
Simulating Production Rules Using ACTHEX?

Thomas Eiter, Cristina Feier, and Michael Fink

Institute of Information Systems, Vienna University of Technology,
Favoritenstraße 9-11, A-1040 Vienna, Austria

lastname@kr.tuwien.ac.at

Abstract. Production rules are a premier formalism to describe actions which,
given that certain conditions are met, change the state of a factual knowledge
base and/or effect a change of the external environment in which they are situated,
based on an operational semantics. ACTHEX is a recent formalism extending
HEX programs, such that the specification of declarative knowledge in the form
of logic programming rules can be interleaved with a type of condition-action
rules which prescribe the execution of (sequences of) actions that can change the
external environment. Under the provision of a specific semantics of conditions, the
operational semantics of production rules can be simulated using the model-based
semantics of ACTHEX. Given that the latter features abstract access to external
sources of computation, it can capture a range of concrete execution semantics
and, moreover, facilitate access to heterogeneous information sources.

Keywords: ACTHEX, production rules

1 Introduction

Production rules are one of the most successful rule paradigms with regard to practical
applications. Since more than three decades, they have been deployed to various domains
(see e.g. [28] for an overview of early production systems); tools and platforms like
JRules, Clips, Jess, or Drools have become popular. They are largely based on theoretical
foundations and key technology that has been developed in the rise of the paradigm. In
the recent years, there has been a reviving interest in foundational research on production
rules, triggered by extensions like the combination of a production rule system (PRS)
with ontologies or linked data, which surfaces in the context of the Semantic Web.
Formalisms of W3C’s Rule Interchange Format (RIF) working group address this,
aiming to provide a minimalistic standard for combining rules and ontologies in the web
ontology language (OWL) resp. RDF data.

Achieving such combinations is somewhat more difficult than similar combinations
of logic-based rules and ontologies (see e.g. [21, 9] for surveys). The reason is that
production rules have an operational semantics, in which a working memory (roughly, a
factual knowledge base) is changed by the firing of rules which are matched against the
current state of the working memory; out of the set of fireable rules, one is selected for
execution according to some conflict resolution strategy. The “result” of the evaluation
? This work is partially supported by the Austrian Science Fund (FWF) under the project P20840,

and by the European Commission under the project OntoRule (IST2009231875).

of a PRS is the final state achieved after repeating matching and execution, known as
recognize-act cycle, as long as possible, provided that it terminates.

Elements of this procedure like a concrete conflict resolution strategy (possibly based
on the execution history), and a change mechanism for removing information from the
working memory, are challenging for a declarative formalization in standard logic-based
formalisms, which lack procedural elements and are subject to logical ramifications: if a
fact A is to be removed, presence of a fact B and a clause B → A in the background
still allows to derive A, so mere physical removal of A is insufficient. Another issue is
negation in rule conditions, which refers to the current state.

Several works have considered simulation of PRS in logic-based formalisms, facing
these difficulties. E.g., Baral and Lobo [2] used logic programming under stable seman-
tics and situation calculus notation; Kowalski and Sadri [19] resorted in an agent-flavored
approach to abductive logic programming combined with reactive rules, on a database
with destructive assignments. de Bruijn and Rezk [5] instead employed the mu-calculus
and fixpoint logic. Damasio et al. [8] used incremental Answer Set Programming to real-
ize the default semantics of the RIF-PRD dialect. Most recently, aiming at a combination
of production rules and ontologies, Rezk and Kifer [24] use transaction logic, while
Rosati and Franconi [27] describe a general framework for combining production rules
and ontologies, with the purpose of studying termination and complexity for different
classes of rules and ontologies.

These proposals often commit to particular settings and ramifying assumptions (e.g.,
a particular conflict resolution strategy and/or removal strategy), and actual execution
of a simulated PRS run to obtain full emulation requires an extra effort. The support of
access to other, heterogeneous information sources, or interaction with an environment
in which the knowledge base is situated, usually requires an extension.

In this paper, we consider simulation of PRS in the ACTHEX formalism, in which
actual execution and the above extensions are readily achieved. ACTHEX [3] is a logic-
programming based framework for declarative specification of action execution, using
a rule-based language that builds on special action atoms. It is a relative of Gelfond
and Lifschitz’s action languages [17], in which actions and their effects are typically
described in rule-based languages; however, in ACTHEX the effect of actions, especially
on the environment, might be implicit via the plugins used. Briefly, ACTHEX allows a) to
express and infer a predictable execution order for action atoms; b) to express soft (and
hard) preferences among a set of possible action atoms; and c) to actually execute a set
of action atoms according to a predictable schedule. ACTHEX extends HEX-programs
[11], which in turn extend non-monotonic logic programs under answer set semantics
with external atoms. The latter model access to external computation via an abstract
interface and a plug-in architecture; more details are provided in Section 2.

Thanks to external and action atoms, ACTHEX is a versatile formalism to simulate
PRS. By modeling conflict resolution and fact removal strategies via external atoms,
also involved realizations thereof can be elegantly captured. Furthermore, via external
atoms access to heterogenous information sources in virtually any format is supported;
in particular, to description logic ontologies in OWL, such that an instantiation of the
OWL-PR formalism can be accommodated. Since an ACTHEX prototype implementation
is available, the PRS simulation can also be effectively realized on top of it.

2

This work would not exist without the pioneering work of Vladimir Lifschitz on
answer-set semantics. In a seminal paper together with Michael Gelfond [16], he coined
what has become a predominant formalism for applied nonmonotonic reasoning.

The outline of the rest of this paper is as follows. In the next section, we briefly recall
HEX and ACTHEX. We then describe how a generic PRS can be simulated in ACTHEX
(Section 3), and consider possible instantiations and properties (Section 4). Related
formalisms are discussed in Section 5, while Section 6 concludes the paper.

2 HEX and ACTHEX programs

2.1 HEX programs

HEX programs [11] are built over mutually disjoint sets C, X , and G of constant, variable,
and external predicate names, respectively. We follow the convention that elements of X
(resp., C) start with an upper-case (resp., lower-case) letter; elements of G are prefixed
with “ & ”. Constant names serve both as individual and predicate names. Notice, that
C may be infinite. Terms are elements of C ∪ X . A (higher-order) atom is of form
Y0(Y1, . . . , Yn), where Yi are terms for 1 6 i 6 n, and n > 0 is the arity of the atom.
The atom is called ordinary, if Y0 ∈ C. For example, (x, type, c), node(X), and D(a, b),
are atoms; the first two are ordinary atoms. Subsequently, we assume that all atoms
are ordinary, i.e., of the form p(Y1, . . . , Yn). By arg(a), var(a), pred(a), arty(a),
we understand the arguments, the variables, the predicate name, and the arity of an
ordinary atom a. An external atom is of the form &g [X](Y), where X =X1, . . . , Xn

and Y =Y1, . . . , Ym are lists of terms (called input and output list, resp.), and &g
is an external predicate name. Such an atom is used to determine the truth value of
an atom through an external source of computation. For example, an external atom
&reach[arc, a](Y) may capture the nodes of a directed graph arc reachable from node
a by querying an external computational source.

HEX-programs (or simply programs) are finite sets of rules r of the form

α1 ∨ · · · ∨ αk ← β1, . . . , βn,not βn+1, . . . ,not βm, (1)

where m, k > 0, αi are atoms, βj are atoms or external atoms, and “not” is negation as
failure (or default negation). If k = 0, then r is a constraint; if r is variable-free, k = 1,
and m = 0, then r is called a fact.

Furthermore, we denote by H(r)= {α1, . . . , αk} the head of a rule r, and by
B(r)=B+(r)∪B−(r) its body, where B+(r)= {β1, . . . , βn} and B−(r) = {βn+1,
. . . , βm} are the (sets of) positive and negative body atoms, respectively. By cts(P) we
understand the set of constants which appear in P .

Semantics. Answer sets of ordinary programs [16] are extended to HEX-programs P ,
using the FLP reduct [13]. The Herbrand baseHP of P is the set of all ground instances
of atoms and external atoms occurring in P , obtained by variable substitution over C.
The grounding of a rule r, grnd(r), and of P , grnd(P) =

⋃
r∈P grnd(r), is analogous.

An interpretation of P is any subset I ⊆ HP containing atoms only. A satisfaction
relation is defined as follows: I is a model of (i) an atom a ∈ HP resp. (ii) a ground

3

external atom a = &g [x](y), denoted I |= a, iff (i) a∈ I resp. (ii) f&g(I,x,y)= 1,
where f&g : 2

HP × Cn+m → {0, 1} is a (fixed) oracle function associated with &g ;
Intuitively, f&g tells if y is in the output of the external source &g provided input x.
For instance, f&reach(I,G,X, Y) = 1 iff Y is reachable from X in the directed graph
encoded by the extension of binary predicate G in I .

For a ground rule r, satisfaction is given by I |= r iff I |=H(r) or I 6|=B(r), where (i)
I |=H(r) iff I |= a for some a ∈ H(r), and (ii) I |=B(r) iff I |= a for every a∈B+(r)
and I 6|= a for all a∈B−(r). As usual, I is a model of P , denoted I |=P , iff I |= r for
all r∈ grnd(P).

The FLP-reduct [13] of P w.r.t. an interpretation I , denoted fP I , is the set of all r ∈
grnd(P) such that I |= B(r). Eventually, we say that I ⊆HP is an answer set of P , iff
I is a ⊆-minimal model of fP I . The set of all answer sets of P is denoted by AS(P).
E.g., let Preach = {arc(1, 2); arc(2, 3);node(X)←arc(X,Y);node(Y)←arc(X,Y);
path(X,Y)←&reach[arc, X](Y),node(X), X 6= Y }, thenAS(Preach) = {A}, such
that {path(1, 2), path(2, 3), path(1, 3)} ⊆ A.

For practical reasons, we assume that each input argument Xi of an external atom
&g [X](Y) has a type label predicate or constant, which is unique for &g . Moreover,
we consider external functions to be uniform in the following sense: If I and I ′ co-
incide on all the extensions of predicates xi such that Xi is of type predicate, then
f&g(I,x,y)= f&g(I

′,x,y). Consequently, f&g depends only on the input of a given
by predicate extensions and individuals.

2.2 ACTHEX programs

ACTHEX [3] is an extension of HEX programs [11] with action atoms built using action
predicate names A. Unlike dl-atoms in dl-programs [10], which only send and receive
inputs to/from ontologies, action atoms are associated to functions capable of actually
changing the state of external environments. Such atoms can appear (only) in heads of
rules and as such they can be part of answer sets. An action atom is of the form

#g [Y1, . . . Yn] {o, r} [w : l]
where

(i) #g is an action predicate name and Y1, . . . , Yn is a list of terms (called input list),
where n = in(#g) is fixed;

(ii) o ∈ {b, c, cp} is the action option; the action atom is called brave (resp., cautious,
preferred cautious), if o = b (resp., o = c, o = cp);

(iii) r and w, the action precedence resp. weight, range over positive integers, and
(iv) l, the action level, ranges over variables.

For instance, an action atom #insert [X,Y]{b, Pr} may be defined to insert paths
(pairs of nodes X,Y) into a list of paths. It is a brave atom, whose precedence is given
for a respective ground instance by the instantiation of variable Pr.

An ACTHEX rule r is of the form (1) where each αi can also be an action atom. The
notion of constraint, fact etc. and the notation H(r), B(r) etc. naturally extends from
HEX to ACTHEX rules. An ACTHEX program is a finite set P of ACTHEX rules, and is
ordinary, if all its rules are ordinary, i.e. contain no external and no action atoms. As

4

an example consider the ACTHEX program Pinsert consisting of the ordinary rules of
Preach and the rule: #insert [X,Y]{b, Pr}←path(X,Y), Z = X ∗ 10, P r = Z + Y .

Semantics. Action atoms affect an external environment and are executed according
to execution schedules. Every answer set is associated with one or more execution
schedules, which are ordered lists containing all action atoms in that particular answer
set. The order of execution within a schedule depends on the actions precedence attribute.
Action atoms allow to specify whether they have to be executed bravely, cautiously or
preferred cautiously, respectively, meaning that the atom can get executed if it appears
in at least one, all, or all best cost answer sets.

More formally, the Herbrand base HP of an ACTHEX program P also contains
action atoms (in addition to ordinary and external atoms). The grounding of a program is
defined as before, and an interpretation I of P is any subset I ⊆ HP containing ordinary
atoms and action atoms. The satisfaction relation, and eventually the notion of answer
sets, both extend straightforwardly by applying to interpretations as above, with a single
slight extension:1 for convenience, we also allow external atoms (computations) to access
and take the external environment into account. In particular, we assume the external
environment is represented as a finite set E of facts over a suitable language Lenv We
thus consider an extended oracle function f&g : 2

Lenv×2HP×Cn+m → {0, 1} associated
with any ground external atom a = &g [x](y), and define I |= a iff f&g(E, I,x,y)= 1,
for a given external environment E ⊆ Lenv . For action atoms (and ordinary atoms) a,
we say that I is a model of a, denoted I |= a, iff a ∈ I .

We define the set of best models of P , denoted BM(P), as those answer sets
I ∈ AS(P), where the objective function HP (I) = Σlmax

i=1 (fP (i)×Σa∈I∧l(a)=iw(a))
over weights and levels of action atoms in I is minimal. Here, wmax and lmax are
the maximum weight and level of ground(P), and fP is defined by fP (1) = 1 and
fP (n) = fP (n−1)×|{a ∈ ground(P) | w(a) 6= 0}|×wmax +1. Intuitively, an answer
set I will be a best model if no other answer set yields a strictly lower weight on some
level i, while yielding lower or equal weights than I on levels up to i. Here the weight
per level is the sum of the weights of all executable actions in I with respective level.

Towards action execution we say, for a given answer set I , that a ground action
a = #g [y1, . . . , yn]{o, r}[w : l] is executable in I iff (i) a is brave and a ∈ I , or (ii) a is
cautious and a ∈ B for every B ∈ AS(P), or (iii) a is preferred cautious and a ∈ B for
every B ∈ BM(P). With every answer set of P we associate execution schedules: an
execution schedule SP (I) for I is a sequence [a1, . . . , an] of all actions executable in I ,
such that a appears before b in in the sequence if prec(a) < prec(b) holds for all action
atoms a and b in I . The set of all execution schedules of an answer set I of P is denoted
by ESP (I). Moreover, if S is a set of answer sets of P , then ESP (S) =

⋃
I∈S ESP (I).

For an example, observe that the only answer set A of Pinsert contains the action
atoms #insert [1, 2]{b, 12}, #insert [2, 3]{b, 23}, and #insert [1, 3]{b, 13}, giving rise
to a single execution schedule SPinsert

(A)= [#insert [1, 2]{b, 12},#insert [1, 3]{b, 13},
#insert [2, 3]{b, 23}].

The execution of an action on an external environment E is modeled by an ac-
tion function. We associate with every action predicate name #g an (m+2)-ary func-

1 Such an extension has been suggested by Peter Schüller in a different context.

5

tion f#g with input (E, I, y1, . . . , ym) that returns a new external environment E′ =
f#g(E, I, y1, . . . , ym), where I ⊆ HP . Based on this, given an execution schedule
SP (I) = [a1, . . . , an] for I , the execution outcome of executing SP (I) on E, is defined
as EX(SP (I), E) = En, where E0 = E, Ei+1 = f#g(Ei, I, y1, . . . , ym), and ai is
of the form #g [y1, . . . , ym]{o, p}[w : l]. Intuitively the initial environment E0 = E is
modified by executing every action of SP (I) in the given order, and the effect of these
actions is iteratively taken into account according to the corresponding action function.
Given a set S of answer sets of P , we use EXP (S, E) to denote the set of all possible
execution outcomes of P on the (initial) external environment E.

For our example program Pinsert , executing SPinsert (A) from above on an initial
environment consisting of an empty list, i.e.,E0 = [], results in the execution outcome of
an ordered list E = [(1, 2), (1, 3), (2, 3)], as intended. Note that such ordered insertion
can not be obtained from a HEX program without post-processing its output.

In practice, one may want only one of the possible execution outcomes of an ACTHEX
program P on environment E. Either this can be achieved implicitly by appropriate
modeling, such that a single (best) answer set exists, which only allows for a single
execution schedule, or one has to provide corresponding selection functions explicitly.

An implementation of ACTHEX programs has been realized and is available2 as an
extension to the dlvhex system3. It provides simple (nondeterministic) selection functions
for selecting a single answer set (the first computed among the best models) and a single
execution schedule (the first computed) for it.

3 Simulating Production Rule Systems Using ACTHEX

3.1 Production Rule Systems

A Production Rule System (PRS) is in the most general case an unordered collection of
conditional statements called production rules [15]. They all operate on a global database
called working memory (WM). The left hand side of a rule (LHS) is a condition in the
form of a set of positive and negative patterns, while the right hand side (RHS) contains
a set of actions, typically the addition or removal of a set of facts to resp. from the WM.
Sometimes, rules have priorities.

The production rule system is ‘executed’ in cycles, where each cycle contains the
following steps:

1. Match: The LHS of each production rule is evaluated w.r.t. the current WM. A rule4

for which the LHS is satisfied is called fireable.
2. Conflict resolution: From the set of fireable production rules, one is chosen according

to a conflict resolution strategy. Such a strategy considers the priority of the rules or
even the history of the execution of the system to pick a rule for execution.

3. Act: The actions in the RHS of the selected production rule are performed.

Such a specification of execution of a PRS is also called operational semantics.

2
http://www.kr.tuwien.ac.at/research/systems/dlvhex/actionplugin.html

3
http://www.kr.tuwien.ac.at/research/systems/dlvhex/

4 Instance of a rule, in case the rule has variables

6

Example 1. As an example, we describe some rules which can be used to assess a
patient with chronic cough symptoms. The scenario is inspired from the step-by-step
procedure described at http://bestpractice.bmj.com/best-practice/
monograph/69/diagnosis/step-by-step.html.

As chronic cough can be caused by ACE inhibitors, in a first step the patient is asked
to stop taking these medicines (in case he takes them) to check whether that is the cause.
Alternatively, a set of therapeutic trials can be launched to detect whether the cough is
caused by one of the common conditions: asthma, non-asthmatic eosinophilic bronchitis
(NAEB), or gastro-oesophogeal reflux disease (GORD).

The scenario can be encoded by means of 4 production rules.

(1) [2]: if has(P, cough) and takes(P, acei) then add rec(P, stop acei)

(2) [2]: if has(P, cough) and has(P,wheezing) then add treat(P, asthma)

(3) [2]: if has(P, cough) then add treat(P, naeb)

(4) [2]: if has(P, cough) and has(P, heartburn) then add treat(P, gord)

In order to monitor the state of the patient we introduce two more rules. The patient
is asked how he feels: if he feels ok all symptoms are removed from the WM; otherwise,
the symptom of the patient is added as a fact to the KB.

(5) [1]: if ask(P, ok) then remove has(P,X)

(6) [1]: if ask(P,X) and X 6= ok then add has(P,X)

All rules have attached priorities: rules (1)-(4) have priority 2, while rules (5)-(6)
have priority 1. If the conflict resolution strategy decides which rule should be executed
solely by considering the priority of fireable rules, rules (1)-(4) will never be executed as
always either the condition of (5) or the condition of (6) is fulfilled. As such, conflict
resolution strategies are usually more complex: for example, a rule which has already
been executed, will not be executed again until its condition is falsified and then becomes
true again (i.e., only once for a particular set of bindings, where a binding is maintained
until the respective condition is not fulfilled anymore). Thus, if the patient reports the
same symptom, e.g. cough, several times, rule (5) will not be reexecuted: instead one
of the lower priority rules (1)-(4) will be executed instead. As the lower priority rules
have all the same priority, which one is actually chosen depends on satisfaction of their
conditions: if more then one condition is satisfied, the rule is chosen nondeterministically
(according to the intention of this example; note, however, that some systems use
specificity of the condition as a further selection criterion, which would select rule (3)
only if the other ones are not in the conflict set).

3.2 Production Rule Systems over HEX programs

Recently there has been an interest in augmenting Production Rules Systems with
more expressive background knowledge, in the form of FOL theories, or DL KBs. The
assumption is that patterns are FOL formulas which are evaluated against a KB consisting
in the union of the current WM and the underlying FOL theory/DL KB [1].

In this section we introduce PRS over HEX programs. A PRS is augmented with a
HEX program which together with the WM offers background knowledge. In an ASP
setting, checking brave entailment of atoms, i.e. whether an atom belongs to some answer

7

set, is a common reasoning task. Actually, the possibility to express information about
alternate states of the world is one of the main features of ASP. As such, the condition
part of such production rules is evaluated bravely w.r.t. ASP semantics. The assumption
is that for every execution cycle, some answer set A of the corresponding HEX program
and current WM is randomly chosen and then all conditions are evaluated w.r.t. A.

In this setting, a pattern is a HEX body literal `; it is positive, if ` is an atom, and
negative otherwise. In the following, let L be a set atoms (called labels) such that for
every l1, l2 ∈ L: pred(l1) 6= pred(l2) and the set {pred(l) | l ∈ L} is disjoint with C.

Definition 1. Let p be a finite set of patterns, let r, a, and e be three finite sets of atoms,
and let l ∈ L such that var(l) = var(p)∪var(a)∪var(r)∪var(e). A HEX-production
rule (PR) is an expression of the form:

[l, pr] if p then remove r add a execute e (2)

where pr is the priority of the rule, a natural number.

Example 2. The encoding of rules (1)-(6) from example 1 as HEX-production rules is
straightforward. For example, rule (1) can be encoded as follows:

[r1(P),2] if has(P, cough), takes(P, acei) then add rec(P, stop acei).
We note that the presence of external atoms allows us to express more complex rules

whose conditions can be external atoms with bidirectional access to external knowledge
sources. For example, an external atom &high risk may have as inputs the extension of
the predicate has and a patient, and empty output; it evaluates to true, iff the patient
has a high risk of complications. High risk patients are referred to the emergency room:

[r7(P),2] if &high risk[P, has] then add send(P, emergency).

Ground instances of production rules are obtained by substitution as usual: for a term
t the result of applying a substitution σ : var(t) → D (where D is an arbitrary set of
constants) to t is denoted by tσ, and is obtained by replacing every variable in the term
with its image under the substitution. This application naturally extends to sets of terms
and rules. An instance of a HEX-production rule (2) is any rule

[lσ, pr] if pσ then remove rσ add aσ execute eσ (3)

Next we define the notion of a HEX-based PRS state. The notion is intended to
capture the parts of a PRS which change during a run of the system: the working memory
and the history of the run itself.

Definition 2. A HEX-based PRS state is a triple 〈WM , P,H〉, where P is a finite set of
rules, i.e., a HEX-program, while WM and H are finite sets of ground facts: the working
memory, and the history, respectively.

To any set RS of production rules and a HEX-based PRS state s = 〈WM , P,H〉, we
associate a relevant domain by Dom(RS , s) = cts(P ∪WM ∪ RS). We also say that
a ground instance of RS is relevant w.r.t. s iff it is obtained from RS by a substition to
Dom(RS , s). In other words, the set of relevant ground instances of RS w.r.t. s, denoted
by rel(RS , s), is obtained by grounding RS over Dom(RS , s).

We now turn to the firing of production rules and first define what it means for a
production rule instance to be fireable in a HEX-based PRS state.

8

Definition 3. Consider a set RS of HEX-production rules and a HEX-based PRS state
s = 〈P,WM , H〉 such that P ∪WM is consistent, i.e., it has an answer set, and let
A ∈ AS(P ∪WM). A HEX-production rule instance of the form (3) is fireable in s w.r.t.
A if and only if 1.) A |= p′σ for all p′ ∈ p+, and 2.) A 6|= p′σ for all p′ ∈ p−.

Note that if lσ is fireable in s, then it is also relevant w.r.t. s. As for additional notation
we use fireable(RS , s, A) to denote the set of all (relevant) instances of production rules
from RS that are fireable in s w.r.t.A identified by their labels, i.e., fireable(RS , s, A) =
{lσ | lσ ∈ rel(RS , s) and lσ is fireable in s w.r.t. A}.

Slightly abusing notation, we define fireable(RS , s) = fireable(RS , s, A), for some
A ∈ AS(P ∪WM) if P ∪WM is consistent (where A is chosen nondeterministically),
while fireable(RS , s) = ∅ otherwise.

A HEX-based PRS comprises besides a set of production rules and an initial HEX-
based PRS state, also a conflict resolution function, which selects for every state of
the system which PR instance should be executed next (if fireable instances exist); a
change function which specifies how the working memory is affected by PR actions;
and a bookkeeping function which describes how the history of a run is updated upon
transition from one state to another. More specifically,

– cr(RS i, H) is the conflict resolution function, (a partial function) that given a set
of PR instances RS i and the history H , returns a single PR instance lσ ∈ RS i;

– ch(WM , P,a, r, e) is a function which given a set of ground facts representing the
WM , a HEX-program P , and three sets of ground atoms, corresponding to assertion,
removal, and execute actions, respectively, returns a pair (WM ′, P ′) of a set of
ground facts and a HEX-program representing the changed working memory WM ′

and program P ′ as a result of applying the actions;
– bk(RS i, lσ,H) is a bookkeeping function which given as input a set of PR instances

RS i, a PR instance lσ, and the history H , returns an updated history H ′.

Definition 4. A HEX-based PRS is a quintuple 〈RS , s0, cr , ch, bk〉, where RS is a finite
set of HEX-production rules of the form (2), s0 = 〈WM 0, P0, ∅〉 is the initial state of
the system, and cr , ch , and bk are a conflict resolution, a change, and a bookkeeping
function, respectively.

We note that in this definition, a PRS may be Non-Markovian w.r.t. to the working
memory, i.e., conflict resolution may select from the same conflict set RS i produced
from the same WM different rules for execution, depending on the history. This respects
that standard conflict resolution functions, like forward chaining in RIF (see Section 4),
take the history into account; in principle, the relevant history information may be
stored in WM , and designated rules of the PRS may maintain it, such that the function
cr(RS i, H) can be replaced by some function cr ′(RS ′i) that is independent of history
information H; however, bounds on the size of WM would limit the expressiveness of
conflict resolution. For generality and a clean separation between data processing and
rule execution management, we use the above definition.

Towards defining runs of a HEX-based PRS in terms of transition functions, let
us first consider single transitions. A triple (s, lσ, s′), where s = 〈WM , P,H〉 and
s′ = 〈WM ′, P ′, H ′〉 are HEX-based PRS states and lσ is the label of a PR instance

9

of the form 3, is a valid transition of a PRS PS = 〈RS , s0, cr , ch, bk〉 iff (i) lσ =
cr(fireable(RS , s), H), (ii) (WM ′, P ′) = ch(WM , P,a, r, e), and (iii) H ′ = bk(
fireable(RS , s), lσ,H).

We call a state s reachable in (a run of) a PRS PS iff either s = s0 is the initial state
of PS , or there exists a valid transition (s′, lσ, s) such that s′ is reachable. Furthermore,
we denote by S the set of all states and by LΣ the set of all labels of PR instances.

Definition 5. Let PS = 〈RS , s0, cr , ch, bk〉 be a HEX-based PRS. A relation→PS⊆
S × LΣ × S is called a run of PS iff (s, lσ, s′) ∈→PS implies that (s, lσ, s′) is a valid
transition such that s is reachable.

Moreover, if there exists (s, lσ, sf) ∈→PS such that (sf , l′σ′, s′) 6∈→PS for all
l′σ′ ∈ LΣ and s′ ∈ S , then the run is finite (in other words, the run terminates),
otherwise the run is infinite.

3.3 Simulating HEX-based PRSs in ACTHEX

In this section we show how runs of HEX-based PRSs can be simulated via a translation
of such systems to ACTHEX programs. The translation reenacts the operational semantics
of HEX-based PRSs in terms of execution schedules of the corresponding ACTHEX
programs. While ACTHEX programs do not have an explicit notion of state, they allow
for stateful computation via the external environment: a stateful program thus has all
state dependent information as a part of the external environment, which is subject to be
updated and accessed via action atoms and external atoms.

In our particular case, simulating the behavior of a HEX-based PRS, the state depen-
dent information consists of the WM, the HEX program, and the history of the current
run. The facts of the WM and the HEX program rules are part of the actual ACTHEX pro-
gram which is to be executed for simulation of the PRS behavior. As such, the ACTHEX
program is dynamic, i.e., subject to change—the PRS execution cycle is simulated by
repeated executions of suitable modifications of the original program (which address just
the facts representing the working memory and the HEX program rules). Technically, this
is achieved via an action atom #execute which appears as the last action in every non-
empty execution schedule of the ACTHEX program. Its execution results in a recursive
call for evaluating the modified program (with updated WM facts and HEX rules).

For a more formal account, consider a HEX-based PRS PS = 〈RS , s0, cr , ch, bk〉.
Below, we will first give the encoding of the static part of the ACTHEX program which
represents (and eventually simulates) the production rules RS . This fixed part of the
ACTHEX program will be denoted by ΠRS . Furthermore, we will use indices i > 0
to denote the (initial) external environment Ei of iterative evaluations of the ACTHEX
program. More specifically we will use EWM

i , EHEX
i , and EHi to refer to the different

parts of Ei, representing corresponding state information. In slight abuse of notation, we
will also use EWM

i and EHEX
i to denote the set of facts and the set of rules that together

with ΠRS constitute the ACTHEX program to be evaluated (executed) at step i.
There are several issues of concern. To simulate an execution cycle, one has to (i)

capture rule fireability conditions, (ii) select a rule for execution (conflict resolution),
(iii) execute the selected rule, and (iv) update the history. After that, one has to (v) move
on to the next execution cycle.

10

(i) The simulation of pattern matching in ACTHEX is straightforward: production
rule conditions are captured by bodies of ACTHEX rules: let m be the maximum arity
of labels of rules in RS , let fires be an ACTHEX predicate of arity m + 4. For every
production rule of the form (2), we add the following rule to ΠRS :

fires(pred(l), arity(l), arg(l), pr , 0 , . . . 0)← p,

where the argument part of fires is padded with zeroes up tom+4 arguments.5 Intuitively,
fires(pred(l), arity(l), arg(l), pr, 0, . . . 0) is satisfied in an answer set ofΠRS∪EWM

i ∪
EHEX
i iff there exists a fireable instance lσ of the production rule with label l w.r.t. an

answer set of EWM
i ∪ EHEX

i .
(ii) The conflict resolution strategy is outsourced to an external atom &cres[fires]

(X1, . . . , Xm+2). Its external function f&cres takes the extension of fires in the given
interpretation I into account as well as the history of the run EHi in the environment to
select a production rule instance for output. As for fires , we use reification to describe a
rule instance; hence the output of &cres has arity m+2, where m is again the maximum
arity of a label. It represents cr(fireable(RS , 〈EWM

i , EHEX
i , EHi 〉, EHi).

(iii) Once a rule instance is selected, its action part should be executed. For every
production rule of form (2) where a = ∪16i6nai, r = ∪16i6pri, and e = ∪16i6qei, let

#action[a1, arity(a1), arg(a1), . . . ,
r1, arity(r1), arg(r1), . . . , e1, arity(e1), arg(e1), . . . , 0, . . . , 0]{b, 1}

be an action atom whose execution is intended to simulate the effect of the execution
of the production rule instance: it changes the working memory, and the HEX program,
such that their new contents are exactly those given by ch(EWM

i , EHEX
i ,a, r, e). Note

that the mode of execution for such an action is brave and its priority is 1. For sim-
plicity, we will refer in the following to such an atom as act l. The arity of #action is
maxl∈RS (

∑
ai∈a(|arg(ai)|+ 2) +

∑
ri∈r(|arg(ri)|+ 2) +

∑
ei∈e(|arg(ei)|+ 2)).

For every production rule with label l, we also add the following rule to ΠRS :
act l ← &cres[fires](pred(l), arity(l), arg(l), 0 , . . . , 0).

(iv) After updating the WM and the HEX program, the history of the run is updated
by means of an action atom #update whose effect is to change the history to the
one returned by bk(fireable(RS , 〈EWM

i , EHEX
i , EHi 〉), lσ, EHi). It takes the extension

of fires in I and the input rule instance lσ (in reified form; from &cres) into account.
#update[fires,X1 , . . . ,Xm+2]{b, 2} ← &cres[fires](X1 , . . . ,Xm+2).

(v) Finally, the next execution cycle is triggered by means of an action atom
#execute: its effect is to build and execute the ACTHEX program ΠRS ∪EWM

i+1 ∪EHEX
i+1.

Again, this happens only if a production rule action has actually been executed (which
means that the external environment has already been changed to contain EWM

i+1 and
EHEX
i+1 and can thus be used to build the ACTHEX program for the next step).

#execute{b, 3} ← &cres[fires](X1 ,X2 , . . . ,Xm+2).

Note that whenever an execution schedule SP (I) of an ACTHEX program P contains an
action atom #execute, whose effect is the execution of another ACTHEX program P ′,

5 Here, for ease of exposition, we use reification to encode a production rule instance as an
argument of an action atom. Regarding efficiency, this is suboptimal: rather than padding, one
could use different predicates #firesk with fixed arity k, for 1 6 k 6 m+ 4.

11

then SP (I) can be regarded as being interleaved with an execution schedule SP ′(I ′) of
P ′. Intuitively, #execute in SP (I) is replaced with SP ′(I ′). If SP ′(I ′) in turn contains
an #execute atom, and so forth, then SP (I) is essentially infinite.

In the following let act lσ denote #action[a1, arity(a1), arg(a1)σ, . . . , r1, arity(
r1), arg(r1)σ, . . . , e1, arity(e1), arg(e1)σ, . . . , 0, . . . , 0], and let #updatelσ denote
#update[fires, pred(l), arity(l), arg(l)σ, 0, . . . , 0].

Lemma 1. Given a HEX-based PRS PS = 〈RS , s0, cr , ch, bk〉 such that s0 = 〈WM 0,
P0, ∅〉, let EWM

0 = WM 0, EHEX
0 = P0, EH0 = ∅, and let Π = ΠRS ∪ EWM

0 ∪ EHEX
0

be an ACTHEX program. Then, an execution schedule SΠ of Π is either empty or has
the form: [#actl1σ1

, #updatel1σ1
, #actl2σ2

, #updatel2σ2
, . . . ,]. Moreover, the range

of σi is given by cts(EWM
i−1 ∪ EHEX

i−1), for i > 1.

The following proposition shows the soundness of the translation: every execution
schedule of an ACTHEX program ΠRS ∪ EWM

0 ∪ EHEX
0 corresponds to a run of PS .

Proposition 1. Let PS = 〈RS , s0, cr , ch, bk〉 be a HEX-based PRS such that s0 =
〈WM 0, P0, ∅〉. For every execution schedule SΠ of Π = ΠRS ∪EWM

0 ∪EHEX
0 and cor-

responding external environments sequence (Ei)i>0, where Ei = 〈EWM
i , EHEX

i , EHi 〉,
there exists a run→HEX−PRS of PS such that the following holds for every k > 1:

– if #act lkσk
is in SΠ , then there exists (s, lσ, s′) ∈→HEX−PRS such that Ek−1 = s,

Ek = s′, lk = l, and σk = σ.

Moreover, the simulation is also complete: for every run of a PRS PS , there exists a
counterpart execution schedule of the ACTHEX program Π = ΠRS ∪ EWM

0 ∪ EHEX
0 .

Proposition 2. Let PS = 〈RS , s0, cr , ch, bk〉 be a HEX-based PRS such that s0 =
〈WM 0, P0, ∅〉. For every run→HEX−PRS of PS there exists an execution schedule SΠ
of Π = ΠRS ∪ EWM

0 ∪ EHEX
0 and a corresponding external environments sequence

(Ei)i>0, where Ei = 〈EWM
i , EHEX

i , EHi 〉, such that the folloing holds:

– for every (s, lσ, s′) ∈→HEX−PRS there exists an integer k > 1 such that s = Ek−1,
s′ = Ek, l = lk, and σ = σk.

From Propositions 1 and 2, we easily obtain the following:

Corollary 1. There exists a terminating run of a PRS PS iff there exists a finite execution
schedule for ΠRS ∪ EWM

0 ∪ EHEX
0 .

4 Instantiations and Properties

In Section 3, we provided a general framework for PRSs over HEX programs, in which
the conflict resolution strategy, the effects of actions executions, and the history update
were generic parameters of a PRS. We now discuss possible ways to instantiate these
parameters. As the notions of history and conflict resolution strategy are tightly related,
(the strategy uses the history to select a rule for execution), we will treat them together.

12

Conflict Resolution Strategy/History. In general, a CRS chooses one of the fire-
able rules for execution. The complexity of a strategy can vary from a simple non-
deterministic selection to a multi-tier selection mechanism, as the one given by the
rif:forwardChaining strategy in RIF-PRD [25]. It uses history related informa-
tion like the first time a rule instance was in the set of fireable rules, and the last time it
did not fire. More specifically, the following rules are applied to select one fireable rule
in decreasing order of priority:

– refraction: a rule instance which has been previously selected must not be selected
again if the reasons that made it eligible for firing in the first place still hold;

– priority: only rule instances with the highest priority are maintained;
– recency: rule instances are ordered by the number of consecutive system states in

which they are fireable, only the most recently fireable ones are eligible for firing;
– for the remaining rules, break the tie somehow.

We discuss how to encode parts of this strategy in ACTHEX. First the &update action
can be detailed such that it stores in hist precisely the information needed by the
strategy. We assume that hist contains for every rule instance lσ two counters similar
to the recency and lastP icked counters described in the RIF-PRD specification, which
indicate the number of consecutive times lσ was in the set of fireable rules, and the last
time lσ fired, respectively.

Next we show how to encode a refraction and priority-based selection in ACTHEX.
Let &refr be an external atom which uses the counters stored in hist to indicate
refracted rules: the atom &refr(pred(l), arity(l), arg(l), pr, 0, . . . , 0) evaluates to true
iff a production rule instance lσ is refracted6. To capture the sets of refracted and non-
refracted rule instances, we use for every production rule with label l and priority pr two
ACTHEX rules as follows:

refr(pred(l), arity(l), arg(l), pr , 0 , . . . 0)← fires(pred(l), arity(l), arg(l), pr , 0 , . . . 0),
&refr [pred(l), arity(l), arg(l), pr, 0, . . . 0)]()

ref (pred(l), arity(l), arg(l), pr , 0 , . . . 0)← fires(pred(l), arity(l), arg(l), pr , 0 , . . . 0),
not &refr [pred(l), arity(l), arg(l), pr, 0, . . . 0)]()

The selection among the nonrefracted rules of only those highest priority can be
done without accessing the history. For every pair (l, l′) of production rules, where l has
priority pr and l′ has priority pr′, we introduce the following ACTHEX rule:

spr(pred(l), arity(l), arg(l), pr , 0 , . . . 0) ← ref (pred(l), arity(l), arg(l), pr , 0 , . . . 0),
&fires(pred(l ′), arity(l ′), arg(l ′), pr ′, 0 , . . . 0), pr > pr ′

Finally, top priority rules (i.e., those kept in) are those not having small priorities:

tpr(pred(l), arity(l), arg(l), pr , 0 , . . . 0) ← ref (pred(l), arity(l), arg(l), pr , 0 , . . . 0),
not spr(pred(l), arity(l), arg(l), pr, 0, . . . 0)

We note that the last two steps of rif:forwardChaining, recency and non-
deterministic choice, can be encoded similarly: for the former we must access hist
using an external atom, while the latter can be encoded by non-deterministic selection.

6 For more information how the counters determine whether a rule is refracted or not please
consult the RIF-PRD specification.

13

Change. Another benefit in terms of versatility of HEX-based PRS and our realization
using ACTHEX, is enhanced flexibility of modeling and representing change. A plain PR
style instantiation of the function change(WM , P,aσ, rσ, eσ) would execute all of eσ
on WM without changing the working memory and return WM ′ = (WM \ rσ) ∪ aσ.

HEX-based PRS enable richer changes to be realized in a straightforward and often
declarative way. By simple encoding techniques, atoms in PR rule heads can represent
more sophisticated changes to the working memory. E.g., an atom remove ext(X)
whose ground instances (where a constant c replaces X), represent the removal of the
entire extension of a predicate named c from WM ; such predicate retraction has been
proposed as an advanced feature in RIF-PRD (see also next section).

By augmenting a PRS with a declarative component such as HEX-rules, more subtle
interactions such as logical ramification may have to be respected when updating the
working memory. Recalling the simple example from the introduction, if a fact A is
to be removed, the presence of another fact B and a rule B → A in the background
still allows to derive A. Problems of this nature have been studied extensively in AI as
belief revision and contraction problems (cf. [22] for an overview). Respective solutions
and techniques (such as WIDTIO used e.g. in [24]) can be applied and realized via
instantiations of change , which also has access to the HEX-program P .

Eventually, the augmentation with HEX-programs offers a simple means to create
new objects using external atoms. While desirable in modifying the working memory
for state of the art PRS, this feature must be used carefully to ensure termination.

Termination. One aspect of encoding PRS in ACTHEX is that in general, there is no
guarantee that ACTHEX programs which have recursive evaluation calls using execute
terminate. In fact, properties of a PRS like termination, or whether a certain fact holds in
some execution/all runs, etc. are not decidable in general, and thus analog properties of
the ACTHEX encoding are necessarily undecidable in general. However, under suitable
restrictions they are decidable, and consequently the respective properties of PRS;
studying such restrictions, guided by [27], remains for future work.

Interfacing with External Sources. Obviously, augmenting PRS with HEX benefits
from the fundamental aim of HEX-programs: providing a declarative interface to external
information sources and software. To date, ontologies are a common means of represent-
ing terminological (background) knowledge that systems can process autonomously and
utilize to provide domain specific solutions for various application scenarios. Interfacing
an ontology via an external atom is a premier use case of HEX-programs (especially DL-
programs [10]). In our example, rather than hard-coding recommendations associated
with symptoms in rules, an external medical ontology might be accessed for classifying
symptoms and relating them to suitable recommendations, which the PRs then execute.

Clearly, ontologies are only one type of external information that might be relevant
for building applications. Through external atoms, HEX-based PRS can incorporate
various heterogeneous external sources such as calendars, various databases etc.

14

5 Discussion

We now briefly address the potential of the ACTHEX simulation w.r.t. RIF, and consider
some alternative formalisms using answer set semantics for PRS simulation.

5.1 RIF Potential

The Rule Interchange Format (RIF) working group developed a suite of W3C recom-
mended rule formalisms, including combinations with RDF and OWL.

RIF’s production rule dialect, RIF-PRD, is a standard XML serialization format
for production rule languages serving as a lingua franca for rule exchange. Roughly,
it hosts rules with atomic actions, like assert fact, retract fact, retract all slot values,
retract object, execute, and compound actions, like modify fact. The action (then) part
of a rule is a sequence of actions preceded by action variable declaration patterns; by
the frame object declaration pattern, new individuals can be introduced as a side effect
of executing an assert action. The condition (if) part is a condition formula, built from
atomic formulas using Boolean connectives and existential quantification. In normalized
rules, conditions are disjunction-free and compound actions replaced by sequences of
atomic actions. Rules can be put in groups, for which priorities and CRS can be defined.

The semantics of atomic actions is specified by the RIF-PRD transition relation:
→RIF−PRD⊆ W×L×W , where W consists of all states of the fact base and L of
all ground atomic actions; notably, retraction must respect subclass and class instance
relationships in the facts (which are easy to express in HEX background).

RIF-PRD defines PRS semantics in terms of a labeled transition relation→PRS⊆
S×L×S on system states S, where the labels L are sequences of ground action atoms
and (s, a, s′) ∈→PRS means that (facts(s), a, facts(s′)) is in the transitive closure of
→RIF−PRD and a = actions(picked(s)) is from the firing rules selected by the CRS.
As default CRS, RIF-PRD defines RIF:forwardChaining, but others can be used.

The PRS simulation in ACTHEX outlined above provides a basis for realizing in-
stances of RIF-PRD, where in particular external atoms and actions atoms are helpful
to instantiate generic elements of the description, such as picked(·), actions(·) and
realization of the transition relation (i.e., realizing assert(φ), retract(φ) etc). However,
a detailed discussion of how to realize the complex standard is beyond this paper; we just
note that answer set semantics has been used to simulate RIF-PRD before (see below).

An important aspect of using ACTHEX programs is that external atoms enable
combinations with other formats. Marano et al. [20] showed how to simulate RIF-Core
rules combined with OWL2RL ontologies using HEX programs, by casting the ontologies
to RIF-Core; in the same vein, RIF-PRD plus OWL2RL may be realized using ACTHEX.
Due to the expressiveness of answer set semantics, combinations with other OWL profiles
and RDF may be done under suitable assumptions (cf. [4, 26]). Finally, a loose-coupling
semantics of RIF-OWL à la [10] can easily forged from the ACTHEX simulation.

5.2 Alternative Approaches based on Answer Sets

FDNC. Natural candidates are answer set based formalisms which can express a forward
notion of time and have well-studied decidable reasoning tasks. Such a formalism

15

are FDNC programs [12], which are a fragment of ASP with function symbols that
achieves decidability via the forest model property, but allows only for unary and binary
predicates and restricts the rule syntax. Arbitrary predicate arity is supported in higher-
arity FDNC, which imposes syntactical restrictions on variables usage are imposed to
maintain decidability. Algorithms for standard reasoning tasks like deciding program
consistency, cautious/brave entailment of atoms, etc. are available. In [12], a translation
of the action language K (which was inspired by the action language C [18]) to FDNC
is provided. Using a similar translation, potentially infinite PRS runs could be simulated;
the reasoning support for FDNC allows then to check static properties of an encoded
PRS. However, due to lacking actions in FDNC, the results of execution runs cannot be
materialized. Moreover, the lack of external atoms prevents loosely-coupled interaction
with external sources. It remains to explore how FDNC can be extended with external
atoms that allow sending inputs, querying, and modifying external sources.

STLP. Another answer-set based formalism that can simulate a forward time line are
Splittable Temporal Logic Programs (STLP) [6]. They are a fragment of Temporal
Equilibrium Logic, an extension of ASP with modal temporal operators. An algorithm
for reasoning with such programs is provided in [6]; temporal equilibrium models are
captured by an LTL formula using two well-known techniques in ASP: program splitting
and loop formulas. The algorithm has been implemented using the LTL model checker
SPOT [7]. Similar considerations as for FDNC apply for PRS encodings using STLP.

Incremental ASP. Damasio et al. [8] used ASP to realize a simulation of the default
semantics of RIF-PRD. To this end, they described an encoding of RIF-PRD into the
incremental ASP solver iClingo,7 in which roughly a program can be incrementally
evaluated, in a stateful manner, where the current program slice is instantiated w.r.t.
the current increment value, the already evaluated program slices into account. This
mechanism is particularly attractive to generate a (finite) trajectory for the execution
of a sequence of (possibly nondeterministic) actions. In particular, [8] presents a nice
encoding of the RIF:forwardChaining CSR in iClingo. The encoding produces
as a result an answer set of the program, which describes an execution run; the real
execution, however, must be accomplished separately. In our ACTHEX encoding, action
execution is an integral part. In addition, iClingo does not provide access to external
sources, nor to an external environment; thus, coupling RIF-PRD with ontologies and
linked data, and access to other data sources is unsupported and requires further work.

6 Conclusion

We have discussed how production rule systems (PRS) can be encoded in answer set
programs with external source access, and in particular how they can be simulated
using ACTHEX programs, which extend HEX programs with actions. Thanks to its
generic interfacing and plugin architecture, ACTHEX allows to realize a range of conflict
resolution and change strategies, and in addition to access and combine PRS with
heterogeneous data sources, like ontologies, RDF stores, thesauri etc.; e.g., external atoms

7 http://potassco.sourceforge.net/#iclingo

16

make loose coupling with description logic ontologies easy, but also tight coupling as
envisaged by RIF may be hosted, extending work of [8, 20]. In fact, the formalism offers
a smooth integration of three worlds: production rules, logical rules, and ontologies.

Several issues remain for future work. While we have described simulation of PRS,
we did not discuss issues like termination and reasoning over ACTHEX programs encoding
PRS, nor computational complexity. A detailed study of termination and complexity,
guided by [27], is necessary. The general setting of our simulation, in which generic
components must be instantiated and also the environment can be changed, covers a
large space of concrete settings, and identifying the most relevant ones will be important.
With regard to reasoning, it would be interesting to consider properties expressed in
temporal logic similar as in STLP [6] and to extend the algorithm and techniques there to
suitable settings for ACTHEX programs. Finally, an implementation of the generic PRS
simulation as a front end to the ACTHEX prototype remains to be done. In the course of
this, also libraries for conflict resolution and change strategies should be built.

Acknowledgement. We are grateful to Jim Delgrande for useful comments and sugges-
tions which helped to improve this work.

References

1. Rezk, M., Nutt, W.: Combining Production Systems and Ontologies. In: The Fifth International
Conference on Web Reasoning and Rule Systems (2011)

2. Baral, C., Lobo, J.: Characterizing production systems using logic programming and situation
calculus, www.cs.utep.edu/baral/papers/char-prod-systems.ps

3. Basol, S., Erdem, O., Fink, M., Ianni, G.: HEX programs with action atoms. In: Tech. Comm.
of ICLP 2010. Leibniz International Proc. in Informatics (LIPIcs), vol. 7, pp. 24–33 (2010)

4. de Bruijn, J., Pearce, D., Polleres, A., Valverde, A.: Quantified equilibrium logic and hybrid
rules. In: Marchiori, M., et al. (eds.) Proc. RR-2007. LNCS 4524, pp. 58–72. Springer (2007)

5. de Bruijn, J., Rezk, M.: A logic based approach to the static analysis of production systems.
In: Polleres and Swift [23], pp. 254–268

6. Cabalar, P.: Loop formulas for splitable temporal logic programs. In: Delgrande, J., Faber, W.
(eds.) Proc. LPNMR-2011. LNCS 6645, pp. 80–92. Springer (2011)

7. Cabalar, P., Diguez, M.: Stelp – a tool for temporal answer set programming. In: Delgrande,
J., Faber, W. (eds.) Proc. LPNMR-2011. LNCS 6645, pp. 370–375. Springer (2011)

8. Damásio, C.V., Alferes, J.J., Leite, J.: Declarative semantics for the rule interchange format
production rule dialect. In: Patel-Schneider, P.F., et al. (eds.) Pro ISWC-2010 (1). LNCS 6496,
pp. 798–813. Springer (2010)

9. de Bruijn, J., Bonnard, P., Citeau, H., Dehors, S., Heymans, S., Pührer, J., Eiter, T.: Combi-
nations of rules and ontologies: State-of-the-art survey of issues. Tech. Rep. Ontorule D3.1,
Ontorule Project Consortium (2009), http://ontorule-project.eu/

10. Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set
programming with description logics for the Semantic Web. Artif. Intell. 172(12/13), 1495–
1539 (2008)

11. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A uniform integration of higher-order
reasoning and external evaluations in answer-set programming. In: Proc. IJCAI-2005. pp.
90–96. Professional Book Center (2005)

12. Eiter, T., Šimkus, M.: FDNC: Decidable non-monotonic disjunctive logic programs with
function symbols. ACM Trans. Computational Logic (TOCL) 11(2), article 14

17

13. Faber, W., Pfeifer, G., Leone, N.: Semantics and complexity of recursive aggregates in answer
set programming. Artif. Intell. 175(1), 278–298 (2011)

14. Feier, C., Aı̈t-Kaci, H., Angele, J., de Bruijn, J., Citeau, H., Eiter, T., Ghali, A.E., Kerhet,
V., Kiss, E., Korf, R., Krekeler, T., Krennwallner, T., Heymans, S., (FUB), A.M., Rezk, M.,
Xiao, G.: Complexity and optimization of combinations of rules and ontologies. Tech. Rep.
Ontorule D3.3, Ontorule Project Consortium (2010) http://ontorule-project.eu/

15. Forgy, C.: Rete: A fast algorithm for the many patterns/many objects match problem. Artif.
Intell. 19(1), 17–37 (1982)

16. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases.
New Generation Computing 9, 365–385 (1991)

17. Gelfond, M., Lifschitz, V.: Action languages. Electron. Trans. AI 2(3-4), 193–210 (1998)
18. Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic Causal Theories.

Artif. Intell. 153(1-2), 49–104 (2004)
19. Kowalski, R.A., Sadri, F.: Integrating logic programming and production systems in abductive

logic programming agents. In: Polleres and Swift [23], pp. 1–23
20. Marano, M., Obermeier, P., Polleres, A.: Processing RIF and OWL2RL within DLVHEX. In:

Hitzler, P., Lukasiewicz, T. (eds.) Proc. RR-2010. LNCS 6333, pp. 244–250. Springer (2010)
21. Motik, B., Rosati, R.: Reconciling Description Logics and Rules. JACM 57(5), 1–62 (2010)
22. Peppas, P.: Belief revision. In: van Harmelen, F., et al. (eds.) Handbook of Logic in AI and

Logic Programming, chap. 8, pp. 317–360. Elsevier (2008)
23. Polleres, A., Swift, T. (eds.): Proc. Int’l Conf. on Web Reasoning and Rule Systems (RR)

2009, LNCS 5837. Springer (2009)
24. Rezk, M., Kifer, M.: Formalizing production systems with rule-based ontolgies. In:

Lukasiewicz, T., Sali, A. (eds.) Proc. FoIKS-2012, LNCS, Springer (2012) to appear
25. de Sainte Marie, C., Hallmark, G., Paschke, A. (eds): RIF Production Rule Dialect. Recom-

mendation 22 June 2010, W3C (2010), http://www.w3.org/TR/rif-prd/
26. Rosati, R.: DL+LOG: Tight integration of description logics and disjunctive Datalog. In:

Doherty, P., Mylopoulos, J., Welty, C.A. (eds.) Proc. KR-2006. pp. 68–78. AAAI Press (2006)
27. Rosati, R., Franconi, E.: Generalized ontology-based production systems. In: Proc. KR-2012.

AAAI Press (2012), to appear
28. Waterman, D., Hayes-Roth, F.: Pattern-directed inference systems. Academic Press (1978)

18

