if such a literal exists). A Horn CNF is acyclicif G(¢) has no
directed cycle.

Example 3.As easily seen, the edges@fy) for the CNFy in Examples 1 and 2 are
Ty — To, Ty — X1, X5 — X1, T2 — T3, ANdzs — x3. Henceyp is acyclic. |

Since the trivial explanatio® = {g} can be easily generated (if it applies), we focus on
generating all nontrivial explanations. For a negative query on an acyclic Horn theory,
this is accomplished by Algorithm-EXPLANATIONS in Figure 1. It first converts the
input into an equivalent prime Horn CNF*, and then applies a restricted resolution
procedure, in which pairée, ¢’) of clauses are considered of which at least one is a
prime implicate containing and the other is either a clause of this form or a clause
from the converted inpup*. In case their resolvent := ¢ & ¢’ exists and, as implied

by condition (i) in Definition 1, includes only prime implicates containipgny such
prime implicated’ is computed. Il is recognized as a new prime implicate which has
not been generated so far, a corresponding explanation is output and the set of candidate
pairs is enlarged.

Example 4.Reconsider = (T VT4) A (T4 VE3) A (T1V22) A (T4 VT V) ATV
T5 V x3), and applyN-EXPLANATIONS for x = Z;. All clauses ofyp are prime except
T4 V Ts V x1, which contains the prime implicate, V Ts. Thus,o* = (T1 V T4) A
(TaVT3) A (T1Va2) AN(T4VTs) A (T2 VTs V xg), andsS contains the clauses vV 74
andz; V zo; the corresponding explanatiofs = {z,} andE, = {Z»} are output. In
Step 2, the paifz2 V T5 V 3,71 V x2) is found inO which satisfies condition (i) in
Def. 1. Moreover, (ii) is satisfied, singg* |~ Z5 V z5. Thus, a prime implicate within
d =T, VT5 V xs is computed; in factd is prime. ThereforeFs = {x5,Z3} is output
andd is added ta5, and therO is enlarged. Eventually, the pdits VT4, T1 V T5 V 23)
from O, which satisfies condition (i), will be considered. Howevger,= 7, V Z5, and
thus.S remains unchanged. Hence, the output €EXPLANATIONS is E'{, F», andFEs.
As can be seen, these are all nontrivial explanationg{drom . O

We remark that our algorithm is similar in spirit to an algorithm for computing all
prime implicates of a Horn CNF in polynomial total time [2]. Our algorithm solves a
more constrained problem, though.

In the rest of this section, we show that AlgorittNREXPLANATIONS generates
all explanations in polynomial total time. For that, we first show its correctness, which
splits into a soundness and completeness part, and then analyze its time complexity.

Algorithm N-EXPLANATIONS
Input: An acyclic Horn CNFp and an atony.
Output: All nontrivial explanations of the query = g from ¢.

Step 1. ¢* :=0, S := (), andO := 0;
Step 2. for eachc € ¢ do
add any prime implicate’ C ¢ of ¢ to ¢*;
for eachc’ € ¢* with g € N(c') andc’ ¢ S do
begin output({£ | £ € ¢/ \ {g} };
S:=8U{cd}0:=0U{(c,c)|cep*,q¢ P(c)}
end,
Step 3. whilesome(c, ¢’) € O existsdo
begin O := O\ {(c,¢)};
if (1) c andc’ resolve and (2p* £ (c® '\ {q})
then begin d :=c® ¢/;
compute any prime implicai# C d of ¢;
if d’ ¢ S then
begin output({¢ | £ € d'\ {g}}; S:==Su{d'};
O:=0uU{(d",d)|d" eyp*,q¢ P(d)u{(d",d)|d" €S}
end
end
end. O

Fig. 1. Algorithm computing all nontrivial explanations of a quefyg on an acyclic Horn theory

As for soundness, it is easily seen that AlgoritRREEXPLANATIONS produces out-
put only if d’ is some prime implicate af* (and thus ofp) such thay € N(d’). Thus,
from Lemma 2, we immediately obtain

Lemma5 (Soundness ofl-EXPLANATIONS). Algorithm N-EXPLANATIONS outputs
only nontrivial explanations fog from .

Itis much more difficult to show the completeness, i.e., that AlgorithEXPLANA -
TIONS actually generates all nontrivial explanations. Intuitively, the difficulty stems
from the fact that the restricted resolution procedure retains only prime clauses con-
tainingg, and, moreover, may skip relevant prime implicatésC ¢ @ ¢’ in Step 3 if
condition (ii) fails, i.e.,c® ¢’ is an implicate ofp (which is tantamount to the condition
thatc @ ¢’ contains some prime implicate gf that does not contaif). To see that
no explanation is missed requires a careful analysis of how the desired explanations
are generated, and leads to a nontrivial argument which takes the complex interaction
between clauses into account.

We need a number of preliminary technical lemmas on which our proof builds,
which are interesting in their own right. In what follows, we call a Horn clalugefinite
if P(c) # 0. Furthermore, for any literdl, a clause: is a/-clauseif ¢ contains.

The following propositions are well-known.

Proposition 3. Let ¢1, ¢co be Horn implicates of a Horn CNk that resolve. Then,
¢ = c¢1 @ cg is Horn, and ifc; contains a negative implicate @f, then alsoc; @ ¢
contains a negative implicate ¢f

Proposition 4 (cf. [2]). Every prime implicate of a Horn CNFy has an input resolu-
tion proof from it, i.e., a resolution proafi, cs, . . ., ¢; (= ¢) such that either; € ¢ or
¢ = ¢j @ ¢ Whereyj, k < [and eitherc; € porc, € , foralli e {1,...,1}.

We start with the following lemma.

Lemma 6. Letp be a prime Horn CNF, and letbe any prime implicate @f such that
c ¢ ¢. Thenc = ¢; @ co, Wherec; is a prime implicate contained i, and either (i)
¢y is a prime implicate of, or (i) co = cU {¢} wherec; \ {¢} C c andcis the unique
prime implicate ofy contained incs.

Note that item (ii) is needed in this lemma, as shown by the following example.

Example 5.Consider the Horn CNE = (Tg V T1 V 22) (T2 V T3) (T3 V 20). As easily
checkedy is prime and has a further prime implicateV z3, which can not be derived
as the resolvent of any two prime implicatesofNote thaty is acyclic. a

Next we state some important properties of acyclic Horn CNFs under resolution.

Proposition 5. Let ¢ be an acyclic Horn CNF, and let = ¢; & ¢; wherecy, co € .
Then,¢’ = ¢ A cis acyclic Horn, and the dependency graghi§p) and G(y’) have
the same transitive closure. Furthermore, any subforngfleC ¢ is acyclic Horn.

Thus, adding repeatedly clauses derived by resolution preserves the acyclicity of a CNF,
and, moreover, the possible topological sortings of the dependency graph.

The following proposition captures that for an acyclic Horn CNF, resolution cannot
be blocked because of multiple resolving pairapandz; of literals.

Proposition 6. Let ¢ be an acyclic Horn CNF, and let; and ¢, be any implicates of
¢ derived fromy by resolution. Ther;; andc, do not resolve iffP(c1) N N(cz) = 0
andP(Cz) N N(Cl) = 0.

We define an ordering on Horn clauses as follows. Suppose<thiatposes a total
ordering on the atoms{, < z;, <--- <z,). Then, for any Horn clauses andc,,
definec, < ¢, iff ¢; = ¢o or one of the following conditions holds:

(i) P(cr) #0andP(ca) =0;
(i) P(c1) ={x;}andP(c2) = {z;} andz; < z;;
(i) P(c1) = P(ce) andmax N(c1)AN(c2) € ¢1, where A" denotes standard sym-
metric difference (i.e.51ASs = (51 U S3) \ (S1 N S2)).

As usual, we writee; < ¢o if ¢y < ¢ andey # ¢, ¢ > ¢ for co < ¢; etc. Note
that< orders first all definite Horn clauses along their positive literals, followed by the
negative clauses. Notice that C ¢, impliescy < ¢1, for any Horn clauses; andes.

The following proposition is not difficult to establish:

Proposition 7. Every total ordering< of the atomsAt induces a total ordering< of
all Horn clauses overit as described.

With respect to acyclic Horn CNFEgs, in the rest of this paper we assume an arbitrary but
fixed total ordering< of the atoms which is compatible with some topological sorting
of the dependency grapgh(y).

Proposition 8. Letc; andes be Horn clauses such that= ¢; @ ¢, exists. Therng; < ¢
andcy < ¢ hold.

Corollary 1. Letp be an acyclic Horn CNF, and let ¢; and ¢, be any implicates of
o derived fromp such thatc C ¢; @ ¢o. Then,e > ¢; andc > ¢; holds.

Consequently, in any input resolution proof of a clause from an acyclic Horn CNF the
derived clauses increase monotonically. As for the derivation of prime implicates, we
find for such CNFs a more general form than in Lemma 6:

Lemma 7. Lety be an acyclic prime Horn CNF, and letbe any prime implicate af
such thatc ¢ ¢. Then, there are prime implicates and ¢, of ¢ and, for some: > 0,

prime implicatesd,, ds, . .., d; and literals ¢, (o, . .., i, respectively, such that: (i)
Cl,dl,...,dk € ¥, and (ll) c = c1 ® e, Wheree; = cU {El} =d; P €it1s for
i€{1,...,k}, ander 1 = co, such thak; contains the single prime implicate

An immediate consequence of this result is that prime implicates of an acyclic Horn
CNF can be generated from two prime implicates as follows.

Corollary 2. Letp be an acyclic prime Horn CNF, and letbe any prime implicate of
¢ such thate ¢ ¢. Then, there exist prime implicatesand ¢, of ¢ which resolve such
that either (i)c = ¢; @ ¢z or (ii) ¢1 ® ca = cU {{}, wherel ¢ ¢ andc is the unique
prime implicate ofp contained inc; @ cs.

In Example 5, the further prime implicate, vV T3 can be derived as in case (ii) of
Corollary 2: Forc, = T VT V z2 andey = T V T3, We haver) @ co = T V T3 V Tp,
andc = 7 V T3 is the unique prime implicate @f contained inc; @ co.

After the preparatory results, we now show that AlgoritRREXPLANATIONS is
complete. Using an inductive argument on clause orderings, we show that all explana-
tions are generated by taking into account possible derivations of prime implicates as
established in Lemma 7 and Corollary 2. However, an inductive proof atoaigcoun-
ters two major difficulties: First, the resolvent= ¢; ® ¢ of two clauses idarger
thanc; andes, thus we cannot simply rearrange resolution steps and appeal to smaller
clauses. Second, Algorithm-EXPLANATIONS does not generate prime implicatés
by a resolution step alone, but usimgnimizationin Step 3; that is, a prime implicate
includedin the resolventl = ¢ & ¢’. A respective statement is much more difficult to
prove than the one if were prime.

In order to overcome these difficulties, we use a more sophisticated ordering of
clause pairgc, ¢') and establish as a stepping stone the following key lemma. For ease
of reference, let us say that resolvable implicateandc, of a Horn CNFy satisfy the
(technical) property(), if the following conditions hold:

1. Atleast one of; andc, is prime.

2. If ¢; is not prime, then it is of forme; = ¢ U {¢}, wherec’ is the unique prime
implicate ofp contained irc; (i € {1,2}), and¢; occurs in some derivation of
asinLemma?.

3. There is no implicate] C ¢; (resp.,c5 C ¢2) of ¢ such thate = ¢} @ ¢ (resp.,
c=c1Bd).

Lemma 8 (Key Lemma).Let ¢ be a prime acyclic Horn CNF, and let and ¢, be
resolvable clauses satisfyirig) such thag € ¢ := ¢; ® co. Suppose that; € S'if ¢; is
prime andg € N(¢;) (resp..c; € S if ¢; = ¢, U {{;} wherec] is prime andg € N(c}))
for i € {1,2}. Then at least one of the following conditions ho{g: ¢ \ {g} is an
implicate ofy, or (ii) ¢ contains ag-clause fromsS.

Proof. (Outline) We prove the statement using an inductive argument which involves
clause orderings and takes into account how the clatjsesdc, are recursively gen-
erated. Depending on the shape-pfindc,, we consider different cases.

Consider first the case in which bathandc, containg. Then, w.l.o.gc =gVvaVv
b(Vry),cp =qVaVz(Va),ande; = bV z Vv q. Here,a andb are disjunctions of
negative literals, while: is a single atom; (\vz;)” means the optional presencexf

Both ¢; andc, contain a unique prime implicatd resp.c), of ¢ (where possibly
¢, = ¢). If g € ¢}, then by assertion we havg € S. Thus, if bothc] and¢), contain
g, Algorithm N-EXPLANATIONS considers] @ ¢4, which implies the statement. No
other cases are possible, since eittfeor ¢, must contairg (sincec; or ¢, is prime)
and condition 3 of £) excludes that exactly one ef andc/, containsj. This proves the
statement if botle; andc, containg.

For the other cases, assume that ¢; andq ¢ c» and prove the statement by
induction along the lexicographic ordering of the pdirs, c2), where the clauses
are inreverseordering> and the clauses, in regular ordering<. We distinguish the
following cases:

Definite/Negative Case 1 (DN1)c = gV a Vv b(Va;), c1 = gV a Vv z(Va;), and
co = bV z. That is, theg-clausec is generated by resolving@clausec; with a
nong-clausecs, where the positive resolution literalis in cs.

Definite/Negative Case 2 (DN2)c = gV aV b(Va;),c; = gV aV z, andcy, =
bV T (Vz;). That is, theg-clausec is generated by resolving@clausec; with a
nong-clausecy, where the positive resolution literalis in ¢, .

The statement is shown by a careful analysis of parent clausesafd c,, and by
reordering and adapting resolution steps. DN1 recursively only involves cases of the
same kind (in fact, for negative we need to appeal only to smaller instan¢és c})
wherec] is negative), while DN2 recursively involves itself as well as DN1. O

By combining Lemma 8 with Proposition 8 and Corollary 2, we obtain by an inductive
argument on the clause orderingthe desired completeness result.

Lemma 9 (Completeness olN-EXPLANATIONS). Algorithm N-EXPLANATIONS out-
puts all nontrivial explanations for a query = g from an acyclic Horn CNFkp.

Proof. We prove by induction or< that S contains each-prime implicatec of .
(Basis) Letc be the least prime implicate of which containsg. From Proposition 8
and Corollary 2, we conclude that ¢ must hold. Hence; € S.

(Induction) Suppose the claim holds for glprime implicates’ of ¢ such that’ < c,
and considee. By Corollary 2, there exist prime implicatesandc, such that either (i)
¢ = c1 @ s or (i) cis the unique prime implicate containeddn® ¢, = cU {¢} where
¢ ¢ c. By Proposition 8 and the induction hypothesis, we have S if ¢ € N(¢;)

holds fori € {1, 2}. Consequently;; andc, satisfy the conditions of Lemma 8. Hence,
either (a)c; @ ¢2 \ {g} is an implicate ofp, or (b) ¢c; @ ¢» contains g-clausec’ from

S. Sinceq € N(c) andc is the unique prime implicate containeddn® c,, we have
(b). It follows from the uniqueness ofthatc’ = ¢, which proves the statement. O

We are now in a position to establish the main result of this section|fetenote the
size (number of symbols) of any CNk

Theorem 2. Algorithm N-EXPLANATIONS incrementally outputs, without duplicates,
all nontrivial explanations ofy = g from . Moreover, the next output (respectively
termination) occurs withirO(s - (s +m) - n - ||¢||) time, wherem is the number of
clauses inp, n the number of atoms, andthe number of explanations output so far.

Proof. By Lemmas 5 and 9, it remains to verify the time bound. Computing a prime
implicatec’ C ¢ andd’ C d of ¢ in Steps 2 and 3, respectively, is feasible in time
O(n-|l¢||) (cf. Proposition 1), and thus the outputs in Step 2 occur Wit - n - ||]|)
delay. As for Step 3, note th& contains only pairdc,c’) wherec € ¢* U S and

¢’ € S such that the explanation corresponding’tavas generated, and each such pair
is added ta@ only once. Thus, the next output or termination follows withir{s 4+ m)

runs of the while-loop, where is the number of solutions output so far. The body of
the loop can be done, using proper data structure®,(im- ||¢||) time (for checking

d' ¢ S efficiently, we may storeS in a prefix tree). Thus, the time until the next output
resp. termination is bounded I6Y(s - (s +m) - n - [|¢]|). O

Corollary 3. Computing polynomially many explanations for a negative quesy g
from an acyclic Horn CNFp is feasible in polynomial time (in the size of the input).

We conclude this section with some remarks on AlgoritwBEXPLANATIONS.

(1) As for implementation, standard data structures and marking methods can be
used to realize efficient update of the setandS, to determine resolvable clauses, and
to eliminate symmetric pairg, ¢’) an(c’, ¢) in O.

(2) Algorithm N-EXPLANATIONS is incomplete for cyclic Horn theories, as shown
by the following example.

Example 6.Consider the Horn CNlp = (Tg V T1 V 22)(To V T1 V 23)(T1 V T2 V
x3)(T1 V 2o VT3) (T2 VT3 V x4) OVerao, ..., x4. Note that all clauses ip are prime,
and thatz, andx3 are symmetric. There are three further prime implicates,afiz=
T1VToV oy, o =T VT3V ay andes = Tg VT V 24. Thus,ﬁ = T has the
nontrivial explanation&; = {z1,Z>}, E2 = {x1,%T3}, andEs = {z1,T4}. Apply
then algorithmN-EXPLANATIONS on inputy andg = zy. While it outputsE; and s,
it misses explanatiofys. a

Algorithm N-EXPLANATIONS may be extended to handle this example and others cor-
rectly by adding in Step 2 prime implicates ¢d which are generated in polynomial
time (e.g., by minimizing clauses derived by resolution proofs fggnwhose number

of steps is bounded by a constant).

(3) Algorithm N-EXPLANATIONS is no longer complete if we constrain the resolu-
tion process to input resolution, i.e., consider only p&irg’) in Step 3 where at least
one ofc and ¢’ is from ¢ (which means that in the update 6fin Step 3, the part
“{(d",d") | d" € S}"is omitted). This is shown by the following example.

Example 7.Consider the Horn CNip = (ZTg V 21)(T1 V T V x3)(T1 V T3 V x4)
overzo, ..., x4. AS easily seeny is acyclic. Moreovery is prime. There are three
further prime implicates containingy, viz. ¢; = To V T2 V 3, ¢ = To V T3 V 24,
andes = Ty V Ty V x4. Hence,g = T, has the nontrivial explanations, = {z },
Ey = {x2,T3}, B3 = {x3,Z4}, andE, = {x2,T4}. If atleast one of the clausés ¢’)

in Step 3 must be fromp, thenFE, andF; are generated froffx, VI, Va3, To V) and
(T1 VT3V x4,To V1), respectively, whileZ, is missed: The pair€t; VT3 V x4, To V
Ty Vxg) and(Ty VT2 V x3,To V T3 V 4) Yield the same resolvemy V T V Ty V 24,
for whichp* |~ (c® ¢\ {g}) fails sincez; V T2 V 24, which is the resolvent of the last
two clauses inp, is an implicate. Note thall, is generated from each of the excluded
symmetric pairgzo V Ta V x3,To V T3 V xq) and(To V T3 V 24,To VT2 V 23). O

In terms of generating prime implicates, this contrasts with the cases of computing all
prime implicates of a Horn CNF and all prime implicates that contain a positive literal
q , for which input-resolution style procedures are complete, cf. [2, 11].

5 Compound Queries

In this section, we consider generating all explanations for queries beyond literals. The-
orem 1 implies that this problem is intractable for any common class of CNF queries
which admits a negative literal. However, also for positive CNFs, it is intractable.

Theorem 3. Deciding whether a given CNk has an explanation from a Horn CNF
is NP-complete. Hardness holds evelyifs positive andp is negative (thus acyclic).

Proof. Membership inNP easily follows from Lemma 1. Hardness is shown via a
reduction from the classical EXACT HITTING SET problem. L®&t= {S1,...,5n}

be a collection of subsets; C U of a finite setU/. Constructy = A; (V,cg,) and

¢ = N; Nuzyes, (@ V7). Thenx has an explanation from iff there exists an exact
hitting set forS, .e.,asetd C U suchthatH N S;| =1foralli e {1,...,m}. O

For important special cases of positive CNFs, we obtain positive results. In particular,
this holds if the query is restricted to be a clause or a term.

Theorem 4. Computing polynomially many (resp., all) explanations for a query
which is either a positive clause or a positive term from a Horn CNIs feasible
in polynomial time (resp., polynomial total time).

Proof. Let us first consider the case in whighis a positive clause = \/, .p., 2.

Then lety” = ¢ A\, cp) (T V 2*), wherez* is a new letter. As easily seep; is a

Horn CNF and there is a one-to-one correspondence between explanations forg query
from ¢ and the ones far* form p* (except for a trivial explanation*). This, together

with the result in [11] that all explanations for a query= ¢ whereq is an atom from

a Horn CNF can be generated with incremental polynomial delay, proves the theorem.

Similarly, if x is a positive ternt = /\lep(t) x, one can consider explanations for
* from the Horn CNFRp* = o A (Ve p() TV 27), Wherez™ is a new letter. O

In case of acyclic Horn theories, the positive result holds also in the case where negative
literals are present in a clause query.

Queryy CNF single literal | single clause | single term
Horn theoryX, by | general positive atomg g | positive general positive general
Horn CNFy NPTT NPTT| PTT® NPTT| PTT NPTT| PTT NPTT
Acyclic Horn CNFy | NPTT NPTT | PTT* PTT| PTT PTT | PTT -
¢ By the results of [11].

Table 1. Complexity of computing all abductive explanations for a querfyom a Horn theory
(PTT = polynomial total time, NPTT = not polynomial total time unless P=NP)

Theorem 5. Computing polynomially many (resp., all) explanations for a queey ¢
wherec is a clause from an acyclic Horn CNE is feasible in polynomial time (resp.,
polynomial total time).

Proof. Let X = V,cp)® V Vien(o Z- Then lety® = o A A cp (T V %) A
Nsen(e(zV z¥), wherez™ is a new letter. Itis not difficult to see that is an acyclic

Horn CNF, and there is a ono-to-one correspondence between explanations for a query
x from ¢ and the ones fat* from ¢* (except for a trivial explanation*). This together

with Theorem 2 proves the theorem. O

Note that explanations for a single clause quert ¢ correspond to the minimal sup-
port clauses for as used in Clause Management Systems [22]. Thus, from Theorems 1
and 5 we obtain that while in general, generating all minimal support clauses for a
given clause is not possible in polynomial total time unleBs= NP, it is feasible
with incremental polynomial delay for acyclic Horn theories.

The presence of negative literals in a query= t for a term¢ from an acyclic
Horn theory is more involved; a similar reduction technique as for a clause to a single
literal seems not to work. We can show that generating all nontrivial explanations
(i.e., Enx = 0) for aterm is intractable; the case of all explanations is currently open.

6 Conclusion

We considered computing all abductive explanations for a gudérgm a propositional
Horn CNF¢, which is an important problem that has many applications in Al and Com-
puter Science. We presented a number of new complexity results, which complement
and extend previous results in the literature; they are compactly summarized in Table 1.

We showed the intractability of computing all abductive explanations for a negative
literal queryy from a general Horn CNEp (thus closing an open issue), while we pre-
sented a polynomial total time algorithm for acyclic Horn CNFs. Since this amounts to
computing all prime implicates @f which contairg, we have obtained as a byproduct
also new results on computing all such prime implicates from a Horn CNF. Note that
our intractability result contrasts with the result in [2] that all prime implicates of a
Horn CNF are computable in polynomial total time. Furthermore, our results on clause
queries imply analogous results for generating all minimal support clauses for a clause
in a Clause Management System [22].

It remains for further work to complete the picture and to find further meaningful
input classes of cyclic Horn theories which permit generating a few resp. all explana-
tions in polynomial total time. For example, this holds for clause queries from quadratic

Horn CNFs (i.e., each clause is Horn and has at most 2 literals) and for literal queries
from Horn CNFs in which each clause contains the query literal. Another issue is a
similar study for the case of predicate logic.

Acknowledgments.We thank the reviewers for helpful suggestions.

References
1. K. Apt and M. Bezem. Acyclic programslew Generation Comp9(3-4):335-364, 1991.
2. E. Boros, Y. Crama, and P. L. Hammer. Polynomial-time inference of all valid implications

10.
11.

12.

13.
14.

15.
16.

17.
18.

19.

20.

21.
22.

23.

24.

25.

for Horn and related formulaédnn. Math. and Artif. Int.1:21-32, 1990.

. G. Brewka, J. Dix, and K. KonoliggNonmonotonic Reasoning — An OvervieMumber 73

in CSLI Lecture Notes. CSLI Publications, Stanford University, 1997.

. T. Bylander. The monotonic abduction problem: A functional characterization on the edge

of tractability. InProc. KR-91 70-77. Morgan Kaufmann, 1991.

. L. Console, D. Theseider Duprand P. Torasso. On the relationship between abduction and

deduction.J. Logic and Computatiqri(5):661-690, 1991.

. J. de Kleer. An assumption-based truth maintenance systdif.Int., 28:127-162, 1986.
. A.del Val. On some tractable classes in deduction and abduditif. Int., 116(1-2):297—

313, 2000.

. A. del Val. The complexity of restricted consequence finding and abductioRroln Na-

tional Conference on Atrtificial Intelligence (AAAI-20Q8). 337-342, 2000.

. W. Dowling and J. H. Gallier. Linear-time algorithms for testing the satisfiability of propo-

sitional Horn theoriesJ. Logic Programming3:267—284, 1984.

T. Eiter and G. Gottlob. The complexity of logic-based abductid€CM, 42(1):3-42, 1995.

T. Eiter and K. Makino. On computing all abductive explanationsPrisc. AAAI-02 pp.
62—67. AAAI Press, July 2002.

T. Eiter and K. Makino. Generating all abductive explanations for queries on propositional
Horn theories. Tech. Rep. INFSYS RR-1843-03-09, Institute of Inf.Sys., TU Vienna, 2003.
K. Eshghi. A tractable class of abduction problemsPioc. IJCAI-93 pp. 3-8, 1993.

G. Friedrich, G. Gottlob, and W. Nejdl. Hypothesis classification, abductive diagnosis, and
therapy. InProc. Int'l Workshop on Expert Sys. in Engineerih§iCS 462, pp. 69-78, 1990.

K. Inoue. Linear resolution for consequence findiAgif. Int., 56(2-3):301-354, 1992.

H. Kleine Bining and T. Lettmanniussagenlogik - Deduktion und AlgorithméhG. Teub-

ner, Stuttgart, 1994.

A. Leitsch.The Resolution CalculusSpringer, 1997.

P. Marquis. Consequence finding algorithms. In D. Gabbay, Ph. SmetsHadsook of
Defeasible Reasoning and Uncertainty Management Syimsp. 41-145. Kluwer, 2000.

C. S. Peirce. Abduction and induction. In J. Buchler, editbilosophical Writings of Peirge
chapter 11. Dover, New York, 1955.

D. Poole. Explanation and prediction: An architecture for default and abductive reasoning.
Computational Intelligences(1):97-110, 1989.

D. Poole. Probabilistic Horn abduction and Bayesian netwa@k§. Int., 64:81-130, 1993.

R. Reiter and J. de Kleer. Foundations of assumption-based truth maintenance systems:
Preliminary report. IrProc. AAAI-87 pp. 183-188, 1982.

B. Selman and H. J. Levesque. Abductive and default reasoning: A computational core. In
Proc. AAAI-9Q pp. 343-348, 1990.

B. Selman and H. J. Levesque. Support Set Selection for Abductive and Default Reasoning.
Artif. Int., 82:259-272, 1996.

B. Zanuttini. New Polynomial Classes for Logic-Based Abductibrrtificial Intelligence
Research2003. To appear.

