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Abstract

Yamasaki and Doshita have defined an extension of the class of
propositional Horn formulas; later, Gallo and Scutellà generalized this
class to a hierarchy Γ0 ⊆ Γ1 ⊆ . . . ⊆ Γk ⊆ . . ., where Γ0 is the set
of Horn formulas and Γ1 is the class of Yamasaki and Doshita. For
any fixed k, the propositional formulas in Γk can be recognized in
polynomial time, and the satisfiability problem for Γk formulas can be
solved in polynomial time. A possible way of extending these tractable
subclasses of the satisfiability problem is to consider renamings: a
renaming of a formula is obtained by replacing for some variables
all their positive occurrences by negative occurrences and vice versa.
The class of renamings of Horn formulas can be recognized in linear
time. Chandru et al. have posed the problem of deciding whether
the renamings of Γ1 formulas can be recognized efficiently. We show
that this is probably not the case by proving the NP-completeness of
recognizing the renamings of Γk formulas for any k ≥ 1.
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1 Introduction

Checking satisfiability of a set of propositional clauses is a well-known NP-
complete problem (SAT). While the general problem of determining satisfia-
bility is hard, it is useful to look for large subclasses for which there exists a
polynomial time algorithm for testing satisfiability. Among such subclasses
of SAT the class of Horn formulas [5, 11] is possibly the most important.
Recently several extensions of the class of Horn formulas with polynomial
time satisfiability tests have been presented [12, 6, 3].

A renaming of a propositional formula C is obtained by choosing a subset
of variables and replacing each positive occurrence of such a variable by the
corresponding negative literal and vice versa. The usefulness of this operation
stems from the obvious fact that the renamed formula is satisfiable if and
only if the original formula is, and that a satisfying truth assignment for the
renamed formula gives a satisfying truth assignment for the original formula.
Thus if we can find a renaming that maps a formula C to an instance in a
subclass which is solvable in polynomial time, we can solve the satisfiability
problem for C in polynomial time.

Whether a formula is a renamed Horn formula can be tested in linear
time [1, 9, 2].

Yamasaki and Doshita have defined an extension of the class of propo-
sitional Horn formulas; later, Gallo and Scutellà generalized this class to a
hierarchy Γ0 ⊆ Γ1 ⊆ . . . ⊆ Γk ⊆ . . ., where Γ0 is the set of Horn formulas
and Γ1 is the class of Yamasaki and Doshita. This hierarchy has several nice
properties: for any fixed k, the propositional formulas in Γk can be recog-
nized in polynomial time, and the satisfiability problem for Γk formulas can
be solved in polynomial time. Furthermore, any instance of SAT occurs on
some level of the hierarchy.

If the renamed instances of, say, Γ1 were recognizable in polynomial time,
one would get a fairly large subclass of SAT with a useful polynomial time
satisfiability algorithm. The renamed Horn formulas can be recognized ef-
ficiently, but it is not clear what is the situation for the next level of the
hierarchy. Chandru et al. [2] pose this question for the class of [12] as an
open problem.

The results of this paper are a negative answer to this question. We
show that recognizing renamed instances of the classes of generalized Horn
formulas in [12, 6] is NP-complete, thus settling the problem in [2].

The rest of this paper is organized as follows. In Section 2 we define the
classes of Horn formulas and generalized Horn formulas, and introduce the
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concept of renaming formally. Section 3 gives a reduction from the exact
hitting set problem to the problem of recognizing renamed Γ1 formulas. Sec-
tion 4 extends this result to the classes Γk for k ≥ 2. Section 5 is a short
conclusion.

2 Preliminaries and previous results

Variables are denoted by lower-case letters from the end of the alphabet. A
literal is a propositional variable (x) or its negation (x). For a literal l we
use v(l) to denote the variable of l, and op(l) to denote the opposite of literal
l (i.e., op(x) = x, op(x) = x). A literal l is positive if l = v(l) and negative
otherwise. A clause is a set {l1, . . . , ln} of distinct literals. A formula is
a set C = {C1, . . . , Cn} of clauses on a finite set of propositional variables.
A formula is satisfiable, if there exists an assignment of truth values to the
variables such that the formula evaluates to true; a clause {l1, . . . , ln} is
regarded as the disjunction l1 ∨ · · · ∨ ln, and a formula is regarded as the
conjunction of its clauses. A clause C is Horn if it contains at most one
positive literal, and a set of clauses is Horn if all its clauses are Horn.

A renaming of the variables is a mapping r of the variables into the literals
where r(x) ∈ {x, x}; r is identified with {x : r(x) = x}. We say that x is
renamed in r if x ∈ r.

For every renaming r and a clause C, the renamed clause Cr is obtained
by replacing each l in C by op(l) if v(l) ∈ r; i.e.,

Cr = (C − {l : v(l) ∈ r}) ∪ {op(l) : v(l) ∈ r, l ∈ C}.

For a formula C, the renamed formula is defined by Cr = {Cr : C ∈ C}.
Gallo and Scutellà [6] introduced a hierarchy of formulas Γ0,Γ1, . . . ,Γk, . . .

which generalizes Horn formulas. For any clause set C and clause C define
the simplified formulas CC and CΘC by

CC = {C ′ ∈ C : C 6⊆ C ′} and CΘC = {C ′ − C : C ′ ∈ C}.

Definition 2.1 The class of clause sets Γk, k ≥ 0, is defined by

k = 0: C ∈ Γ0 if and only if C is Horn;

k > 0: C ∈ Γk if and only if C is an empty set or a singleton consisting of the
empty clause, or there exists a positive literal l such that (i) C{l} ∈ Γk−1,
and (ii) CΘ{l} ∈ Γk.
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Note that Γ0 ⊆ Γ1 ⊆ · · · ⊆ Γk ⊆ · · ·; it is not hard to see that Γk ⊂ Γk+1

for all k ≥ 0, and that
⋃∞
k=0 Γk contains all propositional formulas. The class

Γ1 is coincides with the class of generalized Horn functions introduced by
Yamasaki and Doshita [12], which is defined as follows [6].

Definition 2.2 A set C = {C1, . . . , Cn} of clauses is generalized Horn if and
only if there exist sets of positive literals P1, . . . , Pn (a “chain”) such that

(i) P1 ⊆ P2 ⊆ · · · ⊆ Pn,

(ii) Pi ⊆ Ci for all 1 ≤ i ≤ n, and

(iii) {Ci − Pi : 1 ≤ i ≤ n} is Horn. 2

Deciding whether C ∈ Γk can be done in time O(n∗nk) where n∗ is the
input size and n the number of propositional letters [6], and for k = 1 also
in linear time [2]. Moreover, the satisfiability of C ∈ Γk can be checked in
O(n∗nk) time [6].

Call a set of clauses C renamable Γk if there exists a renaming r such that
Cr ∈ Γk.

Definition 2.3 For k ≥ 0, RΓk denotes the class of all renamable Γk for-
mulas. 2

Note that C ∈ RΓ0 if and only if C is renamable Horn, and C ∈ RΓ1 if
and only if C is renamable generalized Horn.

Finding out how many variables have to be removed from a formula to
reach a renamable Horn formula is known to be NP-complete [10, 4]. While it
is known that deciding C ∈ RΓ0 can be done in linear time [1], the complexity
of deciding C ∈ RΓk for k > 0 was unknown yet; the case k = 1 has been
posed as an open problem by Chandru et al. [2].

3 The complexity of deciding C ∈ RΓ1

We describe in this section a polynomial time transformation from the EX-
ACT HITTING SET problem [8] to deciding the membership of a collection
of clauses in RΓ1, and prove the correctness of this reduction. Since EXACT
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HITTING SET is NP-complete [8], the reduction shows the NP-hardness of
recognizing the formulas in RΓ1.

The EXACT HITTING SET problem is as follows. Given a family F =
{F1, . . . , Fm} of subsets of a finite set of vertices V = {v1, . . . , vn}, decide
whether there exists a subset H of V such that |H ∩ Fi| = 1 for all i with
1 ≤ i ≤ m. This problem remains NP-complete in the case where each Fi,
1 ≤ i ≤ m, consists of two or three vertices. (This follows by an immediate
reduction from the ONE-IN-THREE-SAT problem [7]).

The transformation from EXACT HITTING SET to the problem of rec-
ognizing formulas of RΓ1 is as follows. Let F = {F1, . . . , Fm} be a family
of subsets on the set of vertices V = {v1, . . . , vn}, where |Fi| ∈ {2, 3} for
all 1 ≤ i ≤ m. Let Xi = {xi,j : 1 ≤ j ≤ n}, where 1 ≤ i ≤ m, and
S = {s1, s2, s3} be disjoint sets of distinct propositional variables. We will
also use some additional variables, which are all assumed to be distinct.

We construct a set of clauses C which consists of three disjoint sets of
clauses: the “Horn part” H, the “separating group” S, and the “chain part”
P . The construction is such that the variables xi,j renamed by a renaming
r such that Cr ∈ Γ1 will correspond to the vertices vj of an exact hitting set
of F and vice versa.

The Horn part H of C contains the following clauses:

• The clauses {xi,j, xk,j} and {xi,j, xk,j} for each i, j and k where 1 ≤
i < k ≤ m, 1 ≤ j ≤ n, and vj ∈ Fi ∩ Fk.
(These clauses will serve to assure that renaming xi,j requires also re-
naming of xk,j.)

• For each three-element set Fi = {vi1 , vi2 , vi3} the formula H contains
the clauses

{xi,i1 , xi,i2}, {xi,i1 , xi,i3}, {xi,i2 , xi,i3}.

(These clauses will assure that at most one of the variables xi,i1 , xi,i2
and xi,i3 will be renamable.)

• For each two-element set Fi = {vi1 , vi2} the formula H contains the
clauses

{xi,i1 , xi,i2}, {zi, ai}, {zi, ai},
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where zi, ai are new propositional variables.

(These clauses will assure that at most one of the variables xi,i1 , xi,i2
will be renamable and that zi can not be renamed).

The separating group S consists of the following clauses:

{s1, s2}, {s1, s3}, {s2, s3}, {s1, s2}, {s1, s3}, {s2, s3}

The aim of these clauses is to assure that in each renaming r that makes
the clause set C generalizable Horn, a suitable chain for Cr can not remove
literals from the clauses of the Horn part, while it must remove literals from
the clauses of the chain part.

The chain part P consists of the following sets of clauses Ci, which corre-
spond to the set of nodes Fi. Let A0 = {s1, s2, s3}, and define for 1 ≤ i ≤ m

Ci = {D ∪ Ai−1 : D ⊆ Bi, |D| = 2}, Ai =
⋃
C∈Ci

C,

where Bi = {xi,i1 , xi,i2 , xi,i3} if Fi = {vi1 , vi2 , vi3} and Bi = {xi,i1 , xi,i2 , zi} if
Fi = {vi1 , vi2}. Note that Ai = Ai−1 ∪Bi.

The clauses of Ci serve for the following purpose: Ci = {Ci,1, Ci,2, Ci,3} /∈
Γ1 because the intersection of these three clauses with Bi yields sets of pos-
itive variables {u, v}, {u,w}, {v, w}. If Cr ∈ Γ1 then r renames at least one
of u, v, w (say u). The clauses in the Horn part will assure that at most one
of these variables can be renamed; hence, exactly one variable (u) must be
renamed; v, w can then be removed by a chain.

This finishes the construction.
Consider the following example of the construction. Let F = {F1, F2, F3},

F1 = {v1, v2, v3}, F2 = {v1, v3, v4} F3 = {v2, v5}, where V = {v1, . . . , v5}.
The clause set C is as follows.
H:

{x1,1, x2,1}, {x1,1, x2,1},
{x1,2, x3,2}, {x1,2, x3,2},
{x1,3, x2,3}, {x1,3, x2,3}

{x1,1, x1,2}, {x1,1, x1,3}, {x1,2, x1,3},
{x2,1, x2,3}, {x2,1, x2,4}, {x2,3, x2,4},
{x3,2, x3,5}, {z3, a3}, {z3, a3}.
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S:
{s1, s2}, {s1, s3}, {s2, s3}, {s1, s2}, {s1, s3}, {s2, s3}.

P :

{x1,1, x1,2, s1, s2, s3}, {x1,1, x1,3, s1, s2, s3}, {x1,2, x1,3, s1, s2, s3}

{x2,1, x2,3, s1, s2, s3, x1,1, x1,2, x1,3}
{x2,1, x2,4, s1, s2, s3, x1,1, x1,2, x1,3}
{x2,3, x2,4, s1, s2, s3, x1,1, x1,2, x1,3}

{x3,2, x3,5, s1, s2, s3, x1,1, x1,2, x1,3, x2,1, x2,3, x2,4}
{x3,2, z3, s1, s2, s3, x1,1, x1,2, x1,3, x2,1, x2,3, x2,4}
{x3,5, z3, s1, s2, s3, x1,1, x1,2, x1,3, x2,1, x2,3, x2,4}.

We now prove the correctness of the reduction. We first observe an im-
portant property of the “separating group” S = {{s1, s2}, {s1, s3}, {s2, s3},
{s1, s2}, {s1, s3}, {s2, s3}}.

Lemma 3.1 S ∈ RΓ1 −RΓ0.
Proof. It is easily checked that Sr contains a clause with two positive

literals for any renaming r. Hence S /∈ RΓ0.
Consider then the renaming r = {s1} and denote Sr = {C1, . . . , C6}.

The clauses can be ordered in such a way that C1 = {s1, s2}, C2 = {s1, s3},
C3 = {s1, s2}, C4 = {s1, s3}, C5 = {s2, s3}, and C6 = {s2, s3}. Now choose
Pi = ∅, for 1 ≤ i ≤ 5, and let P6 = {s2, s3}. Then {Ci − Pi : 1 ≤ i ≤ 6} is
Horn, and hence S ∈ RΓ1. 2

Lemma 3.2 Let F = {F1, . . . , Fm} be a family of subsets on V = {v1, . . . , vn},
where |Fi| ∈ {2, 3} for all 1 ≤ i ≤ m. The formula C constructed from the
family F satisfies C ∈ RΓ1 if and only if F has an exact hitting set.

Proof. If: Assume that H ⊆ {v1, . . . , vn} is an exact hitting set of F .
Define the renaming

r = {xi,j : vj ∈ Fi ∩H, 1 ≤ i ≤ m} ∪ {s1}.

We can then write Cr = {R1, . . . , Rt, . . . , Rl}, where

{R1, . . . , Rt−1} = [H ∪ (S − {{s2, s3}})]r,
Rt = {s2, s3}r, and

{Rt+3i−2, Rt+3i−1, Rt+3i} = Cir for 1 ≤ i ≤ m.
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Moreover, the clauses can be ordered in such a way that

Rt+3i ∩ {x : x ∈ Xi} = ∅

for all 1 ≤ i ≤ m.
Define the sets P1, . . . , Pl as follows.

Pi = ∅ for 1 ≤ i < t,

Pt = {s2, s3},
Pt+3i−2 = Pt+3i−1 = Pt+3i−3 for 1 ≤ i ≤ m, and

Pt+3i = Pt+3i−3 ∪ (Rt+3i ∩ (Xi ∪ {zi})) for 1 ≤ i ≤ m.

Since H is an exact hitting set, it is not hard to verify from the definition
of r that Ri is Horn for 1 ≤ i < t. Furthermore, it is straightforward to check
that Rj −Pj contains no positive literal if j = t+ 3i for some 0 ≤ i ≤ m and
that it contains exactly one positive literal if j = t+3i−2 or j = t+3i−1 for
some 1 ≤ i ≤ m. Hence {Ri − Pi : 1 ≤ i ≤ l} is Horn. Since P1 ⊆ · · · ⊆ Pl
and Pi ⊆ Ri for 1 ≤ i ≤ l, this entails C ∈ RΓ1.

Only if: Assume that r is such a renaming that Cr = {R1, . . . , Rl} ∈ Γ1, and
that P1 ⊆ · · · ⊆ Pl is a suitable chain such that Pi ⊆ Ri for 1 ≤ i ≤ l and
{Ri − Pi : 1 ≤ i ≤ l} is Horn.

We observe that regardless of r, we must for some i have Ri ⊆ {s1, s2, s3}
and |Ri| = 2 by Lemma 3.1, and hence Pi ⊆ {s1, s2, s3}. Let then C be any
clause from the Horn part H. Since Cr ∩ {s1, s2, s3} = ∅, it follows that
Cr = Rj and Pj = ∅ for some j.

We next show that r must rename at least one of the propositional vari-
ables {xi,i1 , xi,i2 , xi,i3} corresponding to any set Fi = {vi1 , vi2 , vi3} with three
elements, and that r must rename at least one of the variables {xi,i1 , xi,i2}
corresponding to any set Fi = {vi1 , vi2} with two elements.

Assume to the contrary that {xi,i1 , xi,i2 , xi,i3} ∩ r = ∅. Since Cr ∈ Γ1,
we thus get that Pij ∩ {xi,i1 , xi,i2 , xi,i3} 6= ∅, where Ci,jr = Rij , 1 ≤ j ≤
3. Without loss of generality assume i1 < i2 < i3 and xi,i1 ∈ Pi1 . Since
Pi1 ⊆ Pi2 ⊆ Pi3 , this implies xi,i1 ∈ Pi2 ∩ Pi3 ⊆ Ci,2 ∩ Ci,3. But this is a
contradiction since xi,i1 is not contained in both Ci,2 and Ci,3. Consequently,
|{xi,i1 , xi,i2 , xi,i3} ∩ r| ≥ 1 holds. The argument for |{xi,i1 , xi,i2} ∩ r| ≥ 1 is
analogous.

As a consequence, H = {vj : ∃xi,j ∈ r} is a hitting set of F = {F1, . . . , Fm}
by the construction of P .
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On the other hand, since Hr is Horn, we can derive from the construction
of H that (i) xi,j ∈ r if and only if xk,j ∈ r, for all 1 ≤ i, k ≤ m, 1 ≤
j ≤ n, where vj ∈ Fi ∩ Fk, and that (ii) |{xi,i1 , xi,i2 , xi,i3} ∩ r| ≤ 1 (resp.
|{xi,i1 , xi,i2} ∩ r| ≤ 1), and hence we have that |{xi,i1 , xi,i2 , xi,i3} ∩ r| = 1
(resp. |{xi,i1 , xi,i2} ∩ r| = 1) must hold for all 1 ≤ i ≤ m. Thus we conclude
that |H ∩ Fi| = 1 holds for 1 ≤ i ≤ m, i.e., H is an exact hitting set of F .

2

Theorem 3.3 Let C be a set of clauses. Deciding whether C ∈ RΓ1, i.e., if
C is renamable generalizable Horn, is NP-complete.

Proof. This problem is clearly in NP since a guess for r such that Cr ∈ Γ1

can be verified in polynomial time, e.g., by the linear time algorithm of
Chandru et al. [2].

The NP-hardness follows from Lemma 3.2, since C = H∪S ∪P is clearly
constructible in polynomial time. 2

4 NP-completeness of C ∈ RΓk for k > 0

In this section, we show that deciding whether C ∈ RΓk or not is NP-hard
for every fixed k ≥ 1. For this purpose, we need some intermediate results.

Lemma 4.1 Let C1 and C2 be sets of clauses on disjoint sets of variables
such that Ci ∈ Γki − Γki−1 for i = 1, 2 and k1, k2 ≥ 0 (we denote Γ−1 = ∅).
Then C = C1 ∪ C2 ∈ Γk1+k2 − Γk1+k2−1.

Proof. The proof is by induction on a pairing φ(k1, k2). The claim
obviously holds if k1, k2 = 0. Assume it holds for all φ(k′1, k

′
2) < φ(k1, k2)

and consider the case φ(k1, k2). We show by induction on the number q of
positive literals in C that the claim holds. If q = 0, then k1, k2 = 0 and the
claim holds. If q > 0, then without loss of generality assume k1 > 0. Hence
there exists a positive literal l such that C1{l} ∈ Γk1−1 and C1Θ{l} ∈ Γk1 .
Note that C1{l} ∈ Γa − Γa−1 for some a < k1 and that C1Θ{l} ∈ Γb − Γb−1,
for some b ≤ k1. By the induction hypothesis on φ(k′1, k

′
2), we have that

C{l} = C1{l}∪C2 ∈ Γa+k2−Γa+k2−1, and together with the induction hypothesis
on q′ < q that CΘ{l} = (C1Θ{l})∪C2 ∈ Γb+k2−Γb+k2−1. It follows C ∈ Γk1+k2 .
Assume C ∈ Γk1+k2−1. This implies that k1 + k2 > 1, since C1 ⊆ C and
k1 > 0. Without loss of generality, for a positive literal l from C1, we get
C{l} = C1{l} ∪ C2 ∈ Γk1+k2−2 and CΘ{l} = C1Θ{l} ∪ C2 ∈ Γk1+k2−1. Using the
hypothesis on q′ < q, it can be readily shown that C1{l} ∈ Γa−Γa−1 for some
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a < k1. By the hypothesis on φ(k′1, k
′
2), we get a + k2 ≤ k1 + k2 − 2, hence

a ≤ k1− 2. Similarly, we get C1Θ{l} ∈ Γb−Γb−1 for some b ≤ k1, and by the
hypothesis on q′ < q, we get b+k2 ≤ k1+k2−1 and hence b ≤ k1−1. But this
entails by the definition of the hierarchy the contradiction that C1 ∈ Γk1−1.
Thus C ∈ Γk1+k2 − Γk1+k2−1; hence the hypothesis on q holds, which means
that the hypothesis on φ(k1, k2) also holds. Thus the lemma follows. 2

Corollary 4.2 Let C1 and C2 be sets of clauses on disjoint sets of variables
such that Ci ∈ RΓki − RΓki−1 for i = 1, 2, where k1, k2 ≥ 0. Then C =
C1 ∪ C2 ∈ RΓk1+k2 −RΓk1+k2−1. 2

We obtain the following result.

Theorem 4.3 Deciding whether a set of clauses C is in the class RΓk, for
a constant k > 0, is NP-complete.

Proof. Membership of the problem in NP holds since a guess for a
renaming r such that Cr ∈ Γk can be verified with an algorithm of Gallo and
Scutellà in O(n∗nk) time [6].

The NP-hardness part is shown as follows. Take the clause set C con-
structed in the proof of NP-hardness for the case k = 1 from above, and
add k − 1 copies S1,S2, . . ., Sk−1 of the separating group S on completely
different variable sets to C, and let C ′ denote the resulting clause set. Clearly,
C ′ /∈ RΓ0. Hence by Lemma 3.1 and repeated application of Corollary 4.2,
C ′ ∈ RΓk if and only if C ∈ RΓ1, from which the result follows. 2

5 Conclusions

We have shown that recognizing the formulas in the class RΓk is NP-complete
for all k with k ≥ 1. This can be contrasted with the linearity of recogniz-
ing renamed Horn formulas. Hence the interesting hierarchy of Γk formulas
cannot be extended by renamings and still retaining the polynomial time
identifiability of the resulting class.

It seems that the techniques of Section 4 can be extended to show that
given a formula C, it is difficult even to approximate the smallest k such that
C ∈ RΓk.

An interesting open problem is characterizing the classes of formulas
whose renamed versions can be recognized in polynomial time.
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