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Abstract. Computing abductive explanations is an important problem, which
has been studied extensively in Artificial Intelligence (AI) and related disciplines.
While computing some abductive explanation for a literalχ with respect to a set
of abduciblesA from a Horn propositional theoryΣ is intractable under the tra-
ditional representation ofΣ by a set of Horn clauses, the problem is polynomial
under model-based theory representation, whereΣ is represented by its charac-
teristic models. Furthermore, computing all the (possibly exponentially) many
explanations is polynomial-time equivalent to the problem of dualizing a posi-
tive CNF, which is a well-known problem whose precise complexity in terms of
the theory ofNP-completeness is not known yet. In this paper, we first review
the monotone dualization problem and its connection to computing all abductive
explanations for a query literal and some related problems in knowledge discov-
ery. We then investigate possible generalizations of this connection to abductive
queries beyond literals. Among other results, we find that the equivalence for
generating all explanations for a clause query (resp., term query)χ to the mono-
tone dualization problem holds ifχ contains at mostk positive (resp., negative)
literals for constantk, while the problem is not solvable in polynomial total-time,
i.e., in time polynomial in the combined size of the input and the output, unless
P=NP for general clause resp. term queries. Our results shed new light on the
computational nature of abduction and Horn theories in particular, and might be
interesting also for related problems, which remains to be explored.

Keywords: abduction, monotone dualization, hypergraph transversals, Horn functions,
model-based reasoning, polynomial total-time computation, NP-hardness.

1 Introduction

Abduction is a fundamental mode of reasoning, which was extensively studied by C.S.
Peirce [54]. It has taken on increasing importance in Artificial Intelligence (AI) and
related disciplines, where it has been recognized as an important principle of common-
sense reasoning (see e.g. [9]). Abduction has applications in many areas of AI and
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Computer Science including diagnosis, database updates, planning, natural language
understanding, learning etc. (see e.g. references in [21]), where it is primarily used for
generating explanations. Specialized workshops have been held un the recent years, in
which the nature and interrelation with other modes of reasoning, in particular induction
and deduction, have been investigated.

In a logic-based setting, abduction can be seen as the task to find, given a set of
formulasΣ (the background theory), a formulaχ (the query), and a set of formulas
A (the abduciblesor hypotheses), a minimal subsetE of A such thatΣ plus E is
satisfiable and logically entailsχ (i.e., anexplanation). A frequent scenario is whereΣ
is a propositional Horn theory,χ is a single literal or a conjunction of literals, andA
contains literals. For use in practice, the computation of abductive explanations in this
setting is an important problem, for which well-known early systems such as Theorist
[55] or ATMS solvers [13, 56] have been devised. Since then, there has been a growing
literature on this subject.

Computing some explanation for a query literalχ from a Horn theoryΣ w.r.t. as-
sumptionsA is a well-knownNP-hard problem [57], even ifχ andA are positive.
Much effort has been spent on studying various input restrictions, cf. [29, 11, 27, 16, 15,
21, 57–59], in order to single out tractable cases of abduction. For example, the case
whereA comprises all literals is tractable; such explanations areassumption-free ex-
planations.

It turned out that abduction is tractable in model-based reasoning, which has been
proposed as an alternative form of representing and accessing a logical knowledge
base, cf. [14, 34–36, 42, 43]. Model-based reasoning can be seen as an approach towards
Levesque’s notion of “vivid” reasoning [44], which asks for a more straight represen-
tation of the background theoryΣ from which common-sense reasoning is easier and
more suitable than from the traditional formula-based representation. In model-based
reasoning,Σ is represented by a subsetS of its models, which are commonly called
characteristic models, rather than by a set of formulas. Given a suitable queryχ, the test
forΣ |= χ becomes then as easy as to check whetherχ is true in all models ofS, which
can be decided efficiently. We here mention that formula-based and the model-based ap-
proach are orthogonal, in the sense that while a theory may have small representation in
one formalism, it has an exponentially larger representation in the other. The intertrans-
latability of the two approaches, in particular for Horn theories, has been addressed in
[34–36, 40, 42]. Several techniques for efficient model-based representation of various
fragments of propositional logic have been devised, cf. [35, 42, 43].

As shown by Kautzet al., an explanation for a positive literalχ = q w.r.t. assump-
tionsA from a Horn theoryΣ, represented by its set of characteristic models,char(Σ),
can be computed in polynomial time [34, 35, 42]; this results extends to negative literal
queriesχ = q as well, and has been generalized by Khardon and Roth [42] to other
fragments of propositional logic. Hence, model-based representation is attractive from
this view point of finding efficiently some explanation.

While computingsomeexplanation of a queryχ has been studied extensively in the
literature, computing multiple or evenall explanations forχ has received less attention.
However, this problem is important, since often one would like to select one out of
a set of alternative explanations according to a preference or plausibility relation; this
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relation may be based on subjective intuition and thus difficult to formalize. As easily
seen, exponentially many explanations may exist for a query, and thus computing all
explanations inevitably requires exponential time in general, even in propositional logic.
However, it is of interest whether the computation is possible inpolynomial total-time
(or output-polynomial time), i.e., in time polynomial in the combined size of the input
and the output. Furthermore, if exponential space is prohibitive, it is of interest to know
whether a few explanations (e.g., polynomially many) can be generated in polynomial
time, as studied by Selman and Levesque [58].

In general, computing all explanations for a literalχ (positive as well as negative)
w.r.t. assumptionsA from a Horn theoryΣ is under formula-based representation not
possible in polynomial total-time unlessP=NP; this can be shown by standard argu-
ments appealing to theNP-hardness of deciding the existence of some explanation. For
generating all assumption-free explanations for a positive literal, a resolution-style pro-
cedure has been presented in [24] which works in polynomial total-time, while for a
negative literal no polynomial total-time algorithm exists unlessP=NP [25].

However, under model-based representation, such results are not known. It turned
out that generating all explanation for a literal is polynomial-time equivalent to the prob-
lem of dualizing a monotone CNF expression (cf. [2, 20, 28]), as shown in [24]. Here,
polynomial-time equivalence means mutual polynomial-time transformability between
deterministic functions, i.e.,A reduces toB, if there are polynomial-time functionsf, g
such that for any inputI of A, f(I) is an input ofB, and ifO is the output forf(I),
theng(O) is the output ofI, cf. [52]; moreover,O is requested to have size polynomial
in the size of the output forI (otherwise, trivial reductions may exist).

This result, for definite Horn theories and positive literals, is implicit also in earlier
work on dependency inference [49, 50], and is closely related to results in [40].

The monotone dualization problem is an interesting open problem in the theory of
NP-completeness (cf. [45, 53]), which has a number of applications in different areas
of Computer Science, [2, 19], including logic and AI [22]; the problem is reviewed in
Section 2.2 where also briefly related problems in knowledge discovery are mentioned.

In the rest of this paper, we first review the result on equivalence between monotone
dualization and generating all explanations for a literal under model-based theory repre-
sentation. We then consider possible generalizations of this result for queriesχ beyond
literals, where we consider DNF, CNF and important special cases such as a clause
and a term (i.e., a conjunction of literals). Note that the explanations for single clause
queries correspond to the minimal support clauses for a clause in Clause Management
Systems [56, 38, 39]. Furthermore, we shall consider on the fly also some of these cases
under formula-based theory representation. Our aim will be to elucidate the frontier of
monotone dualization equivalent versus intractable instances, i.e., not solvable in poly-
nomial total-time unlessP=NP, of the problem. It turns out that indeed the results in
[24] generalize to clause and term queries under certain restrictions. In particular, the
equivalence for generating all explanations for a clause query (resp., term query)χ to
the monotone dualization holds ifχ contains at mostk positive (resp., negative) literals
for constantk, while the problem is not solvable in polynomial total-time unlessP=NP
for general clause (resp., term) queries.
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Our results shed new light on the computational nature of abduction and Horn the-
ories in particular, and might be interesting also for related problems, which remains to
be explored.

2 Notation and Concepts

We assume a propositional (Boolean) setting with atomsx1, x2, . . . , xn from a setAt,
where eachxi takes either value1 (true) or0 (false). Negated atoms are denoted byxi,
and the opposite of a literal` by `. Furthermore, we useA = {` | ` ∈ A} for any set of
literalsA and setLit = At ∪At. A theoryΣ is any finite set of formulas.

A clause is a disjunctionc =
∨
p∈P (c) p ∨

∨
p∈N(c) p of literals, whereP (c) and

N(c) are respectively the sets of atoms occurring positively and negatively inc and
P (c)∩N(c) = ∅. Dually, a term is a conjunctiont=

∧
p∈P (t) p∧

∧
p∈N(t) p of literals,

whereP (t) andN(t) are similarly defined. A conjunctive normal form (CNF) is a
conjunction of clauses, and a disjunctive normal form (DNF) is a disjunction of terms.
As common, we also view clausesc and termst as the sets of literals̀ they contain,
and similarly CNFsϕ and DNFsψ as sets of clauses and terms, respectively, and write
` ∈ c, c ∈ ϕ etc.

A clausec is primew.r.t. theoryΣ, if Σ |= c butΣ 6|= c′ for everyc′ ⊂ c. A CNFϕ
is prime, if eachc ∈ ϕ is prime, and irredundant, ifϕ \ {c} 6≡ ϕ for everyc ∈ ϕ. Prime
terms and irredundant prime DNFs are defined analogously.

A clausec is Horn, if |P (c)| ≤ 1 andnegative(resp.,positive), if |P (c)| = 0 (resp.,
|N(c)| = 0). A CNF isHorn (resp.,negative, positive), if it contains only Horn clauses
(resp., negative, positive clauses). A theoryΣ is Horn, if it is a set of Horn clauses. As
usual, we identifyΣ with ϕ =

∧
c∈Σ c.

Example 1.The CNFϕ = (x1∨x4)∧(x4∨x3)∧(x1∨x2)∧(x4∨x5∨x1)∧(x2∨x5∨x3)
overAt = {x1, x2, . . . , x5} is Horn. ut

The following proposition is well-known.

Proposition 1. Given a Horn CNFϕ and a clausec, deciding whetherϕ |= c is possi-
ble in polynomial time(in fact, in linear time, cf.[18]).

Horn theories have a well-known semantic characterization. Amodel is a vector
v ∈ {0, 1}n, whosei-th component is denoted byvi. ForB ⊆ {1, . . . , n}, we letxB

be the modelv such thatvi = 1, if i ∈ B andvi = 0, if i /∈ B, for i ∈ {1, . . . , n}.
The notions of satisfactionv |= ϕ of a formulaϕ and consequenceΣ |= ϕ, ψ |= ϕ
etc. are as usual; the set of models ofϕ (resp., theoryΣ), is denoted bymod(ϕ) (resp.,
mod(Σ)). In the example above, the vectoru = (0, 1, 0, 1, 0) is a model ofϕ, i.e.,
u |= ϕ.

For modelsv, w, we denote byv ≤ w the usual componentwise ordering, i.e.,
vi ≤ wi for all i = 1, 2, . . . , n, where0 ≤ 1; v < w meansv 6= w andv ≤ w. For
any set of modelsM , we denote bymax(M), (resp.,min(M)) the set of all maximal
(resp., minimal) models inM . We denote byv

∧
w componentwise AND of vectors

v, w ∈ {0, 1}n (i.e., their intersection), and byCl∧(S) the closure ofS ⊆ {0, 1}n
under

∧
. Then, a theoryΣ is Horn representable, iffmod(Σ) = Cl∧(mod(Σ)).
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Example 2.ConsiderM1 = {(0101), (1001), (1000)} andM2 = {(0101), (1001),
(1000), (0001), (0000)}. Then, forv = (0101), w = (1000), we havew, v ∈ M1,
while v

∧
w = (0000) /∈ M1; henceM1 is not the set of models of a Horn theory. On

the other hand,Cl∧(M2) = M2, thusM2 = mod(Σ2) for some Horn theoryΣ2.

As discussed by Kautzet al. [34], a Horn theoryΣ is semantically represented
by its characteristic models, wherev ∈ mod(Σ) is calledcharacteristic(or extreme
[14]), if v 6∈ Cl∧(mod(Σ) \ {v}). The set of all such models, thecharacteristic set of
Σ, is denoted bychar(Σ). Note thatchar(Σ) is unique. E.g.,(0101) ∈ char(Σ2),
while (0000) /∈ char(Σ2); we havechar(Σ2) = M1. The following proposition is
compatible with Proposition 1

Proposition 2. Givenchar(Σ), and a clausec, deciding whetherΣ |= c is possible in
polynomial time(in fact, in linear time, cf.[34, 26]).

The model-based reasoning paradigm has been further investigated e.g. in [40, 42],
where also theories beyond Horn have been considered [42].

2.1 Abductive explanations

The notion of an abductive explanation can be formalized as follows.

Definition 1. Given a (Horn) theoryΣ, called the background theory, a CNFχ (called
query), and a set of literalsA ⊆ Lit (calledabducibles), anexplanation ofχ w.r.t.A is
a minimal set of literalsE overA such that

(i) Σ ∪ E |= χ, and
(ii) Σ ∪ E is satisfiable.

If A = Lit, then we callE simply anexplanation ofχ.

The above definition generalizes theassumption-based explanationsof [58], which
emerge asA=P ′ ∪ P ′ whereP ′ ⊆ P (i.e.,A contains all literals over a subsetP ′

of the letters) andχ = q for some atomq. Furthermore, in some texts (e.g., [21])
explanations must be sets of positive literals, andχ is restricted to a special form; in
[21], χ is requested to be a conjunction of atoms.

The following characterization of explanations is immediate from the definition.

Proposition 3. For any theoryΣ, any queryχ, and anyE ⊆ A(⊆ Lit),E is an expla-
nation forχ w.r.t.A fromΣ iff the following conditions hold: (i)Σ ∪ E is satisfiable,
(ii) Σ ∪ E |= χ, and (iii)Σ ∪ (E \ {`}) 6|= χ, for every` ∈ E.

Example 3.Reconsider the Horn CNFϕ = (x1 ∨ x4)∧ (x4 ∨ x3)∧ (x1 ∨ x2)∧ (x4 ∨
x5 ∨ x1) ∧ (x2 ∨ x5 ∨ x3) from above. Suppose we want to explainχ = x2 from
A = {x1, x4}. Then, we find thatE = {x1} is an explanation. Indeed,Σ∪{x1} |= x2,
andΣ ∪{x1} is satisfiable; moreover,E is minimal. On the other hand,E′ = {x1, x4}
satisfies (i) and (ii) forχ = x2, but is not minimal. ut

We note that there is a close connection between the explanations of a literal and
the prime clauses of a theory.
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Proposition 4 (cf. [56, 32]).For any theoryΣ and literalχ, a setE⊆A(⊆Lit) with
E 6={χ} is an explanation ofχ w.r.t.A, iff the clausec =

∨
`∈E ` ∨ χ is a prime clause

ofΣ.

Thus, computing explanations for a literal is easily seen to be polynomial-time
equivalent to computing prime clauses of a certain form. We refer here to [51] for an
excellent survey of techniques for computing explanations via computing prime impli-
cates and related problems.

2.2 Dualization problem

Dualization of Boolean functions (i.e., given a formulaϕ defining a functionf , compute
a formulaψ for the dual functionfd) is a well-known computational problem. The
problem is trivial ifψ may be any formula, since we only need to interchange∨ and∧
in ϕ (and constants 0 and 1, if occurring). The problem is more difficult ifψ should be
of special form. In particular, ifϕ is a CNF andψ should be a irredundant prime CNF
(to avoid redundancy); this problem is known as DUALIZATION [22]. For example,
if ϕ = (x1 ∨ x3)(x2 ∨ x3), then a suitableψ would be(x2 ∨ x3)(x1 ∨ x3), since
(x1 ∧ x3) ∨ (x2 ∧ x3) ≡ (x1 ∨ x2)(x2 ∨ x3)(x1 ∨ x3) simplifies to it.

Clearly,ψ may have size exponential in the size ofϕ, and thus the issue is here
whether a polynomial total-time algorithms exists (rather than one polynomial in the
input size). While it is easy to see that the problem is not solvable in polynomial total
unlessP=NP, this result could neither be established for the important class of positive
(monotone) Boolean functions so far, nor is a polynomial total-time algorithm known
to date, cf. [23, 28, 37]. Note that for this subproblem, denoted MONOTONEDUALIZA -
TION, the problem looks simpler: all prime clauses of a monotone Boolean functionf
are positive andf has a unique prime CNF, which can be easily computed from any
given CNF (just remove all negative literals and non-minimal clauses). Thus, in this
case the problem boils down to convert a prime positive DNFϕ′ constructed fromϕ
into the equivalent prime (monotone) CNF.

An important note is that MONOTONE DUALIZATION is intimately related to its
decisional variant, MONOTONE DUAL , since MONOTONE DUALIZATION is solvable
in polynomial total-time iff MONOTONE DUAL is solvable in polynomial time cf. [2].
MONOTONE DUAL consists of deciding whether a pair of CNFsϕ, ψ whetherψ is
the prime CNF for the dual of the monotone function represented byϕ (strictly speak-
ing, this is a promise problem [33], since valid input instances are not recognized in
polynomial time. For certain instances such as positiveϕ, this is ensured).

A landmark result on MONOTONE DUAL was [28], which presents an algorithm
solving the problem in timeno(log n). More recently, algorithms have been exhibited
[23, 37] which show that the complementary problem can be solved with limited non-
determinism in polynomial time, i.e, by a nondeterministic polynomial-time algorithm
that makes only a poly-logarithmic number of guesses in the size of the input. Although
it is still open whether MONOTONE DUAL is polynomially solvable, several relevant
tractable classes were found by various authors (see e.g. [8, 12, 17, 20, 30, 47, 47] and
references therein).
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A lot of research efforts have been spent on MONOTONEDUALIZATION and MONO-
TONE DUAL (see survey papers, e.g. [45, 53, 22]), since a number of problems turned
out to be polynomial-time equivalent to this problem; see e.g. [2, 19, 20] and the more
paper [22].Polynomial-time equivalenceof computation problemsΠ andΠ ′ is here
understood in the sense that problemΠ reduces toΠ ′ and vices versa, whereΠ re-
duces toΠ ′, if there a polynomial functionsf, g s.t. for any inputI of Π, f(I) is an
input ofΠ ′, and ifO is the output forf(I), theng(O) is the output ofI, cf. [52]; more-
over,O is requested to have size polynomial in the size of the output forI (if not, trivial
reductions may exist).

Of the many problems to which MONOTONEDUALIZATION is polynomially equiv-
alent, we mention here computing the transversal hypergraph of a hypergraph (known
as TRANSVERSAL ENUMERATION (TRANS-ENUM)) [22]. A hypergraphH = (V,E)
is a collectionE of subsetse ⊆ V of a finite setV , where the elements ofE are
calledhyperedges(or simplyedges). A transversalofH is a sett ⊆ V that meets every
e ∈ E, and isminimal, if it contains no other transversal properly. Thetransversal hy-
pergraphofH is then the unique hypergraphTr(H) = (V, T ) whereT are all minimal
transversals ofH. ProblemTRANS-ENUM is then, given a hypergraphH = (V,E), to
generate all the edges ofTr(H); TRANS-HYP is deciding, givenH = (V,E) and a set
of minimal transversalsT , whetherTr(H) = (V, T ).

There is a simple correspondence between MONOTONEDUALIZATION andTRANS-
ENUM: For any positive CNFϕ onAt representing a Boolean functionf , the prime
CNFψ for the dual off consists of all clausesc such thatc ∈ Tr(At, ϕ) (viewingϕ as
set of clauses). E.g., ifϕ = (x1 ∨ x2)x3, thenψ = (x1 ∨ x3)(x2 ∨ x3).

As for computational learning theory, MONOTONE DUAL resp. MONOTONE DU-
ALIZATION are of relevance in the context of exact learning, cf. [2, 31, 47, 48, 17],
which we briefly review here.

Let us consider the exact learning of DNF (or CNF) formulas of monotone Boolean
functionsf by membership oracles only, i.e., the problem of identifying a prime DNF
(or prime CNF) of an unknown monotone Boolean functionf by asking queries to an
oracle whetherf(v)=1 holds for some selected modelsv. It is known [1] that monotone
DNFs (or CNFs) are not exact learnable with membership oracles alone in time polyno-
mial in the size of the target DNF (or CNF) formula, since information theoretic barriers
impose a|CNF(f)|+ |DNF(f)| lower bound on the number of queries needed, where
|CNF(f)| and|DNF(f)| denote the numbers of prime implicates and prime implicants
of f , respectively. This fact raises the following question:

– Can we identity both the prime DNF and CNF of an unknown monotone function
f by membership oracles alone in time polynomial in|CNF(f)|+ |DNF(f)| ?

Since the prime DNF (resp., prime CNF) corresponds one-to-one to the set of all
minimal true models (resp., all maximal false models) off , the above question can be
restated in the following natural way [2, 47]: Can we compute theboundarybetween
true and false areas of an unknown monotone function in polynomial total-time ? There
should be a simple algorithm for the problem as follows, which uses a DNFh and a
CNF h′ consisting of some prime implicants and prime implicates off , respectively,
such thath |= ϕ andϕ |= h′, for any formulaϕ representingf :
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Step 1. Seth andh′ to be empty (i.e., falsity and truth).
Step 2. whileh 6≡ h′ do

Take a counterexamplex of h ≡ h′;
if f(x) = 1 then

begin
Minimize t =

∧
i:xi=1xi to a prime implicantt∗ of f ;

h := h ∨ t∗ (i.e., addt∗ to h);
end

else/* f(x) = 0 */
begin

Minimize c =
∨
i:xi=0 xi to a prime implicatec∗ of f ;

h′ := h′ ∧ c∗ (i.e., addc∗ to h′);
end

Step 3. Outputh andh′.

This algorithm needsO(n(|CNF(f)| + |DNF(f)|)) many membership queries. If
h ≡ h′ (i.e., the pair(hd, h) is a Yes instance of MONOTONE DUAL ) can always
be decided in polynomial time, then the algorithm is polynomial inn, CNF(f), and
DNF(f). (The converse is also known [2], i.e., if the above exact learning problem is
solvable in polynomial total time, then MONOTONE DUAL is polynomially solvable.)
Of course, other kinds of algorithms exist; for example, [31] derived an algorithm with
different behavior and query bounds.

Thus, for the classesC of monotone Boolean functions which enjoying that

(i) M ONOTONEDUAL is polynomially solvable and a counterexample is found in poly-
nomial time in case (which is possible under mild conditions, cf. [2]), and

(ii) the family of prime DNFs (or CNFs) ishereditary, i.e., if a function with the prime
DNF φ =

∨
i∈I ti is in C, then any function with the prime DNFφS =

∨
i∈S ti,

whereS ⊆ I, is in C,

the above is a simple polynomial time algorithm which uses polynomially many queries
within the optimal bound (assuming that|CNF(f)| + |DNF(f)| is at least of order
n). For many classes of monotone Boolean functions, we thus can get the learnability
results from the results of MONOTONE DUAL , e.g.,k-CNFs,k-clause CNFs, read-k
CNFs, andk-degenerate CNFs [20, 23, 17].

In knowledge discovery, MONOTONE DUALIZATION and MONOTONE DUAL are
relevant in the context of several problems. For example, it is encountered in computing
maximal frequent and minimal infrequent sets [6], in dependency inference and key
computation from databases [49, 50, 19], which we will address in Sections 3 and 4.2
below, as well as in translating between models of a theory and formula representations
[36, 40]. Moreover, their natural generalizations have been studied to model various
interesting applications [4, 5, 7].

3 Explanations and Dualization

Deciding the existence of some explanation for a literalχ = ` w.r.t. an assumption set
A from a HornΣ is NP-complete under formula representation (i.e.,Σ is given by a
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Horn CNF), for both positive and negative`, cf. [57, 24]; hence, generating some resp.
all explanations is intractable in very elementary cases (however, under restrictions such
asA = Lit for positive`, the problem is tractable [24]).

In the model-based setting, matters are different, and there is a close relationship
between abduction and monotone dualization. If we are givenchar(Σ) of a Horn the-
oryΣ and an atomq, computing an explanationE for q fromΣ amounts to computing
a minimal setE of letters such that (i) at least one model ofΣ (and hence, a model in
char(Σ)) satisfiesE andq, and that (ii) each model ofΣ falsifying q also falsifiesE;
this is because an atomq has onlypositiveexplanationsE, i.e., it contains only positive
literals (see e.g. [42] for a proof). Viewing models asv = xB , then (ii) means thatE is
a minimal transversal of the hypergraph(V,M) whereV corresponds to the set of the
variables andM consists of allV −B such thatxB ∈ char(Σ) andxB 6|= q.

This led Kautzet al.[34] to an algorithm for computing an explanationE for χ = q
w.r.t. a set of atomsA ⊆ At which essentially works as follows:

1. Take a modelv ∈ char(Σ) such thatv |= q.
2. LetV :=A ∩B andM = {V \B′ | xB′ ∈ char(Σ), q /∈ B′}, wherev = xB .
3. if ∅ /∈ M , compute a minimal transversalE of H = (V,M), and outputE; other-

wise, select anotherv in Step 1 (if no other is left, terminate with no output).

In this way, some explanationE for q w.r.t. A can be computed in polynomial time,
since computing some minimal transversal of a hypergraph is clearly polynomial. Re-
call that under formula-based representation, this problem is NP-hard [57, 58]. The
method above has been generalized to arbitrary theories represented by models us-
ing Bshouty’s Monotone Theory [10] and positive abduciblesA, as well as for other
settings, by Khardon and Roth [42] (cf. also Section 4.2).

Also all explanations ofq can be generated in the way above, by taking all mod-
els v ∈ char(Σ) and all minimal transversals of(V,M). In fact, in Step 1v can be
restricted to the maximal vectors inchar(Σ). Therefore, computing all explanations re-
duces to solving a number of transversal computation problems (which trivially amount
to monotone dualization problems) in polynomial time. As shown in [24], the latter can
be polynomially reduced to a single instance.

Conversely, monotone dualization can be easily reduced to explanation generation,
cf. [24]. This established the following result.

Theorem 1. Givenchar(Σ) of a Horn theoryΣ, a queryq, andA ⊆ Lit, comput-
ing the set of all explanations forq fromΣ w.r.t. A is polynomial-time equivalent to
MONOTONEDUALIZATION .

A similar result holds for negative literal queriesχ = q as well. Also in this case,
a polynomial number of transversal computation problems can be created such that
each minimal transversal corresponds to some explanation. However, matters are more
complicated here since a queryq might also have non-positive explanations. This leads
to a case analysis and more involved construction of hypergraphs.

We remark that a connection between dualization and abduction from a Horn theory
represented bychar(Σ) is implicit in dependency inference from relational databases.
An important problem there is to infer, in database terminology, a prime cover of the
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setF+
r of all functional dependencies (FDs)X→A which hold on an instancer of

a relational schemaU = {A1, . . . , An} where theAi are the attributes. A functional
dependencyX→A,X ⊆ U ,A ∈ U , is a constraint which states that for every tuplest1
andt2 occurring in the same relation instancer, it holds thatt1[A] = t2[A] whenever
t1[X] = t2[X], i.e., coincidence oft1 andt2 on all attributes inX implies thatt1 and
t2 also coincide onA. A prime coveris a minimal (under⊆) set of non-redundant FDs
X→A (i.e.,X ′→A is violated for eachX ′ ⊂ X) which is logically equivalent toF+

r .
In our terms, a non-redundant FDX→A corresponds to a prime clause

∨
B∈X B∨A

of the CNFϕF+
r

, where for any set of functional dependenciesF , ϕF is the CNF

ϕF =
∧
X→A∈F

(∨
B∈X B ∨ A

)
, where the attributes inU are viewed as atoms and

F+
r is the set of all FDs which hold onr. Thus, by Proposition 4, the setX is an

explanation ofA from ϕr. As shown in [49], so calledmax setsfor all attributesA
are polynomial-time computable fromr, which in totality correspond to the charac-
teristic models of the (definite) Horn theoryΣr defined byϕF+

r
[41]. Computing the

explanations forA is then reducible to an instance of TRANS-ENUM [50], which es-
tablishes the result for generating all assumption-free explanations from definite Horn
theories. We refer to [41] for an elucidating discussion which reveals the close corre-
spondence between concepts and results in database theory on Armstrong relations and
in model-based reasoning, which can be exploited to derive results about space bounds
for representation and about particular abduction problems. The latter will be addressed
in Section 4.2.

Further investigations on computing prime implicates from model-based theory rep-
resentation appeared in [36] and in [40], which exhibited further problems equivalent
to MONOTONE DUALIZATION . In particular, Khardon has shown, inspired by results
in [49, 50, 19], that computing all prime implicates of a Horn theoryΣ represented
by its characteristic models is, under Turing reducibility (which is more liberal than
the notion of reducibility we employ here in general), polynomial-time equivalent to
TRANS-ENUM. Note, however, that by Proposition 4, we are here concerned with
computing particular prime implicates rather than all.

4 Possible Generalizations

The results reported above deal with queriesχ which are a single literal. As already
stated in the introduction, often queries will be more complex, however, and consist of
a conjunction of literals, of clauses [56], etc.

This raises the question about possible extensions of the above results for queries
of a more general form, and in particular whether we encounter other kinds of problem
instances which are equivalent to MONOTONEDUALIZATION .

4.1 General formulas and CNFs

Let us first consider how complex finding abductive explanations can grow. It is known
[21] that deciding the existence of an explanation for literal queryχ w.r.t. a setA is
ΣP

2 -complete (i.e., complete forNPNP), if the background theoryΣ is a set of arbitrary
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clauses (not necessarily Horn). For HornΣ, we get a similar result if the queryχ is an
arbitrary formula.

Proposition 5. Given a Horn CNFϕ, a setA ⊆ Lit, and a queryχ, deciding whether
χ has some explanation w.r.tA fromϕ is (i) ΣP

2 -complete, ifχ is arbitrary (even if it is
a DNF), (ii) NP-complete, ifχ is a CNF, and (iii) NP-complete, ifA = Lit.

Intuitively, an explanationE for χ can be guessed and then, by exploiting Propo-
sition 3, be checked in polynomial time with an oracle for propositional consequence.
TheΣP

2 -hardness in case (i) can be shown by an easy reduction from deciding whether
a quantified Boolean formula (QBF) of formF = ∃X∀Y α, whereX andY are dis-
joint sets of Boolean variables andα is a DNF overX ∪ Y . Indeed, just letΣ = ∅, and
A = {x, x | x ∈ X}. Then,χ = α has an explanation w.r.t.A iff formula F is valid.
On the other hand, ifχ is a CNF, then deciding consequenceΣ ∪ S |= χ is polynomial
for every set of literalsS; hence, in case (ii) the problem has lower complexity and is
in fact inNP. As for case (iii), if A = Lit, then an explanation exists iffΣ ∪{χ} has a
model, which can be decided inNP. The hardness parts for(ii) and (iii) are immediate
by a simple reduction from SAT (given a CNFβ, letΣ=∅, χ=β, andA=Lit).

We get a similar picture under model-based representation. Here, inferring a clause
c from char(Σ) is feasible in polynomial time, and hence also inferring a CNF. On the
other hand, inferring an arbitrary formula (in particular, a DNF)α, is intractable, since
to witnessΣ 6|= αwe intuitively need to find proper modelsv1, . . . , vl ∈ char(Σ) such
that

∧
ivi 6|= α.

Proposition 6. Givenchar(Σ), a setA ⊆ Lit, and a queryχ, deciding whetherχ has
some explanation w.r.tA fromΣ is (i) ΣP

2 -complete, ifχ is arbitrary (even if it is a
DNF), (ii) NP-complete, ifχ is a CNF, and (iii) NP-complete, ifA = Lit.

As for (iii), we can guess a modelv of χ and check whetherv is also a model ofΣ
from char(Σ) in polynomial time (indeed, check whetherv =

∧
{w ∈ char(Σ) | v ≤

w} holds). The hardness parts can be shown by slight adaptations of the constructions
for the formula based case, sincechar(Σ) for the empty theory is easily constructed (it
consists ofxAt and allxAt\{i}, i ∈ {1, . . . , n}).

So, like in the formula-based case, also in the model-based case we loose the imme-
diate computational link of computing all explanations to MONOTONE DUALIZATION

if we generalize queries to CNFs and beyond. However, it appears that there are in-
teresting cases between a single literal and CNFs which are equivalent to MONOTONE

DUALIZATION .
As for the formula-based representation, recall that generating all explanations is

polynomial total-time forχ being a positive literal (thus, tractable and “easier” than
MONOTONE DUALIZATION ), while it is coNP-hard forχ being a CNF (and in fact,
a negative literal); so, somewhere between the transition from tractable to intractable
might pass instances which are equivalent to MONOTONEDUALIZATION .

Unfortunately, restricting to positive CNFs (this is the first idea) does not help, since
the problem remainscoNP-hard, even if all clauses have small size; this can be shown
by a straightforward reduction from the well-known EXACT HITTING SET problem
[25]. However, we encounter monotone dualization ifΣ is empty.
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Proposition 7. Given a setA ⊆ Lit, and a positive CNFχ, generating all explanations
of χ w.r.t A from Σ = ∅ is polynomial-time equivalent to dualizing a positive CNF,
under both model-based and formula based representation.

This holds since, as easily seen, every explanationE must be positive, and more-
over, must be a minimal transversal of the clauses inχ. Conversely, every minimal
transversalT of χ after removal of all positive literals that do not belong toA (viewed
as hypergraphs), is an explanation. Note that this result extends to those CNFs which
areunate, i.e., convertible to a positive CNF by flipping the polarity of some variables.

4.2 Clauses and Terms

Let us see what happens if we move from general CNFs to the important subcases
of a single clause and a single term, respectively. As shown in [25], generating all
explanations remains under formula-based polynomial total-time forχ being a positive
clause or a positive term, but is intractable as soon as we allow a negative literal. Hence,
we do not see an immediate connection to monotone dualization.

More promising is model-based representation, since for a single literal query, equiv-
alence to monotone dualization is known. It appears that we can extend this result to
clauses and terms of certain forms.

Clauses Let us first consider the clause case, which is important for Clause Manage-
ment Systems [56, 38, 39]. Here, the problem can be reduced to the special case of a
single literal query as follows. Given a clausec, introduce a fresh letterq. If we would
add the formulac⇒ q toΣ, then the explanations ofq would be, apart from the trivial
explanationq in case, just the explanations ofc. We can rewritec ⇒ q to a Horn CNF
α =

∧
x∈P (c)(x∨ q)∧

∧
x∈N(c)(x∨ q), so addingα maintainsΣ Horn and thus the re-

duction works in polynomial time under formula-based representation. (Note, however,
that we reduce this to a case which is intractable in general.)

Under model-based representation, we need to constructchar(Σ ∪ {α}), however,
and it is not evident that this is always feasible in polynomial time. We can establish the
following relationship, though.

Let P (c) = {q1, . . . , qk} andN(c) = {qk+1, . . . , qm}; thus,α is logically equiva-
lent toq ⇒ q1 ∧ · · · qk ∧ qk+1 ∧ · · · ∧ qm.

Claim. ForΣ′ = Σ ∪ {α}, we have

char(Σ′) ⊆ {v@(0) | v ∈ char(Σ)} ∪{
(v1∧· · · ∧ vk)@(1) | vi ∈ char(Σ), vi |= qi ∧

∧m
j=k+1 qj , for 1 ≤ i ≤ k

}
∪{

(v0 ∧ v1∧· · · ∧ vk)@(1) | vi ∈ char(Σ), for 0 ≤ i ≤ k,
v0 |=

∧m
i=1 qi, vi |= qi ∧

∧m
j=k+1 qj , for 1 ≤ i ≤ k

}
.

where “@” denotes concatenation andq is assumed to be the last in the variable order-
ing.
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Indeed, each model ofΣ, extended toq, is a model ofΣ′ if we setq to 0; all models
ofΣ′ of this form can be generated by intersecting characteristic models ofΣ extended
in this way. On the other hand, any modelv of Σ′ in which q is 1 must have also
qk+1, . . . , qm set to 1 andq1, . . . , qk set to 0. We can generate suchv by expanding
the intersection of some characteristic modelsv1, . . . , vl of Σ (wherel ≤ |char(Σ)|)
in which qk+1, . . . , qm are set to 1, and where each ofq1, q2,. . . , qk is made 0 by
intersection with at least one of these vectors. By associativity and commutativity of
intersection, we can generatev then by expanding the intersection of vectors of the
form given in the above equation.

From the setRHS on the right hand side,char(Σ′) can be easily computed by
eliminating those vectorsv which are generated by the intersection of other vectors
(i.e., such thatv =

∧
{w ∈ RHS | v < w}).

In general,RHS will have exponential size; however, computingRHS is polyno-
mial if k is bounded by a constant; clearly, computingchar(Σ′) fromRHS is feasible
in time polynomial in the size ofRHS, and hence in polynomial time in the size of
char(Σ). Thus, the reduction from clause explanation to literal explanation is com-
putable in polynomial time. We thus obtain the following result.

Theorem 2. Given char(Σ) ⊆ {0, 1}n of a Horn theoryΣ, a clause queryc, and
A ⊆ Lit, computing all explanations forc fromΣ w.r.t.A is polynomial-time equivalent
to MONOTONEDUALIZATION , if |P (c)| ≤ k for some constantk.

Note that the constraint onP (c) is necessary, in the light of the following result.

Theorem 3. Givenchar(Σ) ⊆ {0, 1}n of a Horn theoryΣ, a positive clause query
c, and some explanationsE1, . . . , El for c fromΣ, deciding whether there exists some
further explanation isNP-complete.

The NP-hardness can be shown by a reduction from the well-known 3SAT problem.
By standard arguments, we obtain from this the following result for computing mul-

tiple explanations.

Corollary 1. Givenchar(Σ) ⊆ {0, 1}n of a Horn theoryΣ, a setA ⊆ Lit and a
clausec, computing a given number resp. all explanations forc w.r.t.A fromΣ is not
possible in polynomial total-time unlessP=NP. The hardness holds even forA = Lit,
i.e., for assumption-free explanations.

Terms Now let us finally turn to queries which are given by terms, i.e., conjunctions
of literals. With a similar technique as for clause queries, explanations for a termt can
be reduced to explanations for a positive literal query in some cases. Indeed, introduce
a fresh atomq and considert ⇒ q; this formula is equivalent to a Horn clauseα if
|N(t)| ≤ 1 (in particular, if t is positive). Supposet = q0 ∧ q1 ∧ · · · ∧ qm, and let
Σ′ = Σ ∪ {α} (whereα = q ∨ q1 ∨ · · · ∨ qm ∨ q0). Then we have

char(Σ′) ⊆ {v@(0) | v ∈ char(Σ)} ∪
{ v@(1) | v ∈ char(Σ), v |= q0 ∨ q1 ∨ · · · ∨ qm} ∪
{(v ∧ v′)@(1) | v, v′ ∈ char(Σ), v |= q1 ∨ · · · ∨ qm, v′ |= q0 ∧ q1 ∧ · · · ∧ qm},
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from which char(Σ′) is easily computed. The explanations fort from Σ then corre-
spond to the explanations forq fromΣ′ modulo the trivial explanationq in case.

This implies polynomial-time equivalence of generating all explanations for a term
t to MONOTONEDUALIZATION if t contains at most one negative literal. In particular,
this holds for the case of positive termst.

Note that the latter case is intimately related to another important problem in knowl-
edge discovery, namely inferring the keys of a relationr, i.e., the minimal (under⊆)
sets of attributesK ⊆ U = {A1, A2, . . . , An} whose values uniquely identify the rest
of any tuple in the relation. The keys for a relation instancer over attributesU amount
to the assumption-free explanations oft from the Horn CNFϕF+

r
defined as above

in Section 2.2. Thus, abduction procedures can be used for generating keys. Note that
char(F+

r ) is computable in polynomial time fromr (cf. [41]), and hence generating
all keys polynomially reduces to MONOTONE DUALIZATION ; the converse has also
been shown [19] [19]. Hence, generating all keys is polynomially equivalent to MONO-
TONE DUALIZATION and also to generating all explanations for a positive term from
char(Σ).

A similar reduction can be used to compute all keys of a generic relation scheme
(U,F ) of attributesU and functional dependenciesF , which amount to the explana-
tions for the termt = A1A2 · · ·An from the CNFϕF . Note that Khardonet al. [41]
investigate computing keys for givenF and more general Boolean constraintsψ by
a simple reduction to computing all nontrivial explanationsE of a fresh letterq (i.e.,

E 6= {q}; useψ ∧
(∧

Ai∈UAi ∨ q
)

), which can thus be done in polynomial total-time

as follows from results in [24]; for FDs (i.e.,ψ = ϕF ) this is a classic result in database
theory [46]. Furthermore, [41] also shows how to compute an abductive explanation
using an oracle for key computation.

We turn back to abductive explanations for a termt, and consider what happens
if we have multiple negative literals int. Without constraints onN(t), we face the
intractability, since deciding the existence of a nontrivial explanation fort is already
difficult, where an explanationE for t is nontrivial ifE 6= P (t) ∪ {q | q ∈ N(t)}.

Theorem 4. Givenchar(Σ) ⊆ {0, 1}n of a Horn theoryΣ and a termt, deciding
whether (i) there exists a nontrivial assumption-free explanation fort fromΣ is NP-
complete; (ii) there exists an explanation fort w.r.t. a given setA ⊆ Lit fromΣ is
NP-complete. In both cases, theNP-hardness holds even for negative termst.

The hardness parts of this theorem can be shown by a reduction from 3SAT.

Corollary 2. Givenchar(Σ) ⊆ {0, 1}n of a Horn theoryΣ, a setA ⊆ Lit and a term
t, computing a given number resp. all explanations fort w.r.t.A fromΣ is not possible
in polynomial total-time, unlessP=NP. The hardness holds even forA = Lit, i.e., for
assumption-free explanations.

While the above reduction technique works for termst with a single negative literal,
it is not immediate how to extend it to multiple negative literals such that we can derive
polynomial equivalence of generating all explanations to MONOTONE DUALIZATION

if |N(t)| is bounded by a constantk. However, this can be shown by a suitable extension
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of the method presented in [24], transforming the problem into a polynomial number
of instances of MONOTONE DUALIZATION , which can be polynomially reduced to a
single instance [24].

Proposition 8. For any Horn theoryΣ andE = {x1, . . . , xk, xk+1, . . . , xm} (⊆ Lit),
char(Σ∪E) is computable fromchar(Σ) bychar(Σ∪E) = char(M1∪M2), where

M1 = {v1 ∧ · · · ∧ vk | vi ∈ char(Σ), vi |= xi ∧
∧m

j=k+1
xj for 1 ≤ i ≤ k},

M2 = {v ∧ v0 | v ∈M1, v0 ∈ char(Σ), v0 |=
∧m

j=1
xj},

andchar(S) = {v ∈ S | v /∈ Cl∧(S \ {v})} for everyS ⊆ {0, 1}n. This can be done
in polynomial time ifk = |E ∩At| is bounded by some constant.

For any modelv and anyV ⊆ At, let v[V ] denote the projection ofv on V , and
for any theoryΣ and anyV ⊆ At, Σ[V ] denotes the projection ofΣ on V , i.e.,
mod(Σ[V ]) = {v[V ] | V ∈ mod(Σ)}.

Proposition 9. For any Horn theoryΣ and anyV ⊆ At, char(Σ[V ]) can be computed
from char(Σ) in polynomial time bychar(Σ[V ]) = char(char(Σ)[V ]).

For any modelv and any set of modelsM , let maxv(M) denote the set of all the
models inM that is maximal with respect to≤v. Here, for modelsw andu, we write
w ≤v u if wi ≤ ui if vi = 0, andwi ≥ ui if vi = 1.

Proposition 10. For any Horn theoryΣ and any modelv, maxv(Σ) can be computed
from char(Σ) by maxv({w ∈MS | S ⊆ {xi | vi = 1} }), whereM∅ = char(Σ) and
for S = {x1, . . . , xk},

MS = {v1 ∧ · · · ∧ vk | vi ∈ char(Σ), vi |= xi for 1 ≤ i ≤ k}.

This can be done in polynomial time if|{xi | vi = 1}| is bounded by some constant.

Theorem 5. Givenchar(Σ) ⊆ {0, 1}n of a Horn theoryΣ, a term queryt, andA ⊆
Lit, computing all explanations fort fromΣ w.r.t.A is polynomial-time equivalent to
MONOTONEDUALIZATION , if |N(t)| ≤ k for some constantk.

Proof. (Sketch) We consider the following algorithm.

Algorithm TERM-EXPLANATIONS

Input : char(Σ) ⊆ {0, 1}n of a Horn theoryΣ, a termt, andA ⊆ Lit.
Output : All explanations fort fromΣ w.r.t.A.

Step 1. LetΣ′ = Σ ∪ P (t) ∪ {q | q ∈ N(t)}. Computechar(Σ′) from char(Σ).
Step 2. For eachxi ∈ N(t), letΣxi = Σ∪{xi}, and for eachxi ∈ P (t), letΣxi = Σ∪
{xi}. Computechar(Σxi) from char(Σ) for xi ∈ N(t), and computechar(Σxi)
from char(Σ) for xi ∈ P (t).

Step 3. For eachB = B− ∪ B+, whereB− ⊆ A ∩ At with |B−| ≤ |N(t)| and
B+ = (A ∩At) \ {q | q ∈ B−}, letC = B+ ∪ {q | q ∈ B−}.
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(3-1) Computechar(Σ′[C]) from char(Σ′).
(3-2) Let v ∈ {0, 1}C be the model withvi = 1 if xi ∈ B−, andvi = 0 if

xi ∈ B+. Computemaxv(Σ′[C]) from char(Σ′[C]).
(3-3) For eachw ∈ maxv(Σ′[C]), letCv,w={xi | vi 6=wi} and letv∗=v[Cv,w].

(3-3-1) Computemaxv∗(Σxi [Cv,w]) andmaxv∗(Σxi [Cv,w]) from char(Σxi)
andchar(Σxi), respectively. Let

Mv,w =
⋃

xi∈N(t)

maxv∗(Σxi [Cv,w]) ∪
⋃

xi∈P (t)

maxv∗(Σxi [Cv,w]).

(3-3-2) Dualize the CNFϕv,w =
∧
u∈Mv,w

cu, where

cu =
∨

i:ui=vi=0

xi ∨
∨

i:ui=vi=1

xi.

Each prime clausec of ϕdv,w corresponds to an explanationE = P (c) ∪
{xj | xj ∈ N(c)}, which is output. Note thatϕv,w is unate, i.e., convert-
ible to a positive CNF by flipping the polarity of some variables.

Informally, the algorithm works as follows. The theoryΣ′ is used for generating
candidate sets of variablesC on which explanations can be formed; this corresponds to
condition (i) of an explanation, which combined with condition (ii) amounts to consis-
tency ofΣ ∪ E ∪ {t}. These sets of variablesC are made concrete in Step 3 viaB,
where the easy fact is taken into account that any explanation of a termt can contain
at most|N(t)| negative literals. The projection ofchar(Σ′) to the relevant variables
C, computed in Step 3-1, serves then as the basis for a set of variables,Cv,w, which
is a largest subset ofC on which some vector inΣ′[C] is compatible with the selected
literalsB; any explanation must be formed on variables included in someCv,w. Here,
the ordering of vectors under≤v is relevant, which respects negative literals. The ex-
planations overCv,w are then found by excluding every countermodel oft, i.e., all the
models ofΣxi , xi ∈ N(t) resp.Σxi , xi ∈ P (t), with a smallest set of literals. This
amounts to computing minimal transversals (where only maximal models under≤v∗
need to be considered), or equivalently, to dualization of the given CNFϕv,w.

More formally, it can be shown that the algorithm above computes all explanations.
Moreover, from Propositions 8, 9, and 10, we obtain that computing all explanations
reduces in polynomial time to (parallel) dualization of positive CNFs if|N(t)| ≤ k,
which can be polynomially reduced to dualizing a single positive CNF [24]. Since as
already known, MONOTONE DUALIZATION reduces in polynomial-time to computing
all explanations of a positive literal, the result follows. ut

We remark that algorithm TERM EXPLANATIONS is closely related to results by
Khardon and Roth [42] about computing some abductive explanation for a queryχ
from a (not necessarily Horn) theory represented by its characteristic models, which
are defined using Monotone Theory [10]. In fact, Khardon and Roth established that
computing some abductive explanation for a Horn CNF queryχ w.r.t. a setA contain-
ing at mostk negative literals from a theoryΣ is feasible in polynomial time, provided
thatΣ is represented by an appropriate type of characteristic models (for HornΣ, the
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Queryχ general/ CNF literal clause term

Horn theoryΣ DNF pos neg pos Horn general pos neg general

Horn CNFϕ ΠP2
d coNP coNPa coNPc coNPa coNPc coNPc coNPa coNPc coNPc

char(Σ) ΠP2
d coNP DUAL nPTTb,c DUAL nPTTb,c DUAL coNPb,c coNPb,c

a polynomial total-time for assumption-free explanations (A = Lit).
b DUAL for k-positive clauses resp.k-negative terms,k bounded by a constant.
c nPTT for assumption-free explanations (A = Lit).
d coNP (resp. nPTT) for assumption-free explanations (A = Lit) and generalχ (resp. DNFχ).

Table 1.Complexity of computing all abductive explanations for a query from a Horn theory

characteristic modelschark+1(Σ) with respect to(k + 1)-quasi Horn functions will
do, which are those functions with a CNFϕ such that|P (c)| ≤ k + 1 for everyc ∈ ϕ).
Proposition 10 implies thatchark+1(Σ) can be computed in polynomial time from
char(Σ). Hence, by a detour through characteristic models conversion, some explana-
tion for a Horn CNF w.r.t.A as above can be computed from a HornΣ represented by
char(Σ) in polynomial time using the method of [42]. This can be extended to com-
puting all explanations forχ, and exploiting the nature of explanations for terms to an
algorithm similar to TERM EXPLANATIONS.

Furthermore, the results of [42] provides a basis for obtaining further classes of
abduction instancesΣ,A, χ polynomially equivalent to MONOTONE DUALIZATION

whereΣ is not necessarily Horn. However, this is not easy to accomplish, since roughly
non-Horn theories lack in general the useful property that every prime implicate can
be made monotone by flipping the polarity of some variables, where the admissible
flipping sets induce a class of theories in Monotone Theory. Explanations corresponding
to such prime implicates might not be covered by a simple generalization of the above
methods.

5 Conclusion

In this paper, we have considered the connection between abduction and the well-
known dualization problems, where we have reviewed some results from recent work
and added some new; a summary picture is given in Table 1.

In this table, “nPTT” stands for “not polynomial total-time unlessP=NP,” and
“coNP” resp. “ΠP

2 ” stands for for deciding whether the output is empty (i.e., no ex-
planation exists) iscoNP-complete resp.ΠP

2 -complete (which trivially implies nPTT);
DUAL denotes polynomial-time equivalence to MONOTONE DUALIZATION . In order
to elucidate the role of abducibles, the table highlights also results for assumption-free
explanations (A = Lit) when they deviate from an arbitrary setA of abducibles.

As can be seen from the table, there are several important classes of instances which
are equivalent to MONOTONEDUALIZATION . In particular, this holds for generating all
explanations for a clause query (resp., term query)χ if χ contains at mostk positive
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(resp., negative) literals for constantk. It remains to be explored how these results,
via the applications of abduction, lead to the improvement of problems that appear in
applications. In particular, the connections to problems in knowledge discovery remain
to be explored. Furthermore, an implementation of the algorithms and experiments are
left for further work.

We close by pointing out that besides MONOTONEDUALIZATION , there are related
problems whose precise complexity status in the theory ofNP-completeness is not
known to date. A particular interesting one is the dependency inference problem which
we mentioned above, i.e., compute a prime cover of the setF+

r of all functional depen-
dencies (FDs)X→A which hold on an instancer of a relational schema [49] (recall
that a prime cover is a minimal (under⊆) set of non-redundant FDs which is logically
equivalent toF+

r ). There are other problems which are polynomial-time equivalent to
this problem [40] under the more liberal notion of Turing-reduction used there; for ex-
ample, one of these problems is computing the set of all characteristic models of a Horn
theoryΣ from a given Horn CNFϕ representing it.

Dependency inference contains MONOTONE DUALIZATION as a special case (cf.
[20]), and is thus at least as hard, but to our knowledge there is no strong evidence that
it is indeed harder, and in particular, it is yet unknown whether a polynomial total-time
algorithm for this problem impliesP=NP. It would be interesting to see progress on
the status of this problem, as well as possible connections to abduction.
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