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Bidual Horn Functions and Extensions

ThomasEitert Toshihidelbarakf KazuhisaMakino®

Abstract

Partially definedBooleanfunctions(pdBf) (T, F'), whereT, F C {0, 1} aredisjoint setsof true
andfalsevectors,generalizetotal Booleanfunctionsby allowing that the function valueson some
input vectorsareunknovn. The mainissuewith pdBfsis the extensionproblem,which is deciding,
givena pdBf, whetherit is interpolatedby a function f from a givenclassof total Booleanfunctions,
and computinga formula for f. In this paper we considerextensionsof bidual Horn functions,
which are the Booleanfunctions f suchthat both f andits dual function f¢ are Horn. They are
intuitively appealingfor consideringextensionsbecausehey give a symmetricrole to positive and
negative information(i.e., trueandfalsevectors)of a pdBf, which is not possiblewith arbitraryHorn
functions. Bidual Horn functionsturn out to constitutean intermediateclassbetweenpositive and
Horn functionswhich retainsseveral benignpropertiesof positive functions. Besidesthe extension
problem,we study recognitionof bidual Horn functionsfrom Booleanformulasand propertiesof
normalform expressionsWe shaw thatfinding a bidual Horn extensionandcheckingbiduality of a
HornDNF is feasiblein polynomialtime, andthatthelatteris intractablefrom arbitraryformulas.We
alsogive characterizationef shortesDNF expression®f a bidualHorn function f andshav how to
computesuchanexpressiorfrom aHorn DNF for f in polynomialtime; for arbitraryHorn functions,
thisis NP-hard.Furthermorewe shov thata polynomialtotal algorithmfor dualizinga bidualHorn
functionexistsif andonly if thereis suchanalgorithmfor dualizinga positive function.

Keywords: Booleanfunctions,Hornformulas,satisfiability partially definedBooleanfunctions,charac-
teristicmodels polynomialalgorithms

1 Intr oduction

Theconcepbf apartially definedBooleanfunction(pdBf) [5, 8] is anaturalgeneralizatiorof thefamiliar
conceptof a Booleanfunction, by allowing thatthe function valueson someinput vectorsareunknavn.
ThosepdBfshave mary applicationsjn particularin computerscienceandknowledgeengineering.
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For example aclassicabpplicationof pdBfsis in thedesignof switchingcircuits. A customarymethod
in thatfield is to specifytheinputson whichthe circuit mustoutputl andtheinputsonwhich it mustout-
put0; the outputon the remaininginputsremainsunspecifiedandis consideredis“don’t care”. Another
applicationof pdBfsis with therepresentationf incompleteinformationaboutcause-déctrelationships
[8]. E.g.,theeffect of a numberof facts(e.g.,a patientis male,is a smoler etc.) on a specificdisease
(e.g.,cancercanbemodeledasaBooleanfunction f(z1, z2, . . . , z, ), Wheretheamgumentsz; represent
presenceof the facts,andthe value of f tells whetherthe diseasds presentor not. Sincein general
the resultsof all combinationsof the factson the diseasewill hardly be known, the relationshipcanbe
properlymodeledby a pdBf. FurthermorepdBfs have applicationan machinelearning. E.g., consider
conceptlearning[1, 2, 32] in the following setting: Given a languageof n Booleanvaluedattributes,
find a hypothesidor their correlation,i.e., a function g from a fixed classof BooleanfunctionsC, that
accuratelyapproximatesheactualcorrelationwhichis an f in C, afterseeingareasonablgmallnumber
of examples,i.e., valuesof f on particularvectorsselectedy the learningalgorithm. In our terms,the
algorithmgraduallyrefinesa pdBf until finally a total Booleanfunctionis output. In this conted, it is
interestingo know whetherthe pdBf givenby the considereagxamplesmplicitly definesafunctionfrom
C; if thisis recognizedthe algorithmcanstopandoutputg which describeshe exactcorrelation.

More formally, apdBfis apair (T, F') of setsT" and F' of trueandfalsevectorsin {0, 1}", respectiely,
whereT N F = (). Clearly, eachpdBf canbe completedo sometotal Booleanfunction f. In general,
however, oneis interestedo know whethetthisis possiblegfor somef from aparticularclassC of Boolean
functions,i.e.,whetheranextensionf in C existssuchthatT C T'(f) andF C F(f), whereT'(f) (resp.,
F(f)) denoteghe setof true (resp.,false)vectorsof f. Thisis known asthe extensionproblem and
correspondi a sensdo the satisfiabilityproblemof Booleanformulas.

The extensionproblemandvariantsthereofhave beeninvestigatedor a numberof classeof Boolean
functions[8, 6, 5, 28]. Among theseclassesare Horn functions,which are of centralinterestin mary
domains.A functionis Horn if it canberepresentethy a DNF (disjunctive normalform) in which each
termcontainsat mostonenegative literal. It is well-knovn thatthe Horn functionsf arethosewhoseset
F(f) of falsevectorsis closedunderintersectionseeSection2); they play animportantrolein artificial
intelligence Jogical databasesindlogic in computersciencecf. [16, 7, 21]. As shavnin [28, 6], aHorn
extensionof apdBf canbefoundin polynomialtime. In fact,a Horn extensionfor (7', F') existsprecisely
if thetruevectorsT aredisjointfrom the closureof thefalsevectorsF underintersection However, this
characterizatioshavs thatthe Horn extensionproblemis, in asensegasymmetridn theinput7 and F'.
Froma conceptuapoint, we could askfor amorebalancedole of T"and F' in the conditionfor a Horn
extension.Thus,we might searchor suitableadditionalconstraintgo reachthis goal.

A naturalandsuggestie possibilityathandis to requireadualbehaior betweerl” andF', since0 and1
aredualvalues.Thisleadsto the conceptof bidualHorn functions:A function f is bidual Horn, if F(f)
is closedunderintersectionand,dually, T'( f) is closedunderunion (i.e., underdisjunctionof vectors);
thatis, both f andits dual f¢ areHorn.

Obsere thatbesidesidual Horn functions,otherpossibilitiesfor balancingtherole of 7" and F' exist.
E.g.,in [14] the classof submodulafunctionshasbeeninvestigatedwherea function f is submodular



if f andits contra-dualreHorn, andin [13] the classof doubleHorn functions,wherea function f is
doubleHornif f andis complemenareHorn.

It turnsout thatBidual Hornfunctionshave interestingoroperties Firstly, from thelogical perspectie,
thebidualHorn functionsarethosefunctionsf suchthat F( f) is describedy logicalimplications

Ty NTjg N - AT, — Ty, (1.2)

and,dually, T'(f) by

Tjy NTjy N -+ - NTy, — Ty 1.2)
whereboth the antecedenandthe consequeninay be empty Thus,if the true vectorsare seenasle-
gal statedescriptionsthenthey arefully characterizedy dependenciesf literals from falsefacts,and
theillegal statesare characterizedby similar dependenciesf literals from true facts. This propertyis
preseredif truth andfalsity areinterchanged.

Secondly the bidual Horn functions constitutean intermediateclassbetweenthe classef positive
functionsandHorn functions,which retainsmary of the benignpropertiesof positive functions. In par
ticular, apartfrom syntacticaBndsemanticapropertiescertainimportantcomputationaproblemswhich
areintractablefor Horn functionsarefor bidual Horn functions,like for positive functions,polynomial
(seebelav). Mostimportantly ary irredundanfprime DNF of a bidualHorn function containsthe same
numberof term,andthe computationof a shortestDNF expressionfrom an arbitraryHorn DNF, which
is NP-hardfor arbitraryHorn functions,is provedto be polynomial. Obsenre thatfew similar subclasses
of Horn functionsareknown; e.g.,the classof quasi-agclic Horn functions[20], which is incomparable
to the classof bidualHorn functions.SincebidualHorn functionsarepolynomial-timerecognizablethis
meanghatour algorithmscanbe addedo a tool-boxfor tractablerecognitionandhandlingof important
problemson Horn functions.

Themaincontritutionsof this papercanbe shortly summarizedasfollows.

e Weintroducetheclassof bidualHornfunctions,Cg g, andinvestigatetheir propertiesin particular we
presentharacterizationsf bidualHorn functionsin termsof their primeimplicants,andwe characterize
the shortestDNF expressionof a bidual Horn function f, measurecdn the one handby the smallest
numberof terms(term-shortesDNF) in a DNF for f, or, on the otherhand,by the smallestnumberof
literals (literal-shortesDNF), which correspondso the length of the DNF. Basedon this, we develop
polynomialtime algorithmsfor recognizinga bidual Horn function from a given Horn DNF, aswell as
for computingaterm-shortesor literal-shortesDNF. Thesearepositive results sincecomputinga term-
shortesor aliteral-shortesDNF of anarbitraryHorn DNF arewell-knovn NP-hardproblemd3, 27, 1§].

e \We presenianalgorithmthat decideghe existenceof a bidualHorn extensionf for a given partially
definedBooleanfunction (7, F') in O(n|T||F|) time, wheren is the dimensionof the Booleanvectors.
anddescribehow a Horn DNF for suchan f canbe outputin O(n|T|(|T| + |F|)) time. Moreover, we
shaw thatfinding term-shortesbr literal-shortesbidualHorn extensiongn DNFsareNP-hardproblems.

e We addresghe problemof computingall bidual Horn extensionsof (7', F'), andgive evidencethat
a procedurefor enumeratinghe bidual Horn extensionsy1, @2, ... of (T, F) with polynomial delay
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betweensubsequenbutputsis hardto find. In fact, we shav that given a bidual Horn extensiony of
(T, F), decidingwhetheranotherbidual Horn extensiomy # ¢ existsis atleastashardasthe positive
duality problem([4], i.e., given two positve DNFs ¢, 9, decidewhethery representshe dual of the
functionrepresentedby . The positive duality problemandequivalentproblemshave beentackledby
mary researcherdyut no polynomialalgorithmis known [23, 4, 15, 11, 24]. This stronglysupportshat
apolynomialtime algorithmfor theuniquebidual Horn extensionproblem,i.e., decidingwhethera pdBf
(T, F) implicitly definesatotal bidualHorn functionis difficult to find.

o We studytransformatiorproblemshetweendifferentrepresentationtr bidualHorn functions,in par
ticular (Horn) DNF formulasandcharacteristicet[25, 24, 26] (or baseq10]), which area vectorbased
representatiomf arbitrary Horn functionsthat hasrecevved muchinterestin the context of knowvledge
representatioandreasoningseeSectiont for details).We shav thatthetransformatiorbetweera Horn
DNF of f andits (unique)characteristisetcanbedonein polynomialtime,i.e.,givenaHorn DNF of f,
the characteristisetof f is constructiblen polynomialtime andvice versa.Furthermorewe shav that
several transformationbetweernrepresentationsf f andits dual f¢ are polynomial-timeequialentto
thewell-known problemof dualizinga positive function[4, 11, 15]. Namely thetransformatiorbetween
(4) thecharacteristisetof f andaHorn DNF of £¢; (ii)the characteristisetof f andthe characteristic
setof f¢, and(4ii) a Horn DNF of f anda Horn DNF of f¢, i.e., dualizationof a bidual Horn function.
This canbeseenasapositive result,becausét is believedthatfor anarbitraryHorn function f, thetrans-
formationbetweerthe characteristicetof f¢ andanHorn DNF of f is strictly harderthanthe problem
of dualizinga positive function[24].

Theremaindeiof this paperis structuredasfollows. In thenext sectionwe recallsomebasicconcepts,
fix notations andformulatemajorcomputationaproblemson Booleanfunctions.In Section3, we intro-
ducebidual Horn functionsandstudyrecognitionfrom a formula. Issueson bidual Horn extensionsare
consideredn Section4. In Section5, we turn our attentionto shortestDNF expression®f bidualHorn
functionsandshortesbidualHorn extensionsIn Section6, we considerthe transformatiorproblemsfor
bidual Horn functions. In the final Section7, we addresdurtherissuesand concludethe paper Some
proofsareomitted;they canbefoundin [12].

2 Preliminaries

We use lettersa, b, ¢ and u, v, w to denotevectorsin {0,1}", anduse0 = (0,0,...,0) and1 =
(1,1,...,1). In generalwe alsoallow n = 0; the set{0,1}° containsa single vector which is the
emptyvector(). As usual,v A w (resp.,v V w) denotegheintersection(resp.,union (i.e., the compo-
nentwiseconjunction(resp.,disjunction))of vectorsv andw; e.g.,if v = (1100) andw = (1010), then
v A w = (1000) andv V w = (1110).

For eachv = (v1,v9,...,v,) wedefineON(v) = {i | v; = 1} andOFF(v) = {i | v; = 0}, and
denotev = (v1,72,...,0,), Wherev; =1 —v;,7 = 1,2,...,n. Moreover, foreveryI C {1,...,n}, we
denoteby z! its characteristizector implicitly definedby ON (z!) = I; e.g.,if n = 5andl = {1, 3},



thenz! = (10100).

Let S C {0,1}" beasetof vectors.Then,A S = A,c5v andV S =V, 5 v denotethe simultaneous
intersectiomandunion, respectiely of all vectorsin S; in particular A® = 1 and\/ ) = 0. Moreover,
CIA(S) (resp. Cly(S)) denotegheclosureof S underintersectiorv A w (resp.,unionv U w) of vectors
v andw, calledtheintersection(resp.,union) closue of S. Forasubsetl C {1,2,...,n}, S[I] denotes
the projectionof Sto I.

Example2.1 Let S = {(0101),(1001),(1000)}. ThenA S = {(0000)}, VS = {(1101)}, CIA(S)
= {(0101), (1001), (1000), (0001), (0000)}, and Cl, (S) = {(0101), (1001), (1000), (1101)}. For I =
{1, 3}, wehaveS[I| = {(00), (10)}. 0

Recallthat a Booleanfunction or a functionin short,is a mappingf : {0,1}" — {0,1}. Thesets
T(f) = {v | f(v) = 1} andF(f) = {v | f(v) = 0} arethe true vectorsand falsevectorsof f,
respectiely. Noticethatfor n = 0, therearepreciselytwo Booleanfunctions,f = 1 andf = T, which
correspondo truth andfalsity, respectiely. For ary function f, we denoteby f and f¢ its negation (or
complementanddual respectiely, which aredefinedby T'(f) = F(f) andT(f%) = {a | @ € F(f)}.
Notethat f¢ = g, whereT'(g) = {a | @ € T(f)}.

A partially definedBooleanfunction (pdBf) is a mappingp : 7'U F' +— {0,1} definedby p(v) = 1
if v eT, 0ifve F,whereT C {0,1}" denotesa setof true vectors(or positive examples)and
F C {0,1}" denotesa setof falsevectors(or negative examples)suchthat7 N F' = (. For simplicity, a
pdBfis denotedy a pair of sets(7, F'). A pdBfis calledtotal if T U F' = {0,1}".

Notice that (7', F') canbe seenasa representatioffior all Booleanfunctions f suchthatT(f) 2 T
and F(f) D F; ary suchf is calledan extensionof (7', F'). The mainissuein the context of pdBf
concerngxistenceandpropertiesof extensionssubjectto the conditionthatthey arefrom acertainclass
of Booleanfunctions[6, 28].

Thereis avastliteratureon classef Booleanfunctionsandtheir propertiesjn particularon compu-
tationalaspectg¢33], amongwhichthe classe€ < of positve functionsandCr -, of Horn functionsare
mostwell-known. A function f is positive(alsocalledmonotongif v < w implies f(v) < f(w), where
< is componentwisand(0 < 1. A Horn function f hasthewell-known algebraiaccharacterization

flonw) < fo) Vv fw),

whichis equivalentto F(f) = CIA(F(f)).

Equivalentdefinitionsof positive andHorn functionscanbe givenin termsof disjunctivenormalform
(DNF). We assuméhat Booleanvariablesarefrom x1,zs, ..., z,. A literal L is eithera variablez;
or its complementz;, which arerespectiely referredto aspositiveand negativeliterals. A termt is a
conjunctionA;c i) =i A Ajen( Zj Of literals suchthat P(¢) N N (¢) = (. We often omit conjunction
symbolsif no confusionarises.The emptyterm (representingruth) with P(¢) = N(¢) = () is denoted
by T. Let V(t) = P(t) U N(t) denotethe variableindicesin t. A DNF ¢ is a disjunction\/%_, #; of
terms;theemptyDNF (representindalsity) is denotedby L. Thelengthof a DNF (or arbitraryformula)
¢, denotedby ||, is the numberof symbolsin ¢. A termt is positiveif N(t) = 0, Hornif |[N(¢)| < 1,
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andpure Horn if |[N(¢)| = 1. A DNF ¢ =V, t; is calledpositiveif all ¢; arepositive, Horn if all ¢; are
Horn,andpure Horn if all ¢; arepureHorn.

Example 2.2 For example t1 = z1x974, to = T124T526 and ity = x9T3Ts are terms,while ¢4 =
T2x4To IS NOL; t1 is positive(and henceHorn) andhas P(t1) = {1,2,4} and N (t1) = 0, 5 is (pure)
Horn andhas P(t3) = {1,4,6} and N(t2) = {5}, and 3 is neither positiveand Horn. The DNFs
<p(1) =29V I123V T124, (p(2) =Ty VT123 V 23T4 and (p(3) = 19T3 V 123 V Tox3, respectivelyare
positive pure Horn andHorn. O

We call a function positive (resp.,(pure) Horn) if andonly if it canbe representethy somepositve
(resp.,(pure)Horn) DNF. It is known thatthesedefinitionsusingDNFscoincidewith the abose semantic
definitionsof positve andHorn functions.

A termt is animplicantof aformula ¢ (resp..function f) if ¢ < ¢ (resp.,t < f) holds;heret andy
areregardedasfunctionsthey representand f; < f, denotesI’'(f1) C T'(f2). Animplicantt is prime
if no propersubtermof ¢ is animplicant. A DNF ¢ =/, ¢; is calledprimeif all termst; in ¢ areprime
implicants,andirredundanif no DNF, whichis obtainedby droppingsometermst; in ¢, representshe
samefunction. A primeimplicant¢ of afunction f is calledessentialf all prime DNFsrepresenting
containt. For example,aDNF ¢ = z1%y V 21T3 V z2T3 V x4 IS prime becausall termsz 1z, z17Z3,
z9Z3 andx4 areprimeimplicants,but it is notirredundanbecause’ = z17» V 22T3 V 24 representshe
samefunctionasey. In this casejt canbeshavn thatz, is essential.

Let¢; andte betermssuchthat P(t1) N N(t2) = {I} andN (¢t;) N P(t2) = 0. Thenatermts is called
the consensusf theorderedpair ¢y ,t» if

P(t3) = (P(t1) \ {1}) U P(t2) and N(t3) = N(t1) U (N(t2) \ {l}). (2.1)

E.Q.,20T324T 526 iStheconsensusf z1T3x4Ts andz; zoT3z426. NOtethat,in thisdefinition,therolesof
t; andt, areasymmetricty (resp. to) is calledtheleft-parent(resp. right-pareny of ¢3, andts is thechild
of ¢; aswell asbeingthechild of ¢;. Let ¢ = \/; t; beanarbitraryDNF expressiorof afunction f. It is
known [30] thatevery primeimplicantt of f canbederivedfrom thetermsin ¢ by applyingaconsensus
procedureln otherwords,thereis asequence(!), ¢(2) ... ¢(m) = ¢ of termssuchthateacht(¥) is either
in ¢ (i.e.,t*) = t; for somei) or the consensusf two termst(#1) and#(¥2) suchthatk;, k; < k. Since
the consensusf (pure)Horn termst; andt, is (pure)Horn, the abore statementmpliesthatall prime
implicantsof a (pure)Horn functionare(pure)Horn[19].

Onthe computationatide,thefollowing problemshave beenextensvely studiedfor mary classeg of
Booleanfunctions:

(Recognition) : Givenaformulay, doesthefunctionrepresentetdy ¢ belongto C ?

(Extension) : GivenapdBf (T, F'), doesthereexist anextensionf of (T, F') suchthatf € C ?

In caseof theextensionproblem,oneis usuallyalsointerestedn arepresentatioof f, e.g.,by aformula
. Variantsof this problem concerninquiring the uniquenes®f an extension,and generationof all
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extensiongi.e., representationthereof). We shall studythe above two problemsfor the classof bidual
Horn functions,whichis introducedn thenext section.

3 Bidual Horn Functions

We startwith aformal definition of bidualHorn functions.
Definition 3.1 Let f beBooleanfunction.Then,f is bidual Horn, if andonlyif F(f) = CIA(F(f)) and
T(f) = Cly(T(f)). Theclassof all bidual Horn functionsis denotedoy Cp .

As aconsequencdyiduality is algebraicallycharacterizedby thetwo conjoinedinequalities

flzny) < fl@)V fy)
fl@)nfly) < flzVy).

Equivalently afunctionis bidualHornif andonly if both f and f¢ areHorn. For example,
f = ZTixox3V x1T3%4 V T2X3%4
is bidualHorn, because

fd = (51 V zo V .T3)(:111 V3V .T4)(:IZ2 Vz3V .’L‘4)

= ZT124VxT1T2V 22T3V Tox4 V T1T3 V T3T4.

It is well-known thatthe dual £¢ of ary positive function f is positve aswell. As aconsequenceéf f
is positive, thenboth £ and f¢ areHorn; thus,

Proposition3.1 C< C Cpp, i.e., thebidual Horn functionsproperly genealize positivefunctions.

The first problemwe addresds recognitionof bidual Horn functionsfrom a given formula ¢ repre-
sentinga function f. Thedefinitionof biduality implies a naive exponentialalgorithmwhich checksthe
intersectiorandunionconditionon F(f) andT'(f), respectrely. Thisalgorithmis notmuchsatistctory
however, asit usesexponentialspacen theworstcase . Algorithmsin polynomialspacearefeasible but
apolynomialtime algorithmis unlikely to exist, whichis a consequencef thefollowing result.

Theorem 3.2 Let ¢ be a formula. Thendecidingwhethery representsa bidual function is co-NP-
completeevenif ¢ isa DNF

Proof. Theproblemis in co-NP, sinceaguesdor vectorsu(!) andv(® suchthateither(p (v Av?) = 1
andp(v()) = p(v®) = 0) or (p(v®M vo®) = 0, (M) = p(v?)) = 1) canbeverifiedin polynomial
time. To shav the hardnessye usethe reductionfrom the problemof decidingwhethera DNF ¢ on
variableszy, zo, . . ., z,, is atautology(i.e.,v» = T), whichis well-known co-NP-completgl7]. Define
© = PV Tpni1Znt2 V Tni1Tnyo. Obviously ¢ is Hornif andonly if ¢ is a tautology This is also



equivalentto theconditionthaty is atautologythatis ¢ = T € Cgy. Thus,yp is bidualHornif andonly
if 1) is atautology O

However, the recognitionproblemis polynomialif the input formulasy arerestrictedio Horn DNFs.
We obtainthis resultfrom a usefulcharacterizatiowf bidualHorn functionspresentedhext.

We introducesomeadditionalnotations.For a pair of termst; andt;, let usdenoteby t;fj the positve

termsuchthat P(t;;) = P(t;) U P(t;), andby t;; the positive termsuchthat P(t;;) = V (t;) U V(t;).
For example,if t; = z1ZTox3 andty = T 14, themt]t2 = Z123T4 andtljf2 = z1202374. NOtethataterm
t isaHornimplicantof f if t < fand|N(t)| < 1.

Lemma 3.3 Let f bea Horn function. Thenthefollowing statementare equivalent:
(1)  fisbidual.

(¢7) Foreverypair of Hornimplicantst; andt; of f thathavedifferentnegativeliterals, i.e., | N (t;)U
N(t;)| = 2, it holdsthat

ti < f. (3.1)
(it3) For everypair of Horn implicantst; andt; of f sudthat| N (t;) U N(t;)| = 2, it holdsthat
ti; < f- (3.2)

Proof. (i) = (ii): Assumethereis a vectorb suchthatt;jj(b) = 1 andf(b) = 0 for someimplicants
ti, t; of f suchthat |N(t;) U N(t;)] = 2. Clearly ON(b) D P(t;) U P(t;) holds. Furthermore,
N(t;) U N(t;) € ON(b) holds, becausentherwiseN (t;) € OFF(b) impliest,(b) = 1, andhence
f(b) = 1, whichis acontradictionNow let N (¢;) = {h} and N (t;) = {I}, andtake threevectorsb, b*)
andb®, whereb®) denoteghevectorsuchthatON (b)) = ON (b) \ {k}. Then,

b= (") v (b1).

Sincet; (b)) = ¢;(6)) = 1, f(®™) = f(?) = 1 holds,and f (b) = 0 holdsby assumptionHence
T'(f) is notclosedunderunion;i.e., f is notbidualHorn.
(i) = (iii): Immediatefrom ¢;7; < .

(i) = (i): Assumethatf is notbidual. Sincef is Horn, therearethreevectorsu, () andv?) such
thatu = v® v o9, f(u) = 0andf(v®) = f(v\9)) = 1. Fork =4, 4, f(v(*)) = 1 impliesthatthereis
aHornimplicantty = Ay p(t,) Tq Agenisy) Fq Of f suchthati (v®)) = 1. Then

ON(u) = ON(@D)UON @) D P(t;) U P(t;). (3.3)
FurthermoreN (t;) andN (¢;) satisfythefollowing conditions.

(a) N(t;),N(t;) # 0 holds.Assumethat N (¢;) = 0. Then(3.3)impliest;(u) = 1, i.e., f(u) =1,
whichis acontradiction.ThecaseN (¢;) = 0 is analogousThuswe have [N (¢;)| = |[N(t;)| = 1.
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(b)) N(t;) € ON(wY)andN(t;) € ON(v®) hold. Assumethat N (t;) € OF F(u) holds. Then
(3.3)impliest;(u) = 1, i.e., f(u) = 1, whichis a contradiction.ThecaseN (t;) C OFF(u) is
analogous.

(c) N(t) # N(t;) holds. Otherwise,(b) implies N(t;) = N(t;) C ON(v(®), which s a contra-
dictionto t;(v) = 1.

By (a) and(c), t; andt; areHornimplicantsof f suchthat| N (¢;) U N(T;)| = 2. By (3.3)and(b),
ON(u) = ON(v®D)UON @) D V(t;) UV (t;).
Thusu satisfiesf (u) = 0 andtii’j(u) = 1, whichimpliesthat(3.2) doesnothold. O

Exploiting thefollowing lemma,we obtaina polynomialtime algorithmfor checkingthe biduality of a
Horn DNF.

Lemma 3.4 Lety bea Horn DNF. Theny represents bidual Horn functionif andonly if
th<¢  (equivalentlyt; < o) (3.4)

holdsfor all pairs of Horn termst; andt; in ¢ sudthat|N(¢;) U N(t;)| = 2. O

Theorem 3.5 Givena Horn DNF ¢, decidingwhetherit representsa bidual Horn functioncanbe done
in O(m?|¢|) time, whele m denoteghe numberof termsin .

Proof. A straightforvard procedurdestswhethercondition(3.4) holdsfor every pair of termst; andt; in
¢ with adistinctnegatie literal. Eachtestt;jj < ¢ canbedonein O(|p|) time[9, 22]. Totally, it requires
O((3)lel) = O(m?|¢|) time. O

4 Bidual Horn Extensions

In this section,we addresghe problemof finding bidual Horn extensionsfor partially definedBoolean
functions. Recallthat a partially definedBooleanfunctionis a pair (7', F'), of true vectorsT andfalse
vectorsF'. Theextensionproblem,decidingwhether(T, F') hasabidualHorn extension,is a relaxation
of the problemof actually finding a bidual extension. Sinceusually a constructie algorithm for the
extensionproblemgivesriseto analgorithmfor thelatter, we first considerthe extensionproblem.

Let us look at Horn functionsfor a moment. The existenceof Horn extensionsof a pdBf (7', F) is
characterizedy the following simple criterion, which canbe checled in polynomialtime: (7', F) has
a Horn extensionif andonly if 7N CIA(F) = 0 [28, 6]. Thus,the obvious necessargondition7’ N
CIA(F) = 0 is alsosuficient.

For bidualHornfunctions we obtainananalogousecessargonditionfor theexistenceof anextension:
(T, F) hasabidualHorn extensiononly if Cly(T') N CIA(F) = .



It appearghatcheckingthis conditionis expensve; asshavn in [12], the testis co-NP-complete For-
tunately intractability of the extensionproblemis not a consequencthereof,asthis necessargondition
is not sufficientin generalasshowvn by the following example.

Example4.1 Let (T, F) beapdBf definedby T' = {a") = (10100),a® = (01010)} andF = {p1) =
(11111),5®) = (11100)}. It is easilychecledthatCl, (T)NCIA(F) = 0. However, (T, F) hasnobidual
Horn extension.Indeed,assumehat (7T, F') hassuchanextensionf. Let¢; and¢, be Hornimplicantsof
f suchthatt; (a(V)) = 1 andty(al?) = 1, respectiely. Thent, andt, satisfythefollowing:

(i) N(t1),N(t) # 0 holds, becausetherwise(i.e., N(t;) = 0), thent,(b())) = 1, andhence
f (1) = 1 holds,a contradiction.Thismeang N (¢,)| = |N(t2)] = 1.

(1) N(t1) = N(t2) holds,because)therwise,t{t2 < f holdsby Lemma3.3 (i), but tf’Q satisfies
t1,(b")) =1, acontradictiorto our assumption.

By (i) and (ii), t; andt, musthave a commonnegatie literal, which mustbe z5 in this case. Thusit

followst; (b®) = 1; butb® € F. O

Thus,the attemptto obtaina polynomialtime algorithmfor the bidual Horn extensionproblemfrom
simplecharacterizationasin the caseof Horn functionsfails. Nonethelessye canfortunatelyshav that
the problemis polynomial,andthata bidual Horn extensioncanbe outputin polynomialtime. We need
somefurtherconcepts.

ForapdBf (T, F'), letusdefine
Ft(v) ={w € F|w > v}, I(U)ZON(/\F+(U))\ON(U). (4.5)

In particular if now € F*(v) exists,we have I(v) = OFF(v). It is not difficult to verify that for
everyv € T suchthatv # 1, every Horn extensionf of (T, F') musthave anHornimplicantt suchthat
P(t) = ON(v) andN(t) C I(v).

We denotefor everyv € T by R(v) thesetof all Horntermst, suchthat(i) P(t,) = ON (v), and(ii)
0 # N(ty) C I(v)ifv+#1,andN(t,) = 0if v =1 (i.e.,,t1 = z1---z,); everytermt, € R(v) is
calledcanonicalfor v (with respecto (T, F') ). For apdBf (T, F), ¢ = A,er tv, Wheret, € R(v) is
calledcanonicalHorn DNF of (7', F'). Sinceary canonicaHorn DNF of (T, F') representsnextension
of (T, F'), aBooleanfunctionrepresentethy a canonicalHorn DNF is calledcanonicalHorn extension
of (T, F).

Example 4.2 ConsidertthepdBf(T, F'), wheeT = {(0010), (0110)} andF" = {(1001), (1010), (1100),
(1011), (1101)}. Letv( = (0010) € T andv(? = (0110) € T'. Then,

FtM) = {(1010),(1011)} Ft@®) = ¢
I(vM) = ON(1010) \ ON(0010) = {1} I(v®) = ON(1111) \ ON(0110) = {1,4}
R(’U(l)) = {.’L‘3f1} R(’U(Q)) = {$2$3E1,$2$3E4}
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TheDNFsp; = 23T V 222371 andps = x3T1 V x223T4 arethecanonicalHorn DNFsof (7', F); they
are indeedHorn extensionf (7', F). O

Thefollowing lemmais the key to our algorithmfor finding a bidualHorn extension.

Lemma4.1 A pdBf (7, F') hasa bidual Horn extensionif and only if there exists a canonicalterm
t, € R(v) for everyv € T, sut thatanytermt,!,, definedroma pair of termst,, andt,, with | N (t,) U
N(tw)| = 2 satisfiesT'(t,,,) N F = (. Furthermoe, givensud a choicet, for v € T, theDNF

p=\Vtv ot (4.6)
veT

v, weT:
[N (ty )UN (tw )| =2

representsa bidual Horn extensiornof (7', F').

Proof. For theonly-if-part, let f beabidualHorn extensionof (7', F). Sincef is Horn,for everyv € T,
thereis somecanonicatermt, € R(v) suchthatt, < f. Fix achoiceof suchtermst,.. For eachpair of
termst,, andt,, with [N (t;) U N(t2)| = 2, ¢}, < f holdsby Lemma3.3 (ii). Now considerthe DNF ¢

of (4.6);it representaHornfunction f, suchthatf, < f. Clearly T'(f,) 2 T andF(f,) 2 F(f) 2 F.
Therefore f, is anextensionof (7', F'). Moreover, Lemma3.4impliesthat f,, is bidual.

Let usthenshaw theif-part. By Lemmag3.4,the DNF ¢ of (4.6) represents bidual Horn function f,,.
Fromthedefinitions,we obtainthatT'(f,) N F = ¢ andT'(f,) 2 T. Thus,¢ represents bidualHorn
extensionof (7', F). O

Fromthislemma,astraightforvard algorithmfor finding abidualHornfunctionwhichhasO(n|T'|?| F|)
time complity algorithmcanbe derived. Exploiting duality, however, we canfind a fasteralgorithm.
First,we introducesomeadditionalconceptsA termt is calledco-Hornif |P(¢)| < 1. ADNF ¢ =V, t;
is called co-Horn if every term¢; is co-Horn; a Booleanfunction is co-Hornif it canbe represented
by someco-Horn DNF. Noticethat f is co-Hornif andonly if f* = f(z) is Horn, andthat co-Horn
functionshave propertieghataredualto the propertiesof Horn functions. For example the set F'(f) of
a co-Hornfunction f is closedunderunion, opposedo closednessf underintersection.Therefore for
eachw € T'(f), auniguemaximalw € F(f) existssuchthatw < v.

NotethatapdBf (T, F') hasabidualHorn extensionif andonly if apdBf (7', F') hasaHornextensionf
andareversepdBf (F, T') hasaco-Hornextensiong suchthat f = g. Thusin thecontext of pdBfs(F, T)
insteadof (7', F'), we definethe canonicalconceptfor co-Hornfunctionsin a dualway. Forw € F, let
usdefine

F (w)={veT|v<w}, co-I(w) = OFF(\/ F~ (w)) \ OFF (w), (4.7)
andlet co-R(w) be the setof canonicalco-Horntermsof w, which areall termst¢ suchthat N(t) =
OFF(w) andP(t) = {£} with £ eco-I(w) for v # 0 andthenegative term A, z; for w = 0.

We first notesimplerelationsbetweercanonicaHorn termsandco-Hornterms.

Proposition4.2 Lett, € R(v) andt, € co-R(w) forv € T andw € F. ThenT(t,) N T (ty) # 0
impliesv < w.

11



Proof. If v £ w, thenthereis ani € P(t,) N N(ty), whichclearlymeansr'(t,) N T (t,,) = 0. O

Proposition4.3 Lett, € R(v) andt,, € co-R(w) forv € T andw € F withv < w. ThenT'(¢,) N
T(ty) = 0 impliesN (t,) = P(ty).

Proof. It is easyto seethatT'(t,) NT'(t,,) = 0 holdsif andonly if (P(t,) NN (ty)) U(N (ty) N P(ty)) # 0
holds.Thenv < w impliesON (v) NOFF(w) = (. SinceP(t,) = ON(v) andN (t,,) = OFF(w), we
have P(t,) N N (t,) = 0, andhenceN (t,) N P(ty) # 0. ThismeansN(t,) = P(ty), since|N (t,)| <1
and|P(t,)| < 1. m

Thefollowing lemmadescribeghe existenceof a bidualHorn extensionin termsof Horn andco-Horn
functions.

Lemma4.4 A pdBf(T, F) hasa bidual Horn extensionf if and only if there exist a Horn functiong;
anda co-Hornfunctiongs sud thatT'(g,) 2 T, T'(g2) 2 F andT'(g1) N T(g2) = 0.

Proof. Let usfirst shaw the only-if-part. Take g = f andgs = g,. ThenT'(¢1) O T, T'(g2) D F and
T(g1) NT(g2) = 0 all hold. Fromthedefinition,obviously g; is Hornandgs, is co-Horn.

To prove the if-part, let g; and go be as statedin Lemma4.4, and satisfy that |T'(¢g1) U T'(g2)| is
maximum. We shaw thatg, = g,, which meansthat g¢ = (g,)* = g5 is Horn, andhenceshaws that
f = g1 isabidualHorn extension.

Towardsa contradiction,assumehatthereis a vectorv € {0,1}" \ (T(g91) UT'(g92)). Then,v # 1,
sinceotherwiseg; = g1 V Aj_; z; is aHorn functionsatisfyingT'(¢1) N T'(g2) = 0, which contradicts
themaximality of |T'(g1) U T'(g2)|. Similarly, it is shavn thatv # 0.

Sincev ¢ T'(g2), no canonicako-Horntermt¢ € co-R(v) is animplicantof go. Consequentlythereis
avectorw € T'(g1) suchthatw < v, sinceotherwise Propositiond.2tellsthatary ¢ € co-R(v) satisfies
T(ty) N T(ty) = 0 for all t,, € R(w) with w € T'(g1). ThisimpliesT(t,) N T(g1) = 0, whichis a
contradictionto themaximality of |T'(g1) U T'(g2)|. Sinceg; is Horn,somet; € R(w) is animplicantof
g1.- Suchatermt; satisfieghat

(1) P(t1) € ON(v) holds,sinceP(t;) = ON(w) andON (w) C ON (v).
(#7) N(t1) C ON(v) holds,sinceotherwise(i.e., N(t;) C OFF(v)) v € T(t;) andhencev €

T'(g1) would hold, in contradictionto the assumption.

Thus,by (i) and(ii), we have shavn thatg; hasanimplicantt; suchthatV (¢;) C ON(v). Similarly, it
is shavn thatge hasanimplicantt, suchthatV (i) C OF F(v).

Now g; andg- respectiely have implicantst; andts suchthatV(¢;) N V(t2) = (0. However, this
clearlymeangshatT'(t1) N T'(t2) # 0, andhenceT'(g1) N T(g2) # 0, whichis a desiredcontradiction.
This provestheif-part. O

Letusnow defineabipartitegraphG 1,y onapairof vertex setsT” = T'\ {1} andF' = F'\ {0} such
thatanedgeis betweerw € T' andw € F' if v < w, andattacheachvertex v € T' (resp.,w € F') the

12



set/(v) (resp.,co-I(w)) aslabel L(v) (resp.,L(w)). Foraconnecteccomponent of G 7 ry, let L(C)
betheintersectiorof all labelsin C, i.e., L(C) = N,ec L(v).

Lemma4.5 A pdBf (T, F) hasa bidual Horn extensionif and only if L(C) # ( for every connected
componenC of Gy ).

Proof. Note that g; and go in Lemma4.4 can be restrictedto canonicalHorn and co-Horn functions,
respectiely. ThusLemma4.4 andPropositions4.2 and4.3 imply this lemma(obsere that1l £ w, for
everyw € F,andv £ 0 for everyv € T). O

Now, we have the following algorithm.

Algorithm BH-EXTENSION
Input: A pdBf (T, F), whereT, F C {0,1}".
Output: “Yes”,if thereis a bidualHorn extensionof (7', F'); otherwise,'No”.

Stepl. ConstructhebipartitegraphG r, r).
Step2. Computeall connectecomponent; (i = 1,2,...,k) of G(1 ).

Step3. if L(C;) # 0 holdsfor all 7 then output“Y es” elseoutput“No” fi;
Halt. O

Theorem 4.6 Givena pdBf(T, F'), the existenceof a bidual Horn extensionof (7', F') canbe chededin
O(n|T||F|) time ]

Proof. The correctnessf the algorithmfollows from Lemma4.5. Concerninghe boundon the running
time, Step1 (i.e., constructinga bipartite graphG 1, 7)) canbe executedin O(n|T||F|) time. Step2
canbedonein O(|T||F|) time by using a depth-firstsearch,sincethe numberof verticesand edges,
respectiely, areatmost|T’| + |F| and|T'|| F|. Finally, Step3 canbedonein O(n(|T| + |F|)) time,since
L(Cy),i=1,2,...,k, canbecomputedn O(n(|T| + |F|)) time. Totally, algorithmBH-EXTENSION
requiresO(n|T'||F|) time. O

Furthermore the next lemmasaysthat, if Step3 is changedto the following Step3’, thenwe can

computea bidualHorn extensionof (7', F).

Step3'. if L(C;) # 0 holdsfor all i then

output o=\t V V th (4.8)

veT v2weT:
[N (t0)UN (tw)|=2

wheret, = Njeon(w) TiTi for afixed! € L(C;) withv € C;, andty = z1z2 - - Ty,
elseoutput“No” fi;
Halt. O
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Lemma4.7 For a pdBf (T, F), let p; = theS t; and @9 be Horn and co-Horn DNFs, respectively
satisfyingT'(¢1) D T, T'(¢2) 2 F,andT'(¢1) N T(p2) = (. Thenthe DNF

_ +
p=pv [t
tist €S
N (£)UN (£)|=2

representsa bidual Horn extensionof (7', F). O

Note that O(n|T|?) time is needed,n orderto outputa bidual Horn DNF of (4.8) representingan
extensionof (7', F'). Thuswe have thefollowing corollary

Corollary 4.8 Givena pdBf(T, F'), abidualHorn extensiorof (T, F) canbecomputedn O (n|T|(|T|+

|F'|)) time (if anyexists). O

Example 4.3 LetusapplyBH-EXTENSIONtothepdBf (T, F) definecby T' = {v(), v () 4(*) 4G}
andF = {w", w® w® »w® wO}, wherev® = (0010), »@ = (0100), »® = (0011), v =
(0101), v = (0110), w™ = (1001), w® = (1010), w® = (1100), w'* = (1011), w® = (1101).

Stepl. ThegraphG r ry is shavn in Figurel:

e o »®
o) w®
o3 w®
@ w®
o(5) w®)

Figurel: GraphG r,ry of Example5.5.

Step2. The graphG sy hasfour connecteccomponentsi.e., C; = {w(V}, Cy = {w®,v® w®,
1)(3)}’ 03 e {/LU(3),'U(2),U](5),'U(4)} andC4 — {'U(5)}

Step3. We first computethelabelsL(u) of theverticesu by (4.5)and(4.7):

LwM)=TI(wM) ={1,3}\ {3} = {1} L(w®)=co-T(w™) ={1,2,3,4}\ {2,3} = {1,4}
L®)=1(w®) ={1,2}\ {2} = {1} L(w®)=co-I(w®) = {1,2,4}\ {2,4} = {1}
Lw®)=TI(w®) ={1,3,4}\ {3,4} = {1} L(w®)=co-T(w®) = {1,3,4} \ {3,4} = {1}
L®W)=T(wW) ={1,2,4}\ {2,4} = {1} L(w™®) =cod(w®) = {1,2}\ {2} = {1}
Lw®)=I(w®)={1,2,3,4}\ {2,3} = {1,4}  L(w®)=col(w®) = {1,3}\ {3} = {1}.

Thus, the connecteccomponent®f G have labelsL(Cy) = {1,4}, L(Cs) = {1}, L(Cs) = {1} and

L(C4) = {1,4}. As aconsequenceBH-EXTENSION outputs“Yes” (i.e., (T, F') hasa bidual Horn
extension).

Step3’. By choosing = 1 from L(Cs), L(C3), andL(C4), we obtainabidualHorn extension

1 = x3T1VX9T1V X3T4T1 V T2X4T1 V T2X3T1 = T3T1 V T9T1
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of (7', F'), while by choosing = 1 from L(Cs), L(C3) andl = 4 from L(C4), we would obtainanother
bidualHorn extension

w2 = x3T1VX2T1V 230471V T2L4T1 V £2X3T4 V 23 V To2x3 V Tox3%4 V To2T3T4
= x3T1V Z2T1V Tox3. a

4.1 Computing all bidual Horn extensions

In this subsectionye briefly addresghe compleity of computingall bidual Horn extensionof a pdBf
(T, F). Sinceevery positive function is a bidual extensionof (T, F) if T = F = (}, andthereare
clearly positive functionswhoseuniqueprime DNF is exponentialin the numberof variablese.g.,p =
Vscqi2,..n}is/=|n/2] (Ajes 25), abidualHorn extensionof (T, F') canrequireexponentialspacen the
sizeof (T, F). Thereforethereis no algorithmfor enumeratingll bidualHorn extensionspy, 2, . . . of
(T, F) which spendonly polynomialtime on eachextensiongp;.

It appearghatevendeciding,givena bidualHorn extension,whetheran additionalbidual Horn exten-
sion exists (ratherthanoutputtingone)is noteasy In fact, this problemis at leastashardasthe positive
duality problem(i.e., given positve DNFs ¢ ands, decidewhetherf,, = fg). The latter problemis
is polynomially equivalentto a numberof otherproblems,cf. [4, 11, 23, 15], but no polynomialtime
algorithmis known to date.

Theorem 4.9 Leta pdBf(T, F') anda Horn DNF ¢ representinga bidual Horn extensionof (T, F') be
given. If cheking whetherthere existsan extensiong € Cgy with g # f, canbedonein polynomial
time thenthe positiveduality problemcanbe solvedin polynomialtime

Proof. (Sketch)We shaw thisby areductionof the Spernesaturatiorproblem whichis known to bepoly-
nomially equivalentto the positive duality problem[11]: givena Spernefamily S = {S1,S2,...,Sm}
of subsetsS; C V = {1,2,...,n} (i.e.,,S; £ S;andS; ¢ S; for all « # j), decidewhetherit is not
saturatedi.e.,theredoesexistasetX C V suchthatS; € X ¢ S; holdsfor all 7, 7).

Given aninstanceof the Spernersaturationproblem,we constructthe instanceof our problemasfol-
lows:

T = {z5%]i=1,2,....m}U{z%" B i=12... .m, leV\S}
F = {25\ i=1,2,....m, 1 €8}

m

Y = V(A$l)7

i=1 [eS;

wherez? is thecharacteristiwectorof S, i.e.,if j €8, xf =1; otherwise,q;f = 0. Sincey is positive, it
represent®y Proposition3.1 a bidualHorn extensionof (7', F'). Moreover, anextensiong € Cgy exists
suchthatg # f, if andonly if S is notsaturated. O

Corollary 4.10 Givena pdBf(T', F'), decidingwhetherit hasa uniqueextensionf € Cgy is atleastas
hard asthe positiveduality problem. |
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Corollary 4.11 Leta pdBf(T, F') anda Horn DNF ¢ representinga bidual Horn extensionof (7', F') be
given.If cheking whetherther is a bidual Horn extensiorng sud thatg # f,, canbedonein polynomial
time thenthere is a polynomialtotal time algorithmfor the problemof dualizinga positivefunction,i.e,
givena positiveDNF, computingtheirredundantprime DNF of its dual function.

Proof. Followsfrom Theoremd.9andtheresultin [4] thatapolynomialtotaltime algorithmfor dualizing
apositive functionexistsif andonly if the positive duality problemis polynomial. O

In thelight of the openstatusof the positive duality problem,finding a polynomialtime algorithmthat
decideswvhetheranotheridual Horn extensionexists (similarly, whethera uniqueoneexists) appearso
be not straightforvard.

5 ShortestBidual Horn DNFs and Extensions

In this section,we considerthe issueof shortestDNF representationsf a bidual Horn function f, and
of shorteshidual Horn extensions.More precisely we considerthe following problems:Compute(i) a
term-shortesDNF, and(ii) aliteral-shortesDNF, respecitiely, from a givenHorn DNF of abidualHorn
function; similarly, compute(iii) aterm-shortesbidualHorn extension,and(iv) a literal-shortesbidual
Horn extensionfor agivenpdBf (T, F).

A DNF ¢ is calledterm-shortes{resp.,literal-shortes} if thereis no DNF containingfewer terms
(resp.,a smallertotal numberof literals), which representshe samefunction f; aterm-shortes{resp.,
literal-shortestamongthe Horn DNFsthatrepresenbidualHorn extensionof apdBf (7', F) is calleda
term-shortes(resp.literal-shortesy bidual Horn extensionof (7', F').

It is known [3, 27, 18] that problems(i) and (ii) for a generalHorn function are both co-NP-hard.
However, we shallshav belawv thattheseproblemdor abidualHornfunctioncanbesolvedin polynomial
time. Problemg(iii) and(iv) turnoutto beintractable.

5.1 ShortestDNFsfor bidual Horn functions

Clearly ary term-shortesDNF is irredundantandary literal-shortestDNF is irredundantand prime.
Furthermorethereis a term-shortesDNF amongprime ones. Thuswe first describesomestructural
propertieof irredundanprime DNFsof ageneraHorn function,whichwereprovedin [19].

Sinceevery primeimplicantof aHornfunction f is Horn, the setof all primeimplicantof f is splitinto
thesetof all pureHornprimeimplicantsH orn( f) andthesetof all positve primeimplicantsPos(f). A
functionh is calledthe pure Horn componenbf a Hornfunction f if 4 satisfieghefollowing conditions:

(¢) hispureHorn.
(#6) f = hV g, whereg is apositive function.

(i1) If f =h'V g, whereh' andg’ arepureHorn andpositive, respectiely, thenh’ > h.
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The pure Horn componenbf a Horn function f is denotedby h(f). The uniquenes®f h(f) follows
directly from the definition. It wasshawvn in [19] thath(f) canberepresentethy a DNF Vierorn(s) b
notethatthis DNF is not uniquein general. This meansthat, given an arbitrary prime DNF of a Horn
function f, h(f) canberepresentely thedisjunctionof all pureHorntermstherein.However, notmuch
is known aboutthe structureof term-shortesor literal-shortesDNFsthatrepresent(f).

Contrarytothis, thestructureof thepositive partg in theabove (i) is knowvn to someextent. Forthis, we
introduceadirectedgraphGp(f) = (Pos(f), A), whereA = {(t;,t;) [t; < h(f) V t;}. It follows from
thedefinitionthatG p(f) is transitively closed,andhenceeachstronglyconnectecomponendf Gp(f)
isacompletedirectedsubgraphLet Pos;(f),i = 1,2,. .., k, bethenodesetsof suchstronglyconnected
component®f Gp(f), amongwhich Pos;(f), 1 = 1,2,...1, denotethosehasing noincomingarcs.For
aHornfunction f, apositve DNF V§:1 t;, whereonet; € Pos;(f) is choserfor eachofi = 1,2,...,1,
is calleda positiverestrictionof f. In generaldifferentpositive restrictionsrepresentlifferent positive
functions.Obviously, the numberof differentpositive restrictionsis equalto [T'_; | Pos;(f)|.

Example5.1 Let f beaHornfunctionrepresentetdy a DNF:

(p(o) = T12223T5%g V T1Z3TaT5 V T1L2TaTg V T1XeT7

VT122x3%T4 V T2X3T4T5T6 V T1T2L4%7 V ToLsTeX7 V T3TeX7,
wherep(® is thedisjunctionof all primeimplicantsof f. Then

Horn(f) = {Tiroz3x5%6, T123%4T5, T12224T6, T1T6L7}

Pos(f) = {z1z2x3%4, T22324T5T6, T1T2T4T7, ToTATELT, TITELT |-

Note that this f is bidual Horn becausehe conditionin Lemma3.4 holds. Figure 2 shaws the graph
Gp(f), andPos(f) canbedividedinto Posi(f) = {z1x22324, xox3242526}, Poso(f) = {z1222427,
.732.’1?4&7&’1)7} andPOS3(f) = {$3.T6:E7}. ThiSf satisfiesk =1 = 3. O

Posi(f) z1T223%4 @ Posa(f)( z1z207477, @ Poss(f)
() (,)
ToT3T4T5T6 @ ToT4TeXL7 @
Figure2: ThegraphGp(f) of f in Example5.1.

Thefollowing lemmaclarifiestherole of positive restrictions.

Lemma5.1[19] ADNF ¢ is anirredundanprimerepresentatiorof a Horn function f if andonly if

©=¢y Ve,

whee ¢, is anirredundanprime DNF of 2(f), and ¢, is a positiverestrictionof f. O
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Let ¢ be anirredundantprime DNF of a Horn function f. Then,the abose lemmatells that suchy
alwayshasthe samenumberof positive terms.Therefore aterm-shortesDNF of a Horn function f can
beobtainedf we canfind aterm-shortesDNF for A(f).

Example 5.2 Let usconsiderthe Horn function f in Example5.1. In this caseall pureHorn termsin
¢ areirredundantThenwe have thefollowing four irredundanprime DNFsof f.

(p(l) = T1T2T3T5%6 V T1T3T4T5 V T1T2T4T6 V T1Z6T7 V T1T2T3%4 V T1T2T4T7 V T3T6X7,

<,0(2) = T1X2%3T5T6 V T1T3T4T5 V T1T2T4Te V T1TeX7 V T1T2X3T4 V ToXT4TeT7 V T3TT7,

(p(g) = T122X3T5T6 V T1T3T4T5 V T1T2TaTe V T1TeT7 V ToL3T4T5T6 V T1X2T4T7 V T3TeL7,
(,0(4) = T1X9T3T5Zg V T1T3T4T5 V T1T2TaTg V T1Zgx7 V ToL3T4T5T6 V ToX4TeT7 V T3Tgr7. O

Now let usrestrictour attentionto bidualHorn functions.

Lemmab5.2 Let f bea bidual Horn function. Thenall pure Horn prime implicantsof f are essential
(henceirredundant

Proof. Lett; = (Ajep,) zj)Tr beapureHorn primeimplicantof f, andlet v be the vectordefined
by ON(v) = P(t1). Obviously, ¢t;(v) = 1, andhencef(v) = 1. We claimthatt, is the uniqueprime
implicantof f suchthatt¢;(v) = 1, which completeghe proof. For this, let usassumehatts (# ¢1) is a
primeimplicantof f satisfyingts(v) = 1, thatis,

P(t;) € ON(v) (= P(ty)). (5.9)

Sinceall primeimplicantsof a Horn function areHorn, ¢, is eitherpositive or pureHorn. However, if
to is positve, thenty, > t; holdsby (5.9), implying that¢; is not a prime implicantof f, whichis a
contradiction. Therefore t is pureHorn, but satisfiesN (¢2) # {k}, sinceotherwiset; is nota prime
implicantof f by (5.9).Thentl+,2 < f holdsby Lemma3.3. However, by (5.9),this againimpliesthat;
is nota primeimplicantof f, acontradiction. O

This explains why all pure Horn termsin ¢(?) of Example5.1 are irredundant. Consequentlyary
irredundaniprime DNF of abidualHornfunction f canberepresentetly ¢ = V¢ gopn(ys) t V ¢p, Where
¢, Is apositie restrictionof f. This meanghat,if we restrictour attentionto prime DNFs, the classof
irredundanDNFsof f is thesameastheclassof term-shortesDNFsof f.

Lemma5.3 Let f bea bidual Horn function. Theny is anirredundanprime DNF of f if andonlyif ¢
is a term-shortesprime DNF of f. |

Notethatthislemmadoesnotimply theuniquenessf theterm-shoresprime DNF of abidualfunction.
Indeed the bidualHorn function f in Example5.1 hasfour term-shoresprime DNFs givenin Example
5.2.Letp beary HornDNF of aHornfunction f. SinceanirredundanprimeDNF of f canbecomputed
from ¢ in O(|p|?) time [19], we have thefollowing theorem.
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Theorem5.4 Lety is a Horn DNF of a bidual Horn function f. Thena term-shortesprime DNF of f
canbe computedromy in O(|p|?) time O

Let us next turn our attentionto the literal-shortesDNFs of bidual Horn functions. We canseethat
someterm-shortesDNFsarenot literal-shortestg.g.,¢() ando(®) in Example5.2 areterm-shortesbut
notliteral-shortestLemmas.1andLemmab.2imply thefollowing.

Lemmab5.5 Let f bea bidualHorn function. Theng is a literal-shortestDNF of f if andonly if

o= V1t Vv g,
teHorn(f)
whee ¢, is a literal-shortestpositiverestrictionof f. O

For suchay,,, wemustfindat’ € Pos;(f) having theminimum|¢'| for eachPos;(f) with i < (recall
thatsuchPos;(f) correspond$o a connectedcomponendf G p(f) having noincomingarc).

Lemma5.6 Let f bea Horn function,andlet ¢t € Pos;(f) with4 < [. Thena positivetermt’ satisfies
t' € Pos;(f) if andonlyif ' € Pos(f) andt < h(f) V¢ (i.e., Gp(f) hasthearc (¢',1)).

Proof. Theonly-if partis obvious. To prove theif-part, it is sufiicientto shav ¢’ < h(f) V¢ (i.e.,Gp(f)
hasarc(t,t')). Letusassumehecontrary ThenPos;(f) hasanincomingarcfrom Pos;( f) thatcontains
' (i.e.,7 > 1), whichis a contradiction. |

To develop anefficient algorithmto computea shortt’, we needseveral elementarypropertiesof Horn
consensuprocedures.

Lemmab5.7 Lett, to andtz be pure Horn terms. If ¢3 is the consensusf an ordered pair of termst;
andtsy, thenty, to, andtz satisfy

(i) N(t3) = N(t;) andN(ts) NV (t3) = 0.

(i) Plts) = P(t2) U (P(t1) \ N(t2)) andN(ts) C P(ty). 0

Lemma 5.8 Let a positiveterm¢s be the consensusf an ordered pair of termst; andty. Thenty, to,
andts satisfy

(i) N(t1) =0 and|N(t2)| =1 (i.e,t; is positiveandt, is pure Horn).
(i) P(t3) = P(t2) U (P(t1) \ N(t2)) andN(t2) C P(t1).
(i13) N(t2) NV(t3) = 0. O
Recallthat,in the abore lemmasg; andi, are,accordingto the usualterminology the left-parentand
theright-parentof ¢3, respectiely, andt;s is the child of ¢; aswell asbeingthe child of ¢o. Let child(t)
denotethechild of ¢.
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Now, givenaHorn DNF ¢ of aHorn function f, assumehatthereis aprimeimplicantt of f, whichis
notin . Thenthereis asequence

L=tW @ M (=q)

suchthateacht(*) is eitherin ¢ or theconsensusf two termst(¥1) andt(¥2) with k1, ks < k. Wecallt' a

right-ancestor(resp. left-ancestoy of ¢ with respecto L if eithert’ is theright-parentresp. left-parent)
of ¢, ort’ is aright-ancesto(resp. left-ancestorpf theright-parentresp. left-parent)of ¢. Furthermore,
we call aright-ancestofresp.,left-ancestor)’ of ¢ theright-root (resp.,left-roof) of ¢ if ¢ isin ¢. By

definition, theright-root (resp.,left-root) of ¢ is unique. For example,for ¢ = x1Ts V £2T3 V T324T5,

considera consensusequencd. = x1T2, T2T3, T3T4T5, T1T3, £1Z4T5 leadingto z1x4T5 (SeeFigure
3). Thenzzs is theright-parent,z3z475 is the left-parentandleft-root, and z 1z, is the right-root of

12475, respectiely.

right-root
ToT3 T1T2
left-parent(root)
T3X4T5 173 right—parent

T1T4T5
Figure3: A consensusequencéeadingto xz1z4%5 for aHorn DNF 21Zo V 29T3 V 2324 Ts.

Lemma5.9 Lety bea Horn DNF of a Horn function f. For a primeimplicantt of f which is notin ¢,
let L bea consensusequencéeadingto t. Theneveryright-ancestort* of ¢ satisfiesP(¢*) C P(t). O

Let f beabidualHornfunction,andlet ¢; andt; beHornimplicantsof f suchthat|N(t;) UN (¢;)| = 2.
Lett; ; denotea positive termof minimumlength,which satisfiesf;jj <t <tivi Vv t;jj. By Lemma
3.3(ii), ¢ ; isanimplicantof f. It is notdifficult to seethatt; ; canbe obtainedfrom t;fj by deletinga
positie literal zy, if & satisfies: € N(t;) N P(t;) ork € N(t;) N P(t;), andt] ; = t;fj if thereis nosuch
k. Therefore thereareat mosttwo suchtf,j. For example,suppose; = z1x9T3 andt; = x1Tor374.
Thent;jj = z12923x4, andhencetf ; = z1zyx4 OF £1T324.

Lemma5.10 Let f bea bidual Horn function,and assumehat ¢, € Pos(f) satisfyt # t' andt’ <
h(f) Vt(i.e, Gp(f) hasthearc (¢,t)). Then,either

(1) t'istheconsensusftandsomet; € Horn(f) (i.e,t' = Ajep)up@)\N)) T4 OF
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(6) t' =t;; foratermt;  of somet;, ¢; € Horn(f).

Proof. Clearly ¢' is a primeimplicantof h(f) V t. Hence thereis asequence), ) ... (™) (= ¢)
suchthateacht(¥) is eitherin Horn(f)U{t} ortheconsensusf two termst(¥1) andt*2) with k1, ky < k.
Sincet # ¢/, m > 3 musthold. By Lemma5.8 (i), ¢’ (= t(™) is the consensusf a positive term¢(™1)
andapureHorntermt(™2) suchthatm,, my < m. If m = 3 (i.e.,t(™) = t and¢t(™) € Horn(f)), then
obviously (i) holds.Otherwise(i.e.,m > 3), thefollowing two casesarepossible.

Case(a): t(™2) ¢ Horn(f). Lett, betheright-rootof #', andlet ¢, betheleft-parentof 3 = child(t)
(seeFigured4). Sinceh(f) Vv tis Horn,only ¢ andits left-ancestorsirepositive (i.e., all othertermsin the
sequencarepureHorn). Thus,t, child(t;) andt, arepureHorn. Thenby Lemma5.7,we have

N(t1) # N(t2) (5.10)
P(t1) C P(t3) UN(t2) (5.11)
P(t2) C P(ts) (5.12)

P(t;)) C P(#')UN(tp) (5.13)
P(ty) C P(t). (5.14)
right-rootof ¢; right-rootof ¢,
t4 5 tr t5
7 te
: right-rootof ¢' right-rootof ¢(™1)
tl tQ t4 t2
t3 i3
4(m1) t(mz)(g Horn(f)) t(m1) tlm2) — ¢, (€ Horn(f))
tm) — ¢t tm) — ¢
Case(a) Case(b)

Figure4: Thecasedqa)and(b) in theproofof Lemma5.11.
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Then,undercondition(5.10),we have t’ < t{ o from (5.13)and(5.14), becausé; , doesnot contain
the positive literal 2, with {k} = N(t2) in eithercaseof N(t2) C P(t1) or N(t2) N P(t1) = 0. Since
t1, to areHorn implicantsof f and f is bidual,t%,2 is animplicantof f. Sincet’ is a prime implicant
of f, it follows ¢' = t{ ,. Hence,clause(ii) holdsif ¢; € Horn(f). Tho shav the latter assumehat
t1 ¢ Horn(f). Letts betheright-rootof ¢;, andt¢4 betheleft-parentof tg = child(ts) (seeFigure4).
Fromthe above obseration on positive andnegative termsin the consensusequencets is pureHorn.
Thereforepy Lemmab.9and(5.13),we have

P(ts) C P(t1) C P(t') U N(tg).

Considerthe negative literals of 25 andty. If N(t5) # N(t2), thenby (5.14)it follows thatats , exists
with ¢' <3, (if N(t2) = {k} C P(t2), thenremave z;, from tg{Q). Sincety, t5 areHornimplicantsof f
and f is bidual, ¢ , is animplicantof f. Sincet’ is aprimeimplicantof f, it follows ¢ = ts ». Hence,
clause(ii) is true.Ontheotherhand,if N(¢5) = N(t2), thenty

N(ts) # N(ts) = N(t2) (5.15)
holdsby (i) of Lemmab.7 (recallthatt, mustbepureHorn). Furthermore,

P(t4) P(tﬁ) U N(t5)

P(t1) UN(t2) (byLemmas.9 andN(t5) = N(t2))
P(t'YUN(ty) (by(5.13)). (5.16)

N 1NN

Along the sameline of agumentatiorasin the caseN (¢5) # N(t2), we obtainfrom (5.14)—(5.16)hat
t' = t3 , for sometermt3 ,, whichimpliesthatclause(ii) holdsif t, € Horn(f). If t4 ¢ Horn(f), we
canrepeaffor ¢, the sameagumentasfor ¢; ¢ Horn(f) by consideringtheright-roottg of ¢4 andthe
left parentt; of tg = child(ts) andsoon. Sincethe consensusequencss finite, this cannotberepeated
indefinitely andwe musteventuallyencountersomet; € Horn(f) suchthatt}, = ' and clause(ii)
holds. This completeghe proof of Case(a).

Case(b): t(™) ¢ Horn(f) (seeFigure 4). Lett; = t(™2) andlet ¢, betheright-rootof (™) (since
m > 3wehaet(™) ¢ Horn(f) U {t}). Notethatt, andt, arepureHorn. It follows from Lemmas5.8
and5.9that

P(t")
P(t')UN(ty).

N 1N

If N(t1) # N(t2), thenalongthe sameline of agumentatiorasin Case(a), we obtaint’ = t{ , for some
termt{ ,. Sincet, € Horn(f), clause(ii) is satisfied.

Otherwise(i.e., N(t2) = N(t1)), considertheleft-parentt, of t3 = child(t2) (seeFigure4.(b)). Note
that t, cannot be the right-parentof t(™1); for, thent, = ¢ is the left-parentof t(™), and N (t) ¢
P(t™)), whichby N (t,) = N(t,) impliesthatthepairt(™1), t(m2) hasno consensusConsequentlyall
termsin thetreewith rootts (= child(t2)), andin particulart,, arepureHorn.
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We have N (t4) # N(t2) and

P(t4) - P(t5)UN(t2) (Lemma(5.7))
C P(tm))UN(ty) (Lemma(5.9)
C

P(t') UN(t1) (N(t2) = N(t1))
Ontheotherhand,we have alreadyshavn
P(t1) C P(t").

Hence,thereis somet] , suchthat?’ > ¢{ ,. Sincef is bidualandt,,?, areHorn implicantsof f, it
follows thatt = 7 ,. Thus,if ¢4 € Horn(f), thenclause(ii) holds. If ¢, ¢ Horn(f), thenwe repeat
the agumentby consideringheright-rootts of ¢4, theleft parentt; of ts = child(t;) andsoon. Since
the consensusequencés finite, eventuallywe encounteatermt; € Horn(f) suchthattii = t'; hence,
clause(ii) holds. This completeghe proof. O

Thepreviouslemmasaysthat,for ary arc(¢,¢') in Gp(f), t' satisfiesither(i) or (ii). Thenext lemma
sharpenshis by statingthatclause(ii) mustholdif ¢ is shorterthant.

Lemma5.11 Let f bea bidual Horn function,andlet ¢, € Pos(f) satisfyt # t' andt’ < h(f) V t. If
[t'] < |¢| holds,thent’ satisfieghe case(ii) of Lemmab.1Q

Proof. Assumethatt’ is the consensusf ¢ andsomet; € Horn(f) (i.e.,t' = Ajcpuyup@)\n)) Ti)-
Since|t'| < ||, P(¢') = P(t) \ N(t;) musthold. This meanghatt is nota primeimplicantof f, which
is acontradiction. O

Now, we describean algorithm L-SHORTEST to computea literal-shortestDNF of a bidual Horn
function.
Algorithm L-SHORTEST
Input: A Horn DNF ¢ of abidualHornfunction f.
Output: A literal-shortesDNF of f.

Stepl. ComputeanirredundanprimeHorn DNF ¢’ of f from ¢.

Step2. Let 90;{ (resp.,gol’D) bethedisjunctionof all Horn (resp. positive) termsin ¢';
for eacht in <p1’3 do
Find atermt; ; with the minimum [¢ ;| amongthosesatisfyingt < <pl'q \Y%
t; ;, wheret; andt; arein <p;{ andsatisfy| N (t;) UN(t;)| = 2;
. : o ,
if suchat; ; existsand|t; ;| < [t then replacet in o5 by ¢; ; fi
end.

Step3. OutputDNF ¢’ = go;{ v 901’3 andhalt. O
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Theorem5.12 Givena Horn DNF ¢ of a bidual Horn function f, algorithm L-SHORTEST correctly
outputsa literal-shortestDNF of f in O(|¢|(m3m, + |¢|)) time whee m;, andm, denotethe numbes
of Horn andpositivetermsin ¢, respectively

Proof. Let usfirst shaw thecorrectnessf algorithmL-SHORTEST. In Stepl, it computesanirredundant
primeDNF of f. Since<p1’q is equalto Vierorn(s) t by Lemmash.2and5.5, <p;{ representghe pureHorn
component(f) of f.

Let usnext considetthepositive restrictiomp]g of f. In Step2, eacht in <p1’3 is replacedy someshortest
t; ; amongthoset; ; which satisfy? < @}{ V] ; (providedary sucht; ; exists); let thistermbe}’. Let
t € Posy(f), whereq <[ (I wasdefinedbeforeExample5.1). Then,by Lemma5.11,it is sufficientto
shav thatsucht}?; satisfies:?’ € Pos,(f). Notethatt}* is animplicantof f sincef is bidualHorn. By
Lemmab.6, obviously tj5 € Pos,(f) holdsif ¢} ; € Pos(f). To completethe proof of the correctness
part, it thusremainsto prove ¢ € Pos(f). Assumethe contrary As a consequencehereexists a
t' € Pos(f) suchthatt’ > 3%. Thist’ satisfiess < ¢ v ¢/, andhenceby Lemma5.6,t’ € Posy(f).
Since|t'| < [t{%] < [t|, Lemmab5.11tells thatt' is obtainedby clause(ii) there. It follows that?? is
not shortesamongthe ¢7 ;, which satisfy¢ < go;{ Vv ti ;. We arrived at a contradiction. This provesthe
correctnessf L-SHORTEST.

Finally, let usconsidertthetime compleity of algorithmL-SHORTEST. Stepl1 canbedonein O(|¢|?)
time [19]. In Step2, for eachpair of ¢; andt;, we canconstructthe termsz; ; in O(n) time. Eachtest
t < gol’qvtf’j canbedonein O(Jy|) time. Sincen < |¢|, Step2 requiresO (m3my|p|) timein total. Step3
canbe executedin O(|¢'|) = O(|¢|) time. ConsequentlyalgorithmL-SHORTEST canbe executedin

O(|p|(m2my, + |¢])) time. ’

Example 5.3 Let us considerthe bidual Horn function f of Example5.1. Supposethat DNF ¢®) in
Example5.2is aninput (i.e., ¢ := ¢®)). Sincep® is irredundantprime, ¢’ = ¢ (= ¢®) holdsin
Stepl. Thus

(pH = T1ToT3T5Tg V T1L3T4Ts V T1L2T4Te V T12Le2L7, and
’

p = T2T3T4T5T6 V £1x2T4x7 V T3TT7-

In Step2, for t = zox3T4T5T6 IN <p]’3, we find thatt{,2 = x1x92324 Obtainedfrom¢; = z1x32475 and
ta = z17274T6 hasthe minimum |¢{ ,| amongthosesatisfyingt < @}{ V ti 5. Sincethis ¢{ , satisfies
|ti o] < [t], t is replaceddy t{ 5. For the othertermst in <p;3, thereis no ¢; ; having the desiredproperty
Thusin Step3, algorithmL-SHORTEST outputsy(!) of Example5.2, which s in facta literal-shortest
DNF of f. O

Theprevioustheoremtogethemwith theresultsaboutrecognitionof bidualHorn functionsin Section3,
imply that,givenaHorn DNF ¢, we canrecognizen polynomialtime whetheryp representabidualHorn
functionand,if thisis the case computein polynomialtime aliteral-shortesbr term-shortesprime DNF
of f. Thus,bidualHorn functionsconstitutea polynomial-timerecognizablesubclasof Horn functions
for which computinga literal-shortesandterm-shortesprime DNF is polynomial.
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By Lemmasb.2and5.10,we have aninterestingpropertyregardingthe numberof primeimplicantsof
abidualHorn function.

Theorem5.13 Let ¢ be an irredundantprime DNF of a bidual Horn function f, and let m;, andm,,
denotethenumbes of Horn and positivetermsin ¢, respectivelyThen:

(a) |Horn(f)| = my, and
(b) myp < [Pos(f)] < 2mj +myp(my, + 1).

Proof. (a) is immediatefrom Lemma5.2, and the disjunctionof all pure Horn termsin ¢ givesthe
pure Horn componenti(f) of f. For (b), m, < |Pos(f)| is obvious from the definition of Pos(f).
Furthermoreevery t' € Pos(f) satisfiest’ < h(f) Vv t for somepositve term ¢ in ¢ becauseby
Lemma5.1, thedisjunctionof all positve termsin ¢ representshe positive restrictiony,, of f. All such
t' € Pos(f) areobtainedeitherby (i) or by (ii) of Lemmab.10. Thereareat mostm,m, t' of type (i),
andatmost2mj t' of type(ii). Totally, |Pos(f)| < my+mpmp +2mj, = 2mj, +my(my + 1) holds.O

5.2 Shortestbidual Horn extensions

Algorithm BH-EXTENSION from Section4 allows to computea Horn DNF representing bidualHorn

extensionof (7', F') in polynomialtime, but Step3' mightleadto a quite large expression(of quadratic
size)in theworstcase.This stepanberefinedsuchthata DNF smallerthany is computedn polynomial
time; in fact, asfollows by the resultsin Section5.1, it is possibleto computeeven a term-shortesor

literal-shortesDNF equivalentto ¢ in polynomialtime.

A naturalissueis whethera term-shortestesp.literal-shortesbidual Horn extensionof (7', '), canbe
computedn polynomialtime. Theseproblemsareintractable however.

Theorem 5.14 Givena pdBf(T, F'), computing(i) a term-shortestor a (ii) literal-shortestidual Horn
@ of (T, F') is NP-hard.

Proof. Part (i) follows from the reductionin the proof of [6, Theorem9] which shavs that deciding
whethera pdBf (T, F') hasanextensionrepresentetty a DNF of at mosth terms,is NP-hard;this holds
evenif hisfixedto 2. With agiven3-uniformhypegraph = (V, E), i.e., E is acollectionof 3-element
subset®f afinite setV, associate pdBf (T, F'), T, F C {0,1}/V! by defining

T = {c"\U}jev}), F = {z"|HcE}.

As shavn in [6], the pdBf (T, F') hasanextensionwith DNF ¢ = ¢; V to if andonly if the hypegraph
H is 2-colorable. (Note thatif (C1, Cs) is a good2-coloringof H, theny = Ao, =i V Ajec, 75 is
an extensionof (7', F').) Moreover, it is shavn thatamongthe term-shortesextensionsof (T, F), i.e.,
extensionswith smallesihumberof termsin a DNF, thereis a positive function.
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Sinceevery positive functionis bidual Horn, it follows that someterm-shortesextensionof (7, F) is
bidual Horn. Furthermoredeciding2-colorability of a 3-uniform hypegraph?# is a well-knovn NP-
completeproblem(cf. [17]). As a consequencezomputinga term-shortesbidual Horn extensionof
(T, F) is NP-hard.

For part(ii), we reducethe classicalNP-hardproblemof decidingwhethera graphG = (V, E) hasa
vertex cover of sizeatmostk [17] to this problem.SupposehatV = {1,2,...,n}, anddefineT = {1}
andF = {zV\Uw} | {i,j} € E}. Thenwe claim that (7, F') hasa bidual Horn DNF ¢ containing
at mostk literalsif andonly if G hasa vertex cover of sizeat mostk. Indeed,if C' is a vertex cover
of G, theny = A, z; representsin extension,which is clearly bidual Horn. This provesthe if-part.
To shaw the only-if-part, assumehat G hasno vertex cover of sizeat mostk, andlet ¢ representry
Horn (in particular bidual Horn) extension. Thent¢(1) = 1 holdsfor someHorn implicantt of ¢. Let
t = Njepw) i Njen) Tj- SinceN (t) = 0 musthold, P(¢) is avertex cover of G. Hencep containsat
least|P(t)| > k + 1 literals,a contradiction. O

Remark. The proof of Theoremb.14impliesthatcomputinga literal-shortestrbitrary (not necessarily
Horn DNF) formulay representingry bidualHorn extensionis NP-hardaswell.

6 Dualization, Characteristic Sets,and DNFs of Bidual Horn Functions

In whatfollows, let o denoteeitherconjunctionA or disjunctionv. Let S C {0,1}"™ beasetof vectors
suchthatS = Cl,(S), i.e., S is closedunderintersectioror union,respectrely. A vectorv € S is called
o-extremewith respecto S if v ¢ CIl.(S \ {v}). Thesetof all o-extremevectorsof S is calledthe o-
characteristicsetof S, whichwe denoteby C(S); thedefinitionextendsto all S C {0,1}"™ by Cx(S) =
C*(Cls(S)). NotethatC?* (X) is well-definedandis theminimumsetsatisfyingCl, (C% (X)) = Clo(X).

For conjunction,the conceptof characteristicethasbeenstudiede.g.in [25, 24], andis alsoknowvn
asbase[10]. Thetranslationbetweerthe characteristicetandDNFs of Horn functionsis animportant
problemwhich hasbeenstudiedrepeatedly25, 24, 26]. Briefly, it appearedhata goodalgorithmfor this
problemis not straightforvard andtheintrinsic difficulty of thistaskis notknown to date.In this section,
we studythe characteristicetof bidual Horn functionsand considemajor transformatiorproblemson
them.Theseresultsalsoallow usto characterizehe difficulty of dualizinga bidualHorn function £, i.e.,
givenaHorn DNF for £, computeanirredundanprime (Horn) DNF for f¢.

Let for ary S C {0,1}" denoteS? = {v|v € S}. Thenobviously C%(S) = (C%(5%)* holds;
thereforewe restrictour discussiorto C5).

For convenience,we introducefurther notation. For ary termt, let T (¢t) = {v € T(¢)| |ON(v)|
< |P(t)| + 1} and,furthermorefor aDNF ¢ = Vcrt;, let T_(p) = {v € T_(t;) |1 € I}.

Example 6.1 Considerthe DNF ¢ = z129T3 V T1Z4 Onvariableszy,...,z4. Then, T (zi1z9T3) =
{1100,1101}, T (z174) = {0000, 0100,0010}, andT_ (¢) = {1100, 1101, 0000, 0100, 0010}.

Lemma 6.1 For anytermt, it holdsthat C, (T'(t)) = T-(¢).
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Proof. First,obsere thateveryv € T_(t) is V-extremewith respecto 7'(¢), thatis, C3,(T'(t)) 2 T—(¢).
To prove C3(T'(t)) C T-(t), take avectoru € T'(t) \ T (t). Then,for everyj € ON(u) \ P(t), there
isavl)) € T () suchthatv;”) = 1, andthuswe have

u=\/{v" |j € ON(u) \ P(t)};

it follows C}(T'(t)) C T—(t). This provesthelemma. O

Lemma6.2 Let f be a functionsud that f¢ is Horn (i.e., T'(f) is closedunderunion). Lety bean
arbitrary DNF of f. ThenC% (T'(f)) = C3(T-()).

Proof. Foreveryu € T(f) \ T—(y), thereis atermt¢ € ¢ suchthatt(u) = 1. Lemma6.1thenimplies
u € Cly(T-(t)). HenceCl\(T(f)) = T(f) C Cly(T-(¢)) holds.Ontheotherhand, T(f) O T (),
henceCly(T(f)) 2 Cly(T-(y)). It follows Cl\(T(f)) = Cly(T-(¢)), whichimplies C}(T(f)) =

CU(T-(p))- O
By the abore lemma,we cantransforman arbitraryDNF of a function f suchthat f¢ is Horninto the

characteristisetCy, (T'(f)) in polynomialtime.

Theorem 6.3 Let f bea functionof n variablessud that £¢ is Horn (i.e., T'(f) is closedunderunion).
Lety beanarbitrary DNF of f. ThenC:,(T(f)) canbecomputedrom in O(n?m?) timg whee m is
thenumberof termsin .

Proof. Supposewithout loss of generalitythat no termin ¢ is empty By Lemma6.2, CJ(T'(f)) can
be obtainedby computingall V-extremevectorsof T (¢). Clearly |T_(¢)| < n|g|, andT_(¢) canbe
constructedrom ¢ in O(n?m) time. Clearly, for everyv € T () it holdsthatwv is anV-extremevector
of T (y) if andonly if

v # \/{w eT () | w< v} (6.17)

Let for every termt be w® the vectorsuchthat ON (w®) = ON(v) \ N(t). We claim that (6.17)is
equvalentto

v # \{w|tey Pt)CON@)}. (6.18)
Indeedsince{w € T_(¢) | w < v} = Uy . pryconw)iw € T-(t) |w < v}, wehave

ViweT (o) lw<ot =  (V{weT ()|w<o))

tep : P(t)CON(v)
= V{w" [t ey, Pt) CON@)},

which provesour claim.

We caneasilyseethatcomputingall w® suchthatt € ¢ andP(t) C ON(v) canbedonein O(nm)
time,andtheV-extremenessfv € T_ (¢) canbechecledby (6.18)in O(nm) time. SinceC?, (T_(¢)) C
T_(¢p) and|T— ()| < nm, it follows thatC (T—(¢)) = C%(T(f)) canbeobtainedn O(n?m?) time. O
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Corollary 6.4 Lety beanarbitrary DNF for a bidual Horn function f of n variables. ThenC3, (T'(f))
canbe computedrom in O(n?m?), whee m is the numberof termsin . a

Let usnext considetthe corverseproces®f computinga DNF formulafor abidualHorn functionfrom
its characteristicset. For ary function f andvectorv, let Uf(v) = {w € T(f) | v < w, |[ON(w)| <
|ON(v)| + 1}, i.e.,Ug(v) containsy andall truevectorsof f resultingfrom » by switchingone0 to 1.

Lemma6.5 Let f be a bidual Horn functionwith characteristicsetS = C¥(T(f)). Then,for eah
v € S, thetermt, sudthatT_(t¢,) = Us(v) is Horn andsatisfies, < f.

Proof. Considerfor ary v € S thetermt,. Lemma6.1limpliesthatfor every vectoru € T'(t,), thereis
someS,, C T_(t,) suchthatu =V S,. SinceT_(t,) = Uy(v) C T(f), wehaveu € Cly(T-(t,)) =
Cly(T(f)) = T(f), it follows t, < f. Furthermorethetermt, is Horn. To seethis, supposdo the
contraryit is not Horn. This impliesthatthereexist components andj, ¢ # j, suchthatw; = w; = 0
for everyw € Uy (v). Letfor ary k bev®) thevectorsuchthatON (v*¥)) = ON(v) U {k}. Then,clearly
0@ 09 ¢ Us(v), andhencev®,v() € F(f). Sincef is Horn, it follows v A v() = v € F(f).
However, thisis a contradictionwhich shavs ¢, is Horn. O

Lemma 6.6 Let f bea bidual Horn functionwith characteristicsetS = C3(7'(f)). Thenthefollowing
Horn DNF ¢ representsf:

o = \tV V A (6.19)
vES V,WES : [N (ty)UN (ty)|=2
whee ¢, is the term sud that T_(¢,) = Up(v), and t;}

+w 1S the positiveterm sud that P(t},,) =
P(ty) U P(ty) (cf. Section3).

Proof. Lemma®.5 tells that ¢ of (6.19)is Horn. Hence,by Lemma3.4, ¢ represents bidual Horn

function. Moreover, Lemma3.3andLemma6.5imply T'(¢) C T'(f). To prove theresult,it thusremains
to shav T'(f) C T'(y). To prove this,assumeo the contrarythatthereexistsavectoru € T'(f) \ T(y).

We will derive a contradiction.

Sinceu € T(f), thereexistssomeS, C S suchthatu = \/ S,. Fix ary suchsS,, andlet for every
w € S, bet, thetermsuchthatT_(t¢,) = Us(w). Notethat,by Lemma6.5, eacht,, is a Horn term.
Thenwe have thefollowing threecases.

(a) Somet,, is positve. Then,t,,(u) = 1 holdsasu > w. Sincet,, occursin ¢, thisimpliesu € T'(¢p).
Thisis a contradiction.

(b) Thetermst,, have acommonnegatie literal z;. Then,everyt,, satisfies,,(u) = 1 because:; = 0
andu > w. Asin case(@) it followsu € T'(p), whichis a contradiction.

(c) Therearetermst,,, t, suchthat|N(¢,) U N (t,)| = 2. Sincev,w < u,
P(ty) = ON(v) € ON(u) and P(ty,) = ON(w) C ON(u);
hence,P(t;,) = P(t,) U P(t,) € ON(u), whichimpliest;},,(u) = 1. Sincet,,, occursin ¢, it

followsu € T'(¢), whichis a contradiction.
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By (a), (b) and(c), the existenceof u € T'(f) \ T'(¢) alwaysleadsto a contradiction. This proves
T(f) C T(p) andhencetheresult. O

Exploiting this lemma,we obtainthe following result.

Theorem 6.7 Let f bea bidual Horn functionof n variables. Thena Horn DNF of f canbeconstructed
fromC3(T(f)) in O(n2|CE(T(f))|?) time

Proof. Let S = C%(T'(f)). Then,for everyv € S, thesetUs(v) canbe computedn O(n?|S|) time,
sincecheckingif w € Cl,/(S) for eachw suchthatv < w and|ON(w)| = |ON(v)| + 1 canbedonein
O(n|S|) time,andthereareatmostn suchw’s. Thusthecollectionof all ¢,’sin (6.19)canbe computed
in O(n?|S|?) time. Furthermorethe collectionof all ¢;7,,’s canbe computedn O(n|S|?) time because
the numberof pairsof v andw is at most|S|?. In total, the computatiorof ¢ in (6.19)takesO(n?|S|?)
time, which provestheresult. O

The following theoremshaws a relationbetweernthe sizesof the characteristicetandthe numberof
termsin term-shortesHorn DNFsfor bidualHorn functions.

Theorem 6.8 Let f bea bidual Horn functionof n variablesdifferentfromtautolagy, andlet m* bethe
numberof termsin term-shortesDNF for f. Then

IGEIN < e < jogmu+ o5 @) (620
Proof. Apply Lemmast.2and6.6. O

Thelower boundfor m* in Theorem6.8 holdsfor generafunctionsf whosesetof truevectorsT'(f) is
closedunderunion. However, the upperbounddoesnot hold for suchfunctionsin general becausen*
may be exponentialwith respecto |CY (T(f))|-

Let usfinally considerthe dualizationof a bidual Horn function f, which is the task of computing
anirredundantprime Horn DNF 4 for f¢ from a given Horn DNF ¢ for f. We noteat this point that
|| may be exponentialwith respectto |¢|. For example,let f be a positve function representedy
¢ = V™| z;z,1; Of 2n variableswhich is clearly bidualHorn. In this case,f? is representethy 1 =
Vije{j’nﬂ-}xil ---z; . We canseethat and+ arethe uniqueprime DNFsfor f and f¢, respeciiely,
andthat|p| (= O(n)) < |[¢| (= ©(2" - n)). In suchcasestherunningtime of adualizationalgorithm A
is usuallymeasuredby its input sizeandoutputsize,and A is calledpolynomialtotal timeif its running
time is polynomialin the combinednputsize|y| andoutputsize|y| [23, 4, 11].

An interestingoroblemwith thisrespecis dualizationof a positive function,wheretheinputformulais
apositive DNF . Many practicalproblemsareknown to be equivalentto this problem[11], but it is not
known to datewhetherit hasa polynomialtotal time algorithmor not[4, 11, 23, 15]. However, therecent
resultby FredmarandKhachiyan[15] shavs thatthe problemis solvablein O(m"(l"g m)) time,wherem
is thenumberof termsin v and.

From resultsin [24, 26], which have beenfound in similar form in the databaselomain[11], the
following is known aboutgeneraHorn functions.
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Proposition 6.9 Let f bea Horn function.

(1) Theeisapolynomiattotal timealgorithmfor computingall primeimplicantsof f fromC3 (T(£%))
if andonlyif there is a polynomialtotal timealgorithmfor dualizinga positivefunction.

(2) Computingan irredundantHorn DNF of f from C3(T(f¢)) is at leastas hard asdualizinga
positivefunction.

(3) ComputingC? (T(f¢)) fromaHorn DNF of f is atleastashard asdualizinga positivefunction.
O

It is believed thatthe problemsin (2) and(3) arestrictly harderthandualizinga positive function (cf.
[24]). For bidualHorn functionsf, however, we canshav thatthey have the samecompleity.

Theorem 6.10 Let f be a bidual Horn function. Thenthere is a polynomialtotal time algorithm for
computingan irredundantprime Horn DNF of £¢ from C(T'(f)) if and only if there is a polynomial
total time algorithmfor dualizinga positivefunction.

Proof. Note that f¢ is bidual Horn if f is bidual Horn. Sinceevery positive function is bidual Horn,
Theorem6.3 implies the only-if direction. To prove theif-direction, it is by part (1) of Proposition6.9
suficient to shaw thata polynomialtotal time algorithmfor computingall prime implicantsof f¢ from
CY(T(f)) impliesa polynomialtotal time algorithmfor computingan irredundantrime Horn DNF of
f2from C(T(f)). Indeed this holdsfor bidualHorn functionsyf: Sincef? is bidualHorn, by Theorem
5.13,the numberof all primeimplicantsof f¢ is polynomialin the sizeof aliteral-shortesDNF for f¢,
andcomputinganirredundanprime DNF from ary Horn DNF is polynomial[19]. O

Corollary 6.11 For bidualHorn functionsf, ead of thefollowing problemshasa polynomialtotal time
algorithmif andonlyif there is a polynomialtotal time algorithmfor dualizinga positivefunction:

(1)  ComputingCs (T'(f9)) fromC (T (f)).
(1) ComputingCy (T (f%)) fromaHorn DNF of f.

(i) Computinganirredundanprime Horn DNF of f¢ froma Horn DNF of f (i.e., dualizationof a
bidual Horn function. O

The abore resultstell thattransformatiorproblemsseemto becomeeasielif functionsarerestrictedto
be bidualHorn.

7 Conclusionand Further Reseach

In this paper we have introducedbidual Horn functions,which are Booleanfunctions f suchthatboth
f andits dual f¢ areHorn. This classof functionsis motivatedby the unbalancedreatmenbf positive
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andngyative informationthroughHorn functionsin the extensionproblemof partially definedBoolean
functions(pdBfs). We alsoemphasizéhat bidual Horn functionsare naturalgeneralizatiorof positive
functionswith respecto the closureproperties.

We have studiedthe semanticabnd computationabspectof bidual Horn functions,focusingon the
recognitionproblem,i.e., decidingwhetheragiven(possiblyrestrictedYormulay representsuchafunc-
tion, andon the extensionproblem,i.e., decidingwhetherfor a givenpdBf (T, F) abidualHorn function
existsthatinterpolate®n (7', F'). In thecourseof thisinvestigationwe have determinedtharacterizations
andpropertiesof bidualfunctions.

Theclassof bidualHorn functionsappearso beaninterestingntermediateclasshetweertheclasse®f
positive andHornfunctions.As for positive functions,ary irredundanprimeDNF is aterm-shortesDNF
for abidualHorn function,but it is nolongerunique.Besidesaterm-shortesDNF, alsoalliteral-shortest
DNF for a bidual Horn function canbe computedrom a Horn DNF in polynomialtime; both problems
areNP-hardfor arbitraryHorn functions. Thus,bidualHorn functionsarea nontrivial restrictionof Horn
functionsfor which theseproblemsarepolynomial. Furthermorewe have shavn thatdualizinga bidual
Horn functionis polynomially equivalentto dualizinga positive function. For the extensionproblem,we
have presentedn algorithmwhich decidesaboutexistenceof a bidualHorn extensionfor a pdBf (T, F')
in O(n|T||F|) timeandoutputsaDNF in O(n|T'|(|T'|+|F|)) time. Moreover, we have shavn thatfinding
aterm-shortesbr literal-shortesbidual Horn extensionis NP-hard,andthata polynomialalgorithmfor
decidingwhether(7’, F') hasa uniquebidual Horn extensionis difficult to find.

Our resultsshaw that from the computationapoint of view, bidual Horn functionsbenigngeneralize
positive functionsto asubclas®f Horn functions.Furtherissueson bidualHorn functionsareconsidered
in theextendedreport[12]. In particular theclosureof Cgg underrenaminggi.e.,achangen polarity of
partof thevariables)s consideredhere.While therecognitionproblemis still polynomial,the extension
problemis intractable.

Possibletopicsof future researcharethe developmentof a goodalgorithmfor enumeratingall bidual
Horn extensionsaswell asapproximatiorof aterm-shortesor literal-shortesbidualHorn extension.
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