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Abstract. Computing abductive explanations is an important problem, which
has been studied extensively in Artificial Intelligence (Al) and related disciplines.
While computing some abductive explanation for a literalith respect to a set

of abduciblesA from a Horn propositional theory' is intractable under the tra-
ditional representation oY by a set of Horn clauses, the problem is polynomial
under model-based theory representation, whleiis represented by its charac-
teristic models. Furthermore, computing all the (possibly exponentially) many
explanations is polynomial-time equivalent to the problem of dualizing a posi-
tive CNF, which is a well-known problem whose precise complexity in terms of
the theory ofNP-completeness is not known yet. In this paper, we first review
the monotone dualization problem and its connection to computing all abductive
explanations for a query literal and some related problems in knowledge discov-
ery. We then investigate possible generalizations of this connection to abductive
queries beyond literals. Among other results, we find that the equivalence for
generating all explanations for a clause query (resp., term gyeiythe mono-

tone dualization problem holds jf contains at most positive (resp., negative)
literals for constank, while the problem is not solvable in polynomial total-time,
i.e., in time polynomial in the combined size of the input and the output, unless
P=NP for general clause resp. term queries. Our results shed new light on the
computational nature of abduction and Horn theories in particular, and might be
interesting also for related problems, which remains to be explored.

Keywords: abduction, monotone dualization, hypergraph transversals, Horn functions,
model-based reasoning, polynomial total-time computation, NP-hardness.

1 Introduction

Abduction is a fundamental mode of reasoning, which was extensively studied by C.S.
Peirce [54]. It has taken on increasing importance in Atrtificial Intelligence (Al) and

related disciplines, where it has been recognized as an important principle of common-
sense reasoning (see e.g. [9]). Abduction has applications in many areas of Al and
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Computer Science including diagnosis, database updates, planning, natural language
understanding, learning etc. (see e.g. references in [21]), where it is primarily used for
generating explanations. Specialized workshops have been held un the recent years, in
which the nature and interrelation with other modes of reasoning, in particular induction
and deduction, have been investigated.

In a logic-based setting, abduction can be seen as the task to find, given a set of
formulas X' (the background theory a formulay (the query), and a set of formulas
A (the abduciblesor hypothesgs a minimal subsety of A such thaty' plus £ is
satisfiable and logically entailg (i.e., anexplanation. A frequent scenario is where
is a propositional Horn theory is a single literal or a conjunction of literals, and
contains literals. For use in practice, the computation of abductive explanations in this
setting is an important problem, for which well-known early systems such as Theorist
[55] or ATMS solvers [13, 56] have been devised. Since then, there has been a growing
literature on this subject.

Computing some explanation for a query litexafrom a Horn theory®’ w.r.t. as-
sumptionsA is a well-knownNP-hard problem [57], even if and A are positive.
Much effort has been spent on studying various input restrictions, cf. [29, 11, 27, 16, 15,
21,57-59], in order to single out tractable cases of abduction. For example, the case
where A comprises all literals is tractable; such explanationsassimption-free ex-
planations

It turned out that abduction is tractable in model-based reasoning, which has been
proposed as an alternative form of representing and accessing a logical knowledge
base, cf. [14, 34-36, 42, 43]. Model-based reasoning can be seen as an approach towards
Levesque’s notion of “vivid” reasoning [44], which asks for a more straight represen-
tation of the background theoty from which common-sense reasoning is easier and
more suitable than from the traditional formula-based representation. In model-based
reasoningX’ is represented by a subsgtof its models, which are commonly called
characteristic modelgather than by a set of formulas. Given a suitable quetie test
for X |= x becomes then as easy as to check whethetrue in all models of, which
can be decided efficiently. We here mention that formula-based and the model-based ap-
proach are orthogonal, in the sense that while a theory may have small representation in
one formalism, it has an exponentially larger representation in the other. The intertrans-
latability of the two approaches, in particular for Horn theories, has been addressed in
[34-36, 40, 42]. Several techniques for efficient model-based representation of various
fragments of propositional logic have been devised, cf. [35, 42, 43].

As shown by Kautzt al., an explanation for a positive litergl = ¢ w.r.t. assump-
tions A from a Horn theornyZ’, represented by its set of characteristic modelay (X)),
can be computed in polynomial time [34, 35, 42]; this results extends to negative literal
queriesy = g as well, and has been generalized by Khardon and Roth [42] to other
fragments of propositional logic. Hence, model-based representation is attractive from
this view point of finding efficiently some explanation.

While computingsomeexplanation of a query has been studied extensively in the
literature, computing multiple or eveall explanations fory has received less attention.
However, this problem is important, since often one would like to select one out of
a set of alternative explanations according to a preference or plausibility relation; this



relation may be based on subjective intuition and thus difficult to formalize. As easily
seen, exponentially many explanations may exist for a query, and thus computing all
explanations inevitably requires exponential time in general, even in propositional logic.
However, it is of interest whether the computation is possibleolynomial total-time

(or output-polynomial timg i.e., in time polynomial in the combined size of the input
and the output. Furthermore, if exponential space is prohibitive, it is of interest to know
whether a few explanations (e.g., polynomially many) can be generated in polynomial
time, as studied by Selman and Levesque [58].

In general, computing all explanations for a litexa(positive as well as negative)
w.r.t. assumptionst from a Horn theoryX' is under formula-based representation not
possible in polynomial total-time unle$s=NP; this can be shown by standard argu-
ments appealing to theP-hardness of deciding the existence of some explanation. For
generating all assumption-free explanations for a positive literal, a resolution-style pro-
cedure has been presented in [24] which works in polynomial total-time, while for a
negative literal no polynomial total-time algorithm exists unlBssNP [25].

However, under model-based representation, such results are not known. It turned
out that generating all explanation for a literal is polynomial-time equivalent to the prob-
lem of dualizing a monotone CNF expression (cf. [2, 20, 28]), as shown in [24]. Here,
polynomial-time equivalence means mutual polynomial-time transformability between
deterministic functions, i.e4 reduces td3, if there are polynomial-time functionf ¢
such that for any inpuf of A, f(I) is an input of B, and if O is the output forf(I),
theng(O) is the output off, cf. [52]; moreoverQ is requested to have size polynomial
in the size of the output fof (otherwise, trivial reductions may exist).

This result, for definite Horn theories and positive literals, is implicit also in earlier
work on dependency inference [49, 50], and is closely related to results in [40].

The monotone dualization problem is an interesting open problem in the theory of
NP-completeness (cf. [45, 53]), which has a number of applications in different areas
of Computer Science, [2,19], including logic and Al [22]; the problem is reviewed in
Section 2.2 where also briefly related problems in knowledge discovery are mentioned.

In the rest of this paper, we first review the result on equivalence between monotone
dualization and generating all explanations for a literal under model-based theory repre-
sentation. We then consider possible generalizations of this result for qudyasond
literals, where we consider DNF, CNF and important special cases such as a clause
and a term (i.e., a conjunction of literals). Note that the explanations for single clause
queries correspond to the minimal support clauses for a clause in Clause Management
Systems [56, 38, 39]. Furthermore, we shall consider on the fly also some of these cases
under formula-based theory representation. Our aim will be to elucidate the frontier of
monotone dualization equivalent versus intractable instances, i.e., not solvable in poly-
nomial total-time unles®=NP, of the problem. It turns out that indeed the results in
[24] generalize to clause and term queries under certain restrictions. In particular, the
equivalence for generating all explanations for a clause query (resp., term guery)
the monotone dualization holdsyfcontains at most positive (resp., negative) literals
for constant, while the problem is not solvable in polynomial total-time unlessNP
for general clause (resp., term) queries.



Our results shed new light on the computational nature of abduction and Horn the-
ories in particular, and might be interesting also for related problems, which remains to
be explored.

2 Notation and Concepts

We assume a propositional (Boolean) setting with atems:,, . . ., z,, from a setAt,
where each; takes either valug (true) or0 (false). Negated atoms are denotedehy
and the opposite of a literélby ¢. Furthermore, we usé = {¢ | ¢ € A} for any set of
literals A and setLit = At U At. A theory X is any finite set of formulas.

A clause is a disjunction = \/ p.) P V V ey () P Of literals, whereP(c) and
N(c) are respectively the sets of atoms occurring positively and negativelyaid
P(c)NN(c) = 0. Dually, a term is a conjunction= A . p;y DA \ e n () P Of literals,
where P(t) and N (t) are similarly defined. A conjunctive normal form (CNF) is a
conjunction of clauses, and a disjunctive normal form (DNF) is a disjunction of terms.
As common, we also view clausesand termst as the sets of literalé they contain,
and similarly CNFsp and DNFsy as sets of clauses and terms, respectively, and write
l€c ce petc.

A clausec is primew.r.t. theoryY, if X = cbut X }= ¢’ for everye’ C ¢. ACNF g
is prime, if eachc € ¢ is prime, and irredundant, i \ {c¢} # ¢ for everyc € ¢. Prime
terms and irredundant prime DNFs are defined analogously.

A clausec is Horn, if | P(c)| < 1 andnegative(resp. positive, if |P(c)| = 0 (resp.,
|N(c)| = 0). ACNF isHorn (resp.,negative, positivg if it contains only Horn clauses
(resp., negative, positive clauses). A thearys Horn, if it is a set of Horn clauses. As
usual, we identify¥ with o = A . c.

Example 1.The CNFp = (1 VZ4) A (T4 VT3) A(T1 Va2 ) A(T4 VT V1 )N (T2 VT VEs)
overAt = {x1,xa,...,25} is Horn. |

The following proposition is well-known.

Proposition 1. Given a Horn CNFp and a clause, deciding whethep = ¢ is possi-
ble in polynomial timein fact, in linear time, cf[18]).

Horn theories have a well-known semantic characterizatiomodlelis a vector
v € {0,1}", whosei-th component is denoted hy. For B C {1,...,n}, we letz?
be the modeb such thatv; =1, if i € Bandv;, =0, ifi ¢ B, forie {1,...,n}.
The notions of satisfaction = ¢ of a formulay and consequencE = ¢, ¥ E ¢
etc. are as usual; the set of modelscdfesp., theoryy), is denoted bynod(y) (resp.,
mod(X)). In the example above, the vector= (0,1,0,1,0) is a model ofy, i.e.,

u = .
For modelsv, w, we denote by < w the usual componentwise ordering, i.e.,
v; <w; foralli =1,2,...,n,where0 < 1; v < w meansy # w andv < w. For

any set of modeld/, we denote bynax(M), (resp.,min(M)) the set of all maximal
(resp., minimal) models id/. We denote by A w componentwise AND of vectors
v,w € {0,1}" (i.e., their intersection), and bg,(S) the closure ofS C {0,1}"
under A . Then, a theonZ’ is Horn representable, ifiod(X) = Clx(mod(X)).
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Example 2.ConsiderM; = {(0101),(1001), (1000)} and M, = {(0101), (1001),
(1000), (0001), (0000)}. Then, forv = (0101), w = (1000), we havew,v € M,
while vAw = (0000) ¢ M;; hencell; is not the set of models of a Horn theory. On
the other hand?'ix (M2) = Ms, thusMs = mod(X2) for some Horn theornys.

As discussed by Kautet al. [34], a Horn theoryX' is semantically represented
by its characteristic models, wheree mod(X') is calledcharacteristic(or extreme
[14]), if v & Cla(mod(X) \ {v}). The set of all such models, tivbaracteristic set of
X, is denoted bychar(X). Note thatchar(X) is unique. E.g.{(0101) € char(Xs),
while (0000) ¢ char(X;); we havechar(X;) = M;. The following proposition is
compatible with Proposition 1

Proposition 2. Givenchar(X'), and a clause, deciding whethe® |= c is possible in
polynomial timg(in fact, in linear time, cf[34, 26]).

The model-based reasoning paradigm has been further investigated e.g. in [40, 42],
where also theories beyond Horn have been considered [42].

2.1 Abductive explanations
The notion of an abductive explanation can be formalized as follows.

Definition 1. Given a (Horn) theory, called the background theory, a CNKcalled
query), and a set of literalgl C Lit (calledabducible$, anexplanation ofy w.r.t. A is
a minimal set of literal§” over A such that

() YUE = x, and
(i) X' U E'is satisfiable.

If A= Lit, then we callE' simply anexplanation ofy.

The above definition generalizes thesumption-based explanatioois[58], which
emerge asA=P’ U P’ where P’ C P (i.e., A contains all literals over a subs&Y
of the letters) andy = ¢ for some atony. Furthermore, in some texts (e.g., [21])
explanations must be sets of positive literals, anid restricted to a special form; in
[21], x is requested to be a conjunction of atoms.

The following characterization of explanations is immediate from the definition.

Proposition 3. For any theoryX, any queryy, and anyE C A(C Lit), E is an expla-
nation fory w.r.t. A from X iff the following conditions hold: (i)’ U F is satisfiable,
(i) XUE E x,and (i) X U (E\ {¢}) [~ x, foreveryl € E.

Example 3.Reconsider the Horn CNE = (T1 VZ4) A (T4 VT3) A (T1 V 22) A (T4 V
Ts V x1) A (T2 V Ts V x3) from above. Suppose we want to explain= z» from
A = {z1,z4}. Then, we find thall = {z, } is an explanation. Indeed; U {z1} = x2,
andX U {z, } is satisfiable; moreovef; is minimal. On the other handy’ = {z1, T4}
satisfies (i) and (i) fory = x2, but is not minimal. ad

We note that there is a close connection between the explanations of a literal and
the prime clauses of a theory.



Proposition 4 (cf. [56, 32]).For any theoryX' and literal x, a set C A(C Lit) with
E#{x} is an explanation of w.r.t. 4, iff the clausec = \/,., £ V x is a prime clause
of X.

Thus, computing explanations for a literal is easily seen to be polynomial-time
equivalent to computing prime clauses of a certain form. We refer here to [51] for an
excellent survey of techniques for computing explanations via computing prime impli-
cates and related problems.

2.2 Dualization problem

Dualization of Boolean functions (i.e., given a formuylaefining a functiory, compute

a formulav for the dual functionf<) is a well-known computational problem. The
problem is trivial if» may be any formula, since we only need to interchangedA

in ¢ (and constants 0 and 1, if occurring). The problem is more difficuitshould be
of special form. In particular, i is a CNF and) should be a irredundant prime CNF
(to avoid redundancy); this problem is known agARIZATION [22]. For example,
if o = (x1V z3)(z2 V T3), then a suitable) would be (x2 V x3)(x1 V T3), since
(111 N $3) V (.%‘2 /\fg) = (1‘1 V 332)(332 V .%‘3)(32‘1 \ fg) SImp'IerS to it.

Clearly, vy may have size exponential in the size@gfand thus the issue is here
whether a polynomial total-time algorithms exists (rather than one polynomial in the
input size). While it is easy to see that the problem is not solvable in polynomial total
unlessP=NP, this result could neither be established for the important class of positive
(monotone) Boolean functions so far, nor is a polynomial total-time algorithm known
to date, cf. [23, 28, 37]. Note that for this subproblem, denoteNTONE DUALIZA -

TION, the problem looks simpler: all prime clauses of a monotone Boolean fungtion
are positive and’ has a unique prime CNF, which can be easily computed from any
given CNF (just remove all negative literals and non-minimal clauses). Thus, in this
case the problem boils down to convert a prime positive DNEonstructed fromp

into the equivalent prime (monotone) CNF.

An important note is that MNOTONE DUALIZATION is intimately related to its
decisional variant, MNOTONE DUAL, since MONOTONE DUALIZATION is solvable
in polynomial total-time iff MONOTONE DUAL is solvable in polynomial time cf. [2].
MoONOTONE DUAL consists of deciding whether a pair of CNiss v whethery is
the prime CNF for the dual of the monotone function represented (sgrictly speak-
ing, this is a promise problem [33], since valid input instances are not recognized in
polynomial time. For certain instances such as positivehis is ensured).

A landmark result on MNOTONE DUAL was [28], which presents an algorithm
solving the problem in time:°(°2™) . More recently, algorithms have been exhibited
[23, 37] which show that the complementary problem can be solved with limited non-
determinism in polynomial time, i.e, by a nondeterministic polynomial-time algorithm
that makes only a poly-logarithmic number of guesses in the size of the input. Although
it is still open whether MONOTONE DUAL is polynomially solvable, several relevant
tractable classes were found by various authors (see e.g. [8, 12,17, 20, 30,47,47] and
references therein).



Alot of research efforts have been spent ooNbTONEDUALIZATION and MONO-

TONE DUAL (see survey papers, e.g. [45, 53, 22]), since a number of problems turned
out to be polynomial-time equivalent to this problem; see e.g. [2, 19, 20] and the more
paper [22].Polynomial-time equivalencef computation problemgl and I1’ is here
understood in the sense that problémreduces tall’ and vices versa, wher# re-
duces toll’, if there a polynomial functiong, g s.t. for any inputl of 17, f(I) is an

input of I7’, and if O is the output forf (1), theng(O) is the output of, cf. [52]; more-
over,O is requested to have size polynomial in the size of the output fidnot, trivial
reductions may exist).

Of the many problems to which ®™OTONEDUALIZATION is polynomially equiv-
alent, we mention here computing the transversal hypergraph of a hypergraph (known
as TRANSVERSAL ENUMERATION (TRANS-ENUM)) [22]. A hypergraphH = (V, E)
is a collectionFE of subsetse C V of a finite setl/, where the elements of are
calledhyperedgesor simplyedge$. A transversabf H is a set C V that meets every
e € E, and isminimal if it contains no other transversal properly. Tiensversal hy-
pergraphof H is then the unique hypergragh(H) = (V, T) whereT are all minimal
transversals oH. ProblemTRANS-ENUM is then, given a hypergragh = (V, E), to
generate all the edges @¥(H); TRANS-HYPis deciding, giveri{ = (V, E') and a set
of minimal transversal¥’, whetherTr(H) = (V,T).

There is a simple correspondence betweemNATONEDUALIZATION andTRANS-
ENUM: For any positive CNFp on At representing a Boolean functigh the prime
CNF for the dual off consists of all clausessuch that: € Tr(At, ¢) (viewing ¢ as
set of clauses). E.g., if = (z1 V x2)xs, theny = (z1 V x3)(x2 V x3).

As for computational learning theory, &®NOTONE DUAL resp. MONOTONE Du-
ALIZATION are of relevance in the context of exact learning, cf. [2,31,47,48,17],
which we briefly review here.

Let us consider the exact learning of DNF (or CNF) formulas of monotone Boolean
functions f by membership oracles only, i.e., the problem of identifying a prime DNF
(or prime CNF) of an unknown monotone Boolean functjohy asking queries to an
oracle whethef (v)=1 holds for some selected modeldt is known [1] that monotone
DNFs (or CNFs) are not exact learnable with membership oracles alone in time polyno-
mial in the size of the target DNF (or CNF) formula, since information theoretic barriers
impose dCNF(f)| + |IDNF(f)| lower bound on the number of queries needed, where
|CNF(f)| and|DNF( )| denote the numbers of prime implicates and prime implicants
of f, respectively. This fact raises the following question:

— Can we identity both the prime DNF and CNF of an unknown monotone function
f by membership oracles alone in time polynomialGiNF (f)| + |[DNF(f)| ?

Since the prime DNF (resp., prime CNF) corresponds one-to-one to the set of all
minimal true models (resp., all maximal false models) pthe above question can be
restated in the following natural way [2,47]: Can we computelibendarybetween
true and false areas of an unknown monotone function in polynomial total-time ? There
should be a simple algorithm for the problem as follows, which uses a DERd a
CNF 1’ consisting of some prime implicants and prime implicateg ofespectively,
such that, = ¢ andy = &/, for any formulap representing’:



Step 1. Seth andh’ to be empty (i.e., falsity and truth).
Step 2. whileh # k' do
Take a counterexampleof h = h/;
if f(z)=1then
begin
Minimizet = A, _,z; to a prime implicant* of f;
h:=hVt*(i.e., addt* to h);
end
else/* f(x) =0*
begin
Minimize ¢ = \/,., _, z; to a prime implicate™ of f;
h :=h' Ac*(i.e., addc* to h');
end
Step 3. Outputh and?h’.

This algorithm need® (n(|CNF(f)| + |DNF(f)|)) many membership queries. If
h = K (i.e., the pair(h?, h) is a Yes instance of MNOTONE DUAL) can always
be decided in polynomial time, then the algorithm is polynomiakjrCNF(f), and
DNF(f). (The converse is also known [2], i.e., if the above exact learning problem is
solvable in polynomial total time, then ®NOTONE DUAL is polynomially solvable.)
Of course, other kinds of algorithms exist; for example, [31] derived an algorithm with
different behavior and query bounds.

Thus, for the class&% of monotone Boolean functions which enjoying that

(i) MoNoTONEDUAL is polynomially solvable and a counterexample is found in poly-
nomial time in case (which is possible under mild conditions, cf. [2]), and

(i) the family of prime DNFs (or CNFs) ikereditary i.e., if a function with the prime
DNF ¢ =V, t; isin C, then any function with the prime DN&s = \/,_¢ t;,
whereS C I,isinC,

the above is a simple polynomial time algorithm which uses polynomially many queries
within the optimal bound (assuming thBENF(f)| + |[DNF(f)| is at least of order

n). For many classes of monotone Boolean functions, we thus can get the learnability
results from the results of BINOTONE DUAL, e.g.,k-CNFs, k-clause CNFs, reaé-
CNFs, andi-degenerate CNFs [20, 23, 17].

In knowledge discovery, MNOTONE DUALIZATION and MONOTONE DUAL are
relevant in the context of several problems. For example, it is encountered in computing
maximal frequent and minimal infrequent sets [6], in dependency inference and key
computation from databases [49, 50, 19], which we will address in Sections 3 and 4.2
below, as well as in translating between models of a theory and formula representations
[36, 40]. Moreover, their natural generalizations have been studied to model various
interesting applications [4, 5, 7].

3 Explanations and Dualization

Deciding the existence of some explanation for a litgrat ¢ w.r.t. an assumption set
A from a HornX is NP-complete under formula representation (i8.is given by a



Horn CNF), for both positive and negativecf. [57, 24]; hence, generating some resp.
all explanations is intractable in very elementary cases (however, under restrictions such
asA = Lit for positive/, the problem is tractable [24]).

In the model-based setting, matters are different, and there is a close relationship
between abduction and monotone dualization. If we are givem(X) of a Horn the-
ory X' and an atony, computing an explanatiofi for ¢ from X’ amounts to computing
a minimal setF of letters such thati} at least one model of’ (and hence, a model in
char(X)) satisfiesEl andg, and that {;) each model o falsifying ¢ also falsifiesE;
this is because an atogrhas onlypositiveexplanations, i.e., it contains only positive
literals (see e.g. [42] for a proof). Viewing modelswas: 7, then i) means thaf is
a minimal transversal of the hypergraf M) whereV corresponds to the set of the
variables andV/ consists of alV — B such thate? € char(X) andz? = q.

This led Kautzet al.[34] to an algorithm for computing an explanatiéifor y = ¢
w.r.t. a set of atomgl C At which essentially works as follows:

1. Take amoded € char(X) such thaw |= q.

2. LetV:=AnBandM = {V\ B’ | 28 € char(X), q ¢ B'}, wherev = 7.

3. if § ¢ M, compute a minimal transversalof H = (V, M), and output; other-
wise, select anotherin Step 1 (if no other is left, terminate with no output).

In this way, some explanatioh for ¢ w.r.t. A can be computed in polynomial time,
since computing some minimal transversal of a hypergraph is clearly polynomial. Re-
call that under formula-based representation, this problem is NP-hard [57,58]. The
method above has been generalized to arbitrary theories represented by models us-
ing Bshouty’s Monotone Theory [10] and positive abduciblesas well as for other
settings, by Khardon and Roth [42] (cf. also Section 4.2).

Also all explanations ofy can be generated in the way above, by taking all mod-
elsv € char(X) and all minimal transversals ¢V, M). In fact, in Step v can be
restricted to the maximal vectorsdthar(X). Therefore, computing all explanations re-
duces to solving a number of transversal computation problems (which trivially amount
to monotone dualization problems) in polynomial time. As shown in [24], the latter can
be polynomially reduced to a single instance.

Conversely, monotone dualization can be easily reduced to explanation generation,
cf. [24]. This established the following result.

Theorem 1. Given char(X) of a Horn theoryX, a queryq, and A C Lit, comput-
ing the set of all explanations far from X' w.r.t. A is polynomial-time equivalent to
MONOTONEDUALIZATION .

A similar result holds for negative literal querigs= g as well. Also in this case,
a polynomial number of transversal computation problems can be created such that
each minimal transversal corresponds to some explanation. However, matters are more
complicated here since a quefynight also have non-positive explanations. This leads
to a case analysis and more involved construction of hypergraphs.

We remark that a connection between dualization and abduction from a Horn theory
represented byhar(X) is implicit in dependency inference from relational databases.
An important problem there is to infer, in database terminology, a prime cover of the



set It of all functional dependencies (FDEJ— A which hold on an instance of
a relational schem& = {A,,..., A,} where theA; are the attributes. A functional
dependencX — A, X C U, A € U, is a constraint which states that for every tugles
andt, occurring in the same relation instancet holds thatt,[A] = ¢3[A] whenever
t1[X] = t2[X], i.e., coincidence of; andt, on all attributes inX implies thatt; and
to also coincide oM. A prime coveris a minimal (underC) set of non-redundant FDs
X—A (i.e., X’—Ais violated for eachX’ C X)) which is logically equivalent td"'.

In our terms, a non-redundant PD— A corresponds to a prime claugfe; . BV A
of the CNF .+, where for any set of functional dependenci€syr is the CNF

oF = Nx_acr ( Vpex BV A), where the attributes ity are viewed as atoms and

F;t is the set of all FDs which hold on. Thus, by Proposition 4, the séf is an
explanation ofA from ¢,.. As shown in [49], so callednax setdor all attributesA

are polynomial-time computable from which in totality correspond to the charac-
teristic models of the (definite) Horn theosy, defined by, .+ [41]. Computing the
explanations forA is then reducible to an instance oRANS-ENUM [50], which es-
tablishes the result for generating all assumption-free explanations from definite Horn
theories. We refer to [41] for an elucidating discussion which reveals the close corre-
spondence between concepts and results in database theory on Armstrong relations and
in model-based reasoning, which can be exploited to derive results about space bounds
for representation and about particular abduction problems. The latter will be addressed
in Section 4.2.

Further investigations on computing prime implicates from model-based theory rep-
resentation appeared in [36] and in [40], which exhibited further problems equivalent
to MONOTONE DUALIZATION . In particular, Khardon has shown, inspired by results
in [49, 50, 19], that computing all prime implicates of a Horn thedryrepresented
by its characteristic models is, under Turing reducibility (which is more liberal than
the notion of reducibility we employ here in general), polynomial-time equivalent to
TRANS-ENUM. Note, however, that by Proposition 4, we are here concerned with
computing particular prime implicates rather than all.

4 Possible Generalizations

The results reported above deal with quenewhich are a single literal. As already
stated in the introduction, often queries will be more complex, however, and consist of
a conjunction of literals, of clauses [56], etc.

This raises the question about possible extensions of the above results for queries
of a more general form, and in particular whether we encounter other kinds of problem
instances which are equivalent toddOTONE DUALIZATION .

4.1 General formulas and CNFs

Let us first consider how complex finding abductive explanations can grow. It is known
[21] that deciding the existence of an explanation for literal quemy.r.t. a setA is
XP-complete (i.e., complete fo¥PNT), if the background theory is a set of arbitrary
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clauses (not necessarily Horn). For Hathwe get a similar result if the quenyis an
arbitrary formula.

Proposition 5. Given a Horn CNFp, a setA C Lit, and a queryy, deciding whether
x has some explanation w.r from ¢ is (i) XF-complete, ify is arbitrary (even if it is
a DNF), (i7) NP-complete, ify is a CNF, and {i) NP-complete, ifA = Lit.

Intuitively, an explanatiorF for x can be guessed and then, by exploiting Propo-
sition 3, be checked in polynomial time with an oracle for propositional consequence.
The X1’-hardness in casé)(can be shown by an easy reduction from deciding whether
a quantified Boolean formula (QBF) of forii = 3XVY o, whereX andY are dis-
joint sets of Boolean variables ands a DNF overX UY'. Indeed, just le> = @, and
A ={z,7 | z € X}. Then,x = a has an explanation w.r4 iff formula F is valid.

On the other hand, if is a CNF, then deciding consequerie) S |= x is polynomial
for every set of literalsS; hence, in cased) the problem has lower complexity and is
in fact inNP. As for case i), if A = Lit, then an explanation exists if U {x} has a
model, which can be decided NP. The hardness parts foii) and (i) are immediate
by a simple reduction from SAT (given a CNF, let =0, xy=/, andA=Lit).

We get a similar picture under model-based representation. Here, inferring a clause
cfrom char(X) is feasible in polynomial time, and hence also inferring a CNF. On the
other hand, inferring an arbitrary formula (in particular, a DNE)s intractable, since
to witnessY' [~ « we intuitively need to find proper models, . .., v; € char(X) such

that \,v; = a.

Proposition 6. Givenchar(X'), a setA C Lit, and a queryy, deciding whethex has
some explanation w.rd from X is (i) X¥-complete, ify is arbitrary (even if it is a
DNF), (z7) NP-complete, ify is a CNF, and {i7) NP-complete, ifA = Lit.

As for (ii7), we can guess a modelbf y and check whether is also a model of”
from char(X) in polynomial time (indeed, check whethee= A{w € char(X) | v <
w} holds). The hardness parts can be shown by slight adaptations of the constructions
for the formula based case, sindenr(X) for the empty theory is easily constructed (it
consists ofc4* and allzA™\#, i € {1,...,n}).

So, like in the formula-based case, also in the model-based case we loose the imme-
diate computational link of computing all explanations t©o NMOTONE DUALIZATION
if we generalize queries to CNFs and beyond. However, it appears that there are in-
teresting cases between a single literal and CNFs which are equivalednotMNE
DUALIZATION .

As for the formula-based representation, recall that generating all explanations is
polynomial total-time fory being a positive literal (thus, tractable and “easier” than
MONOTONE DUALIZATION ), while it is coNP-hard fory being a CNF (and in fact,

a negative literal); so, somewhere between the transition from tractable to intractable
might pass instances which are equivalent todMbTONE DUALIZATION .

Unfortunately, restricting to positive CNFs (this is the first idea) does not help, since
the problem remainsoNP-hard, even if all clauses have small size; this can be shown
by a straightforward reduction from the well-known EXACT HITTING SET problem
[25]. However, we encounter monotone dualizatio'ifs empty.
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Proposition 7. Givenasetd C Lit, and a positive CNFk, generating all explanations
of x w.rt A from X = () is polynomial-time equivalent to dualizing a positive CNF,
under both model-based and formula based representation.

This holds since, as easily seen, every explanatianust be positive, and more-
over, must be a minimal transversal of the clauseg.ifConversely, every minimal
transversall’ of x after removal of all positive literals that do not belongAdqviewed
as hypergraphs), is an explanation. Note that this result extends to those CNFs which
areunate i.e., convertible to a positive CNF by flipping the polarity of some variables.

4.2 Clauses and Terms

Let us see what happens if we move from general CNFs to the important subcases
of a single clause and a single term, respectively. As shown in [25], generating all
explanations remains under formula-based polynomial total-timg fming a positive
clause or a positive term, but is intractable as soon as we allow a negative literal. Hence,
we do not see an immediate connection to monotone dualization.

More promising is model-based representation, since for a single literal query, equiv-
alence to monotone dualization is known. It appears that we can extend this result to
clauses and terms of certain forms.

Clauses Let us first consider the clause case, which is important for Clause Manage-
ment Systems [56, 38, 39]. Here, the problem can be reduced to the special case of a
single literal query as follows. Given a clausdantroduce a fresh letter. If we would
add the formula: = g to X, then the explanations gfwould be, apart from the trivial
explanatiorg in case, just the explanations @fWe can rewrite: = g to a Horn CNF
= N,epe) (VD AN, en (e (@ V), so addingy maintainsX’ Horn and thus the re-
duction works in polynomial time under formula-based representation. (Note, however,
that we reduce this to a case which is intractable in general.)

Under model-based representation, we need to consthue{ X U {a}), however,
and it is not evident that this is always feasible in polynomial time. We can establish the
following relationship, though.

Let P(¢) = {q1,.-.,qr} @andN(c) = {qx+1,- - -, qm}; thus,« is logically equiva-
lenttog =G, A~ G A Qi1 A= A G

Claim. For X' = X U {«a}, we have

char(X") C {v@(0) | v € char(X)} U
{ (mA-- Aop)Q(1) v € char(X), v E G ANjpr a5, for1 <i <k} U
(vo A1 A--- Avg)Q(1) | v; € char(X), for0 <i <k,
{ UO':/\Z1QZ'7Ui)ZQi/\/\;'n_kJr1qj>for1<7;<k}.

where “@" denotes concatenation ant assumed to be the last in the variable order-
ing.
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Indeed, each model df, extended t@, is a model of2’ if we setq to 0; all models
of X’ of this form can be generated by intersecting characteristic modélsafended
in this way. On the other hand, any modebf X’ in which ¢ is 1 must have also
Qk+1,---,qm Setto 1 andy, ..., g, set to 0. We can generate suelby expanding
the intersection of some characteristic modsls . ., v; of X (wherel < |char(X)])
in which ¢x1,...,q, are set to 1, and where each @f ¢,..., g is made 0 by
intersection with at least one of these vectors. By associativity and commutativity of
intersection, we can generatethen by expanding the intersection of vectors of the
form given in the above equation.

From the setRH .S on the right hand side;har(X’) can be easily computed by
eliminating those vectors which are generated by the intersection of other vectors
(i.e., such that = A{w € RHS | v < w}).

In general, RH S will have exponential size; however, computiRg{ .S is polyno-
mial if k£ is bounded by a constant; clearly, computirigir (X’) from RH S is feasible
in time polynomial in the size oRH S, and hence in polynomial time in the size of
char(X). Thus, the reduction from clause explanation to literal explanation is com-
putable in polynomial time. We thus obtain the following result.

Theorem 2. Given char(X) C {0,1}" of a Horn theoryX, a clause query;, and
A C Lit, computing all explanations ferfrom X' w.r.t. A is polynomial-time equivalent
to MONOTONEDUALIZATION,, if |P(c)| < k for some constarik.

Note that the constraint oR(c) is necessary, in the light of the following result.

Theorem 3. Given char(X) C {0,1}" of a Horn theoryX, a positive clause query
¢, and some explanations,, . .., E; for ¢ from X', deciding whether there exists some
further explanation isNP-complete.

The NP-hardness can be shown by a reduction from the well-known 3SAT problem.
By standard arguments, we obtain from this the following result for computing mul-
tiple explanations.

Corollary 1. Givenchar(X) C {0,1}™ of a Horn theoryX, a setA C Lit and a
clausec, computing a given number resp. all explanationsdav.r.t. A from X' is not
possible in polynomial total-time unleBs=INP. The hardness holds even fdr= Lit,
i.e., for assumption-free explanations.

Terms Now let us finally turn to queries which are given by terms, i.e., conjunctions
of literals. With a similar technique as for clause queries, explanations for & tesm

be reduced to explanations for a positive literal query in some cases. Indeed, introduce
a fresh atony and considet = g; this formula is equivalent to a Horn clauseif

|N(t)] < 1 (in particular, ift is positive). Supposeé = G, A g1 A -+ A ¢, @nd let

Y =X U{a} (Wherea =gV g V---Vg,, V q). Thenwe have

char(X") C {v@(0) | v € char(X)} U
{vQ(1) |v e char(X), vE @V V- VG, U
{(v AV)Q(1) | v,0" € char(X), vE GV V@,V EGQAG A Ngm},
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from which char(X") is easily computed. The explanations fdrom X then corre-
spond to the explanations fgifrom X’ modulo the trivial explanatioq in case.

This implies polynomial-time equivalence of generating all explanations for a term
t to MONOTONEDUALIZATION if ¢ contains at most one negative literal. In particular,
this holds for the case of positive terms

Note that the latter case is intimately related to another important problem in knowl-
edge discovery, namely inferring the keys of a relatigie., the minimal (undef)
sets of attributedd C U = {A;, 4,,..., A,,} whose values uniquely identify the rest
of any tuple in the relation. The keys for a relation instanoser attributeg/ amount
to the assumption-free explanationstofrom the Horn CNFy .+ defined as above
in Section 2.2. Thus, abduction procedures can be used for generating keys. Note that
char(F;T) is computable in polynomial time from (cf. [41]), and hence generating
all keys polynomially reduces to ®/NOTONE DUALIZATION ; the converse has also
been shown [19] [19]. Hence, generating all keys is polynomially equivalentdndA
TONE DUALIZATION and also to generating all explanations for a positive term from
char(X).

A similar reduction can be used to compute all keys of a generic relation scheme
(U, F) of attributesU and functional dependencidg which amount to the explana-
tions for the termt = A; A, - -- A, from the CNFgr. Note that Khardoret al. [41]
investigate computing keys for givefi and more general Boolean constraigitdy
a simple reduction to computing all nontrivial explanatidni®f a fresh lettery (i.e.,

E # {q}; usey A (/\A%eUE- \% q)), which can thus be done in polynomial total-time

as follows from results in [24]; for FDs (i.e; = ¢ ) this is a classic result in database
theory [46]. Furthermore, [41] also shows how to compute an abductive explanation
using an oracle for key computation.

We turn back to abductive explanations for a ternand consider what happens
if we have multiple negative literals in Without constraints orV(¢), we face the
intractability, since deciding the existence of a nontrivial explanatiort fsralready
difficult, where an explanatio® for ¢ is nontrivial if E # P(t) U{g | ¢ € N(¢)}.

Theorem 4. Given char(X) C {0,1}™ of a Horn theoryX’ and a term¢, deciding
whether ¢) there exists a nontrivial assumption-free explanationtfinom X' is NP-
complete; {i) there exists an explanation ferw.r.t. a given setd C Lit from X' is
NP-complete. In both cases, thi>-hardness holds even for negative terms

The hardness parts of this theorem can be shown by a reduction from 3SAT.

Corollary 2. Givenchar(X) C {0,1}" of aHorn theoryX, asetA C Lit and aterm
t, computing a given number resp. all explanationstfarr.t. A from X' is not possible
in polynomial total-time, unlesB=NP. The hardness holds even fdr= Lit, i.e., for

assumption-free explanations.

While the above reduction technique works for tetmsth a single negative literal,
it is not immediate how to extend it to multiple negative literals such that we can derive
polynomial equivalence of generating all explanations toNdTONE DUALIZATION
if | N (¢)| is bounded by a constakht However, this can be shown by a suitable extension
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of the method presented in [24], transforming the problem into a polynomial number
of instances of MVNOTONE DUALIZATION, which can be polynomially reduced to a
single instance [24].

Proposition 8. For any Horn theoryX andE = {1, ..., Tk, Tk+t1, - - - s Tm } (C Lit),
char(XUE) is computable fronehar(X) by char (X UE) = char(M,UM,), where

My ={vi A ANvg | v; € char(X),v; E T A /\;n:kJrl xj forl <i <k},
m
mj}v

andchar(S) = {v € S [v ¢ Clx(S\ {v})} for everyS C {0,1}". This can be done
in polynomial time ifc = | E N At| is bounded by some constant.

My ={vAvg|veE My,vg € char(X), vy |:/\ )
j=

For any modeb and anyV' C At, let v[V] denote the projection of on V, and
for any theoryX and anyV C At, X[V] denotes the projection of on V, i.e,,
mod(X[V]) = {v[V] |V € mod(X)}.

Proposition 9. For any Horn theory: and anyV' C At, char(X[V]) can be computed
from char(X) in polynomial time byhar(X[V]) = char(char(X)[V]).

For any modeb and any set of model&/, let max, (1) denote the set of all the
models inM that is maximal with respect tg,,. Here, for modelsy andw, we write
w <, uwif w; < u;if v; =0, andw; > v, if v; = 1.

Proposition 10. For any Horn theoryX’ and any moded, max, (X') can be computed
from char(X) by max,({w € Mg | S C {x; | v; = 1} }), whereMy = char(X) and
for S ={x1,..., 2%},

Mg ={vi A+ ANvg | v; € char(X),v; ET; forl <i<k}.
This can be done in polynomial timel{fz; | v; = 1}| is bounded by some constant.

Theorem 5. Givenchar(X) C {0,1}™ of a Horn theoryX’, a term queryt, and A C
Lit, computing all explanations farfrom X w.r.t. A is polynomial-time equivalent to
MONOTONEDUALIZATION,, if [N (t)| < k for some constarit.

Proof. (Sketch) We consider the following algorithm.

Algorithm TERM-EXPLANATIONS
Input: char(X) C {0,1}™ of a Horn theoryX, a term¢, andA C Lit.
Output: All explanations fort from X w.r.t. A.

Stepl.LetX = YU P(¢t) U{q | ¢ € N(t)}. Computechar(X’) from char(X).

Step 2. Foreache; € N(t), letX,, = YU{z;}, andforeach; € P(¢),letXz, = XU
{z;}. Computechar(X,,) from char(X) for x; € N(t), and computehar(Xsz,)
from char(X) for z; € P(t).

Step 3. For eachB = B_ U B,, whereB_ C AN At with |[B_| < |N(t)| and
B.=(ANnAt)\{¢|geB_},letC =B, U{q| g€ B_}.
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(3-1) Computechar(X'[C]) from char(X").
(3-2) Let v € {0,1}“ be the model withw; = 1if x; € B_, andv; = 0 if
x; € By. Computemax, (X'[C]) from char(X'[C]).
(8-3) For eachw € max, (X'[C)), letC,, w={x; | vi7w;} and letv*=v[C, ).
(3-3-1) Computemax,- (X, [Cy »]) andmax,- (Xz, [Cy ) from char(X;,)
andchar(Xsz, ), respectively. Let
Myw= |J max: (2., [Con)U | max:(Zz[Coul)
z; EN(t) z; €EP(t)

(3-3-2) Dualize the CNFp, ,, = /\uEJ\L, _ cu, Where

iu; =v; =0 U =v;=1

Each prime clause of (piw corresponds to an explanatidh= P(c) U
{Z; | z; € N(c)}, which is output. Note thap, ., iS unate i.e., convert-
ible to a positive CNF by flipping the polarity of some variables.

Informally, the algorithm works as follows. The theoly is used for generating
candidate sets of variabléson which explanations can be formed; this corresponds to
condition ¢) of an explanation, which combined with condition)@mounts to consis-
tency of ¥ U E U {t}. These sets of variabl&s are made concrete in Step 3 i3
where the easy fact is taken into account that any explanation of atteam contain
at most|N(¢)| negative literals. The projection ehar(X’) to the relevant variables
C, computed in Step 3-1, serves then as the basis for a set of variahlgs which
is a largest subset @f on which some vector iiX’[C] is compatible with the selected
literals B; any explanation must be formed on variables included in s6ing. Here,
the ordering of vectors undet,, is relevant, which respects negative literals. The ex-
planations ovet’, ,, are then found by excluding every countermodet,afe., all the
models ofX,,, z; € N(¢) resp.Xz,, x; € P(¢), with a smallest set of literals. This
amounts to computing minimal transversals (where only maximal models yhder
need to be considered), or equivalently, to dualization of the given €N

More formally, it can be shown that the algorithm above computes all explanations.
Moreover, from Propositions 8, 9, and 10, we obtain that computing all explanations
reduces in polynomial time to (parallel) dualization of positive CNFsNift)| < k,
which can be polynomially reduced to dualizing a single positive CNF [24]. Since as
already known, MONOTONE DUALIZATION reduces in polynomial-time to computing
all explanations of a positive literal, the result follows. O

We remark that algorithm HRM EXPLANATIONS is closely related to results by
Khardon and Roth [42] about computing some abductive explanation for a query
from a (not necessarily Horn) theory represented by its characteristic models, which
are defined using Monotone Theory [10]. In fact, Khardon and Roth established that
computing some abductive explanation for a Horn CNF quewr.t. a setd contain-
ing at mostk negative literals from a theory is feasible in polynomial time, provided
that X is represented by an appropriate type of characteristic models (for Hottme
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Queryx | generall CNF| literal clause term
Horn theoryX | DNF pos neg| pos Horn generalpos neg general
Horn CNF IIF* | coNP [coNP* coNP*| coNP* coNFP° coNF® |coNP* coNP*  coNP®
char(X) nr? | coNP| DuaL nPTT:¢ DUAL nPTT° |DuAL coNP¢  coNP®

“ polynomial total-time for assumption-free explanatioAs= Lit).

® DuAL for k-positive clauses resg-negative termsk bounded by a constant.

¢ nPTT for assumption-free explanation$ £ Lit).

4 ¢coNP (resp. nPTT) for assumption-free explanatiods= Lit) and generak (resp. DNFy).

Table 1. Complexity of computing all abductive explanations for a query from a Horn theory

characteristic modelghary11(X) with respect to(k + 1)-quasi Horn functions will

do, which are those functions with a CNFsuch that P(c)| < k + 1 for everyc € ¢).
Proposition 10 implies thathar.1(X) can be computed in polynomial time from
char(X). Hence, by a detour through characteristic models conversion, some explana-
tion for a Horn CNF w.r.tA as above can be computed from a Hormepresented by
char(X) in polynomial time using the method of [42]. This can be extended to com-
puting all explanations fog, and exploiting the nature of explanations for terms to an
algorithm similar to ERM EXPLANATIONS.

Furthermore, the results of [42] provides a basis for obtaining further classes of
abduction instance&’, A, x polynomially equivalent to MNOTONE DUALIZATION
whereX is not necessarily Horn. However, this is not easy to accomplish, since roughly
non-Horn theories lack in general the useful property that every prime implicate can
be made monotone by flipping the polarity of some variables, where the admissible
flipping sets induce a class of theories in Monotone Theory. Explanations corresponding
to such prime implicates might not be covered by a simple generalization of the above
methods.

5 Conclusion

In this paper, we have considered the connection between abduction and the well-
known dualization problems, where we have reviewed some results from recent work
and added some new; a summary picture is given in Table 1.

In this table, “nPTT” stands for “not polynomial total-time unleéBs-NP,” and
“coNP” resp. “II, " stands for for deciding whether the output is empty (i.e., no ex-
planation exists) isoNP-complete respllZ’-complete (which trivially implies nPTT);
DuAL denotes polynomial-time equivalence taoMOTONE DUALIZATION . In order
to elucidate the role of abducibles, the table highlights also results for assumption-free
explanations 4 = Lit) when they deviate from an arbitrary séof abducibles.

As can be seen from the table, there are several important classes of instances which
are equivalentto MNOTONEDUALIZATION . In particular, this holds for generating all
explanations for a clause query (resp., term quegryf) x contains at mosk positive
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(resp., negative) literals for constaht It remains to be explored how these results,
via the applications of abduction, lead to the improvement of problems that appear in
applications. In particular, the connections to problems in knowledge discovery remain
to be explored. Furthermore, an implementation of the algorithms and experiments are
left for further work.

We close by pointing out that besidesOMOTONEDUALIZATION , there are related
problems whose precise complexity status in the theor){Bfcompleteness is not
known to date. A particular interesting one is the dependency inference problem which
we mentioned above, i.e., compute a prime cover of thé'sedf all functional depen-
dencies (FDs)X — A which hold on an instance of a relational schema [49] (recall
that a prime cover is a minimal (undey) set of non-redundant FDs which is logically
equivalent toF"). There are other problems which are polynomial-time equivalent to
this problem [40] under the more liberal notion of Turing-reduction used there; for ex-
ample, one of these problems is computing the set of all characteristic models of a Horn
theory X’ from a given Horn CNFkp representing it.

Dependency inference containsOMOTONE DUALIZATION as a special case (cf.
[20]), and is thus at least as hard, but to our knowledge there is no strong evidence that
it is indeed harder, and in particular, it is yet unknown whether a polynomial total-time
algorithm for this problem implie®=NP. It would be interesting to see progress on
the status of this problem, as well as possible connections to abduction.
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