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Abstract. We investigate the complexity of autoepistemic reasoning
with parsimonious and moderately grounded expansions. A stable ex-
pansion of an autoepistemic set of premises is parsimonious if its objec-
tive (i.e. nonmodal) part does not contain the objective part of any other
stable expansion. We prove that deciding whether a formula ¢ belongs
to at least one parsimonious stable expansion of a finite base set A is
complete for ¥ while deciding containment in all parsimonious stable
expansions is complete for ITY. Similar results are derived for autoepis-
temic reasoning with moderately grounded expansions. In particular,
we show that deciding whether a formula ¢ belongs to some moderately
grounded expansion of a finite base set A is ¥-complete, and that
deciding whether ¢ belongs to all moderately grounded expansions is
IT7-complete. These results suggest that reasoning with parsimonious
stable expansions and moderately grounded expansions is strictly harder
than reasoning in Moore’s standard version of autoepistemic logic. We
also address the complexity of reasoning if the set A is in a normalized
form, and derive completeness results for this case.

1 Introduction

In this paper we study the complexity of decision problems for variants of Moore’s
Autoepistemic Logic (AEL) [20]. AEL is known as a successful tool for formalizing
principles of nonmonotonic reasoning. This logic is based on the language of propo-
sitional logic extended by a modal belief operator L. Informally, if ¢ is a formula
(possibly containing occurrences of L), Ly means ¢ is believed or also, ¢ is in the
knowledge base, where the knowledge base is supposed to contain the set of all beliefs
of an ideally rational introspective agent.

In AEL, each given set A of initial beliefs is mapped to a set of expansions,
where each expansion is an alternative possible set of total beliefs based on A. The
main inference tasks of AEL are to decide whether a given formula ¢ occurs in at
least one stable expansion of A (brave reasoning), and to determine whether a given
formula ¢ occurs in all stable expansions of A (cautious reasoning). The complexity
of these problems for a finite set A was investigated in [9], where it was shown that
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these problems are complete for respectively X" and IT¥, thus harder than NP and
co-NP.

In the present paper, we consider stronger versions of AEL, in particular parsi-
monious stable expansions and moderately grounded expansions of a finite base set
A.

A natural strengthening of the concept of stable expansion is to require that
the objective (i.e. nonmodal) part of a stable expansion must be minimal compared
to all other stable expansions with respect to set inclusion. We refer to such stable
expansions as parsimonious. Expansions of this type describe the minimal deductively
closed objective theories that a rational agent may adopt if every accepted belief Ly
must be grounded in the agent’s knowledge base, i.e. ¢ must be derivable from the
knowledge base and the beliefs.

Our investigation into the complexity of reasoning with parsimonious stable ex-
pansions covers the main decision problems in autoepistemic reasoning. In particular,
we show that deciding whether a formula ¢ belongs to at least one parsimonious sta-
ble expansion of a finite base set A is complete for 3 while deciding for containment
in all parsimonious stable expansions is complete for ITL. However, deciding whether
A has any parsimonious stable expansion is ¥Z-complete, and hence of the same
complexity as deciding whether A has any stable expansion.

Similar results are shown for reasoning with moderately grounded expansions,
which were introduced in [11] (see [31] for another development of the same concept).
Informally, a moderately grounded expansion of A is a stable expansion of A whose
objective part is minimal over the objective parts of stable belief sets that include A.
Moderately grounded expansions correspond to a more conservative concept of be-
lieving which, in particular contexts, is more appropriate than the one corresponding
to standard AEL [11]. Notice that moderate groundedness strengthens the concept
of parsimony, since moderately grounded expansions are parsimonious, but the con-
verse does not necessarily hold. We show that brave reasoning with the moderately
grounded expansions of a finite base set A is ¥1-complete, while cautious reasoning
is TTIY-complete. Furthermore, we show that even deciding whether there exists any
moderately grounded expansion for A is X-complete.

Thus, unless the polynomial time hierarchy collapses at some low level, brave as
well as cautious reasoning with parsimonious stable expansions or with moderately
grounded expansions is strictly harder than with standard AEL expansions. The
intuitive explanation for this is that minimality-checking introduces an additional
source of complexity. As a consequence of our results, unless the polynomial hierarchy
collapses, there cannot be any polynomial transformation from parsimonious AEL or
moderately grounded AEL to standard AEL.

Our analysis also devotes attention to the complexity of autoepistemic reason-
ing from base sets where the knowledge is represented in some special format. In
particular, we consider base sets where all formulae are of the form

LoV -V Lop VL V---V L,V w

where all ¢;,1; and w are objective formulae and only w must be present. Formulae
of this type have been considered in the context of moderate groundedness in [11].
Notice that this format, which is more restrictive than the Moore normal form [20, 16],
only allows for formulae without nestings of L operators, and hence generates merely
a small fragment of the autoepistemic language.
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We show that for the case that the set A is normalized, brave reasoning with the
moderately grounded expansions of such finite premise sets is £2'-complete, and that
cautious reasoning is ITY-complete.

These results are interesting since the complexity of standard AEL as well as
parsimonious AEL remains unaffected by normalized premise sets, which means that
in this case moderately grounded expansions are as easy as standard AEL expan-
sions, while parsimonious stable expansions are strictly harder unless the polynomial
hierarchy collapses.

The rest of the paper is organized as follows. Section 2 introduces the concepts
of complexity theory necessary for our analysis and gives a brief summary of AEL
and previously derived related complexity results. Section 3 contains results on parsi-
monious stable expansions, while Section 4 contains results on moderately grounded
expansions. In Section 5, we investigate into the impact of normalized premise sets
on the complexity of autoepistemic reasoning. Section 6, which concludes the paper,
gives a discussion of the results and reviews related complexity results for other forms
of nonmonotonic reasoning.

2 Preliminaries

2.1 Computational Complexity

We start with a brief review of the relevant concepts of complexity theory. The reader
is assumed to be familiar with the basic concepts of NP-completeness; an excellent
introduction to that field is [8]. Most of the problems we consider are NP-hard, but
are not known to be in NP or a similar class such as co-NP. All of them reside in
the polynomial hierarchy (PH), however, which has been introduced in [19] as a com-
putational analog to the Kleene arithmetic hierarchy of recursion theory [8, 10]. The
classes of PH are defined by oracle Turing machines and contain, unless the hierarchy
collapses, problems of increasing complexity. They provide thus a way for character-
izing the complexity of some problems harder than NP-complete problems, especially
if completeness of a problem for some class can be shown. Problems complete for a
class suffer from, depending on the class, several sources of complexity each of which
leads to intractability. We succeed to establish completeness results for all considered
problems.

Oracle Turing machines are ordinary Turing machines equipped with an oracle
tape. Roughly speaking, the oracle tape enables the machine to check in unit time
whether a string belongs to the oracle set, which is a formal language attached to the
machine. Concerning decision problems, one can think of an oracle set as a “subrou-
tine for solving a certain decision problem in unit time”. PC (NP€) are the decision
problems solvable in polynomial time by some deterministic (nondeterministic) oracle
Turing machine with an oracle set for any problem in C. The classes AL, P and
I1; of PH are defined as follows:

Al =%f =TI =P
and for all £ > 0,
AkPJrl = P Ekpﬂ = NP

P _ P
) y Iy = co-3up .
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In particular, NP = £P, co-NP = II”, £ = NP"?_ and £ = NPY?"" . Note
that ALY = PNP is the class of problems decidable in deterministic polynomial time
with an NP oracle set. PH is equal to ;2 XF. We say that a problem is at the k-th
level of PH iff it is complete for Af, | under Turing reductions (i.e., it is in A}, and
¥ -hard or ITf-hard).

A well-known problem at the k-th level of PH, £ > 1, is deciding the validity of
a quantified Boolean formula (QBF) with & “quantifier alternations”. A QBF is a
sentence of the form Q) xq --- Q,x,F, where F is a propositional formula on pairwise
distinct variables 1, . .., , and Q; € {V, 3} is a quantifier ranging over {false, true}."
Such a formula has k quantifier alternations if the quantifier prefix Q)1 - - - @0,, is of type
4..-34v--.v4---4---or V---V4..- V... V- .- with k alternating quantifier groups,
i.e. k£ is the maximum number such that there exist 1 < i1 < 49 < -+ < lj_1 < N
with Q;; # Qi;11, for all 1 < j <k — 1. Deciding if a QBF & satisfies ® € QBFy 3
(® € QBFyy), where QBF 3 (QBFyy) denotes the set of valid QBFs with & quantifier
alternations and Q; = 3 (Q; = V) is well-known to be X/-complete (II}-complete).
Recall that a problem II is complete for a class C of decision problems iff IT belongs

to C and is C-hard, i.e., each problem II' in C is polynomial time transformable into
I1.

2.2 Autoepistemic Logic (AEL)

L is assumed to be an ordinary language of well-formed propositional formulae over a
countable set of propositional variables, built with syntactic operators =, A, V, —, <>,
T, and L1, where T and L are constants for truth and falsity, respectively. The
autoepistemic language L;, is the expansion of £ obtained by adding a unary modal
operator L, which is an “introspective” operator referring to the knowledge of a
rational agent. Intuitively, a formula Ly means that the formula ¢ is believed, i.e.,
is assumed to be valid. Note that nested occurrences of L are possible; LLy means
that the agent believes in his belief in .

For our complexity study, we assume that the knowledge base of the agent is given
by a finite set of formulae from L.

Definition 2.1 A set of (autoepistemic) premises is a finite subset of Ly,.

The letter A will be reserved to denote a set of premises throughout the rest of
this paper. Autoepistemic logic in its general setting also respects infinite knowledge
bases, which is beyond the scope of our analysis.

Within L, formulae from L are called objective formulae. For each set S C Ly,
we denote by P(S) the objective part SN L of S, i.e., the objective formulae in S.

Interpretations of L, are defined as ordinary propositional interpretations where
formulae of the form Lo are considered as atoms. More precisely, the atoms of a
formula are all propositional atoms plus all “modal” atoms, which are all subformulae
Lty which do not occur in the scope of an L operator. For example, p vV LL(p A q)
has the atoms p and LL(p A ¢). An interpretation assigns each formula from £ a
truth value by the classical rules of truth recursion, based upon truth values for the
atoms; p € Ly, (S C L) is satisfied in this interpretation iff ¢ is true (all formulae

'In fact, Quantified Propositional Formula (QPF) rather than QBF would be correct. Note that
QPFs are closed second-order formulae. In abuse of terminology, we do not distinguish between the
isomorphic concepts of QPF and QBF.
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in S are true). The consequence relation |= is defined as follows. If S C £ and
© € Ly, then S | ¢ iff ¢ is satisfied in all interpretations which satisfy S. The
consequence operator cons is defined as cons(S) = {p € L : S = ¢}. Note that
classical propositional logic is naturally extended from L to L.

The main objective of autoepistemic logic (AEL) is, as mentioned above, to model
introspective knowledge. The alternative belief sets that an ideal agent may adopt
from a set of premises are called the stable expansions of the premises; they can
formally be defined by a fixed point equation as follows.

Definition 2.2 [20] E C L;, is a stable expansion of a set of premises A iff
E=cons(AU{Lp:p € E}YU{-Ly: ¢ ¢ E}).

Thus, a belief set of an ideal agent contains the premises A and the belief in
everything which is in the belief set (L for ¢ € E) and no belief in anything which is
not in the belief set (=L for ¢ ¢ E). The concept of a stable expansion is stronger
than the concept of a stable set, which is a type of a belief set defined as follows.

Definition 2.3 A set S C Ly, is called stable if S satisfies the following three condi-
tions:

(i) S =cons(S),
(it) peS=LpeSs,

(iii) o ¢ S=-LpeS.

Every stable expansion of a premise set A is a stable set containing A, but the
converse does not hold in general. For example, consider the set A = {Lp} where p
is a propositional letter. A has no stable expansion since the belief Lp can not be
grounded in the premises. Ly, is a stable set, however, which contains Lp.

It is well-known that every stable set S is uniquely characterized by its objective
part P(S), and that for each set of objective formulae T' C L there exists a unique
stable set S D T such that P(S) = P(cons(T')) [20, 12]. This stable set is denoted by
E(T). If a premise set A is objective, then E(A) is the only stable expansion of A.

Definition 2.4 The partial order < on the stable sets of Ly, is defined by S; < Sy iff
P(Sy) C P(Sy).

As usual, we write S; < Sy for S; <X Sy A S; # S,. For example, consider
A = {Lp — p}. A has two stable expansions: F({p}) and E((}). Notice that
E0) < E({p}).

Several finitary characterizations of the stable expansions of a set of premises
appear in the literature [29, 16, 24]. We use here the criterion by Niemeld in [24]. For
any formula ¢ € L;, denote by ¢ the set of all subformulae L1 of ¢. Furthermore,
for S C L;, let ST = Uyes b, and let S = {Li,~Ley : Lyp € ST}

Definition 2.5 For a set A of premises, A C A*L is A-full iff both conditions (i) and
(it) hold for each Lo € A*: (i) AUAE @ iff Lo e A (ii) AUA = ¢ iff =Ly € A.

Note that if A is A-full, then for each Ly € A, either Ly € A or =Ly € A.
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Proposition 2.1 [24] Given a premise set A and K C A*L, deciding whether K is
A-full is in AL

The one-to-one correspondence between stable expansions and A-full sets is well-
known.

Proposition 2.2 [24] For each stable expansion E of a set of premises A, there exists
a uniquely determined A-full set A, given by A = A*X N ({Ly : Ly € E}U {=Ly :
o & E}). Conversely, each A-full set A induces a unique stable expansion of A.

The stable expansion corresponding to the A-full set A is denoted by SE4(A),
and the A-full set corresponding to the stable expansion E, which is called the kernel
of E, by As(FE). It is immediate from Proposition 2.2 that A, (Lr) = AL for every
premise set A.

Logical consequence of a formula from a stable expansion of a set of premises can
be described as follows. (Note: since stable expansions are deductively closed, logical
consequence is equivalent to membership in the expansion).

Let QS(y) denote the set of all quasi-subformulae of p € L;. Quasi-subformulae
are defined as subformulae in the usual way except that every formula Ly does not
have genuine subformulae. For example, ¢ = L(pV Lq) A (Lp V LLr) has QS(p) =
{¢,L(pV Lq), LpN LLr, Lp, LLr}.

Proposition 2.3 [24] Let F be a stable expansion of a set A of premises and ¢ € L.

Let B={Ly € QS(p) : ¢ € E}, C ={=Ly : Ly € QS(¢),v ¢ E}. Then, p € E
if AUAL(E)UBUC [ o.

In the case ¢ € £ we have B = C =), and hence ¢ € E iff AUAL(E) = ¢. In
particular, | € F, i.e. E = L, iff AU A4(F) is not consistent. Since Ay(Ly) = A"
and A" is A-full if AU A" is not consistent, it holds that £;, is a stable expansion of
A iff AU A" is not consistent.

Proposition 2.3 leads to the following upper bound for deciding whether a formula
belongs to a particular stable expansion E of a premise set A.

Corollary 2.4 [24] Given a set of premises A and the kernel A of a stable expansion
E of A, deciding if o € Ly, belongs to E is in AL.

The three main decision problems in autoepistemic reasoning are
(i) deciding whether A has a stable expansion,

(i7) deciding whether a formula ¢ belongs to some stable expansion of A (brave
reasoning),

(174) deciding whether a formula ¢ belongs to all stable expansions of A (cautious
reasoning).

Recently, Gottlob presented a precise complexity characterization of those problems.

Proposition 2.5 [9] Given a set of premises A, (i) deciding whether A has a stable
expansion is X5 -complete; (ii) deciding whether a formula ¢ belongs to some stable
expansion of A is BE-complete; and (iii) deciding whether a formula @ belongs to all
stable expansions of A is IIY -complete.
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Not all computational issues are answered by these results, however. Several
researchers have argued that stable expansions are too permissive for modeling the
belief sets of an ideal agent, since the derivation of facts from “ungrounded” beliefs
may occur [11, 21, 14, 15, 23]. For example, the expansion F({p}) of {Lp — p}
seems defeasible, since p can only be derived on behalf of the belief Lp in p. Stronger
concepts of groundedness for expansions have been proposed in [11, 21, 15, 23].

The notion of strongly grounded expansions [11] and the equivalent concepts of
strongly iterative and robust expansions [14] are syntax dependent and only defined
for premise sets in normal form.

A promising approach are iterative expansions of Marek and Truszczynski [14],
which strengthen the concept of stable expansions. (See also [23] for an elegant enu-
meration-based characterization.) It appears that the complexity of the three main
decision problems is not affected.

Proposition 2.6 [9] Given a set of premises A, (i) deciding whether A has an iter-
ative expansion is X5 -complete; (i) deciding whether a formula ¢ belongs to some
iterative expansion of A is X -complete; and (iii) deciding whether a formula ¢ be-
longs to all iterative expansions of A is IIY -complete.

In the rest of this section, we derive a simple, but useful criterion for membership
of an objective formula in a stable expansion, based on the kernel characterization.
We first introduce additional notation.

Definition 2.6 Let ¢ € L, and let v be a truth assignment to (not necessarily all)
atoms ay,...,a, of p. Then, ¢, denotes the formula that results if each occurrence
of a; in ¢ is replaced by T if v(a;) = true and by L if v(a;) = false, for all 1 < i < n.

For example, if ¢ = p A (Lp — LLq V Lq) and v(p) = true, v(Lq) = false, then
0, =TA(Lp— LLgV 1).

Deciding whether an objective formula ¢ € L belongs to E can be reduced to an
implication problem on objective formulae as follows. For every stable expansion E of
a set A of premises, let vz be the truth assignment to A defined by v (L) = true if
Ly € As(E) and ve (L) = false if L) ¢ AA(E). Then, let FA(E) = {p,, : ¢ € A}.
Note that F4(E) contains only objective formulae.

We can thus formulate the following easy lemma from Proposition 2.3.

Lemma 2.7 Let E be a stable expansion of a set A of premises, and let p € L.
Then, ¢ € E iff Fa(E) E .

Proof. Since ¢ € L, by Proposition 2.3 ¢ € FE holds iff AU A4(FE) | ¢. Since
(AUAL(E))Y = AL and for each Ly € AL, either Ly € Ay(E) or =Ly € Ay(E), it
is clear that AUAL(F) = ¢ iff F4(E)UAA(E) [ ¢. Since no atom in A4(E) occurs
in F4(FE) or in ¢, we have by trivial interpolation properties that F4(E)UA4(E) = ¢
iff Fa(E) = . O

Thus a stable expansion E of A is inconsistent, i.e. E = Ly, if and only if F4(FE)
is inconsistent.

The previous lemma allows to reduce deciding whether E' < E for stable expan-
sions E, E' of premise sets A, A’ to a propositional implication test.
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Theorem 2.8 Let E,E’ be stable expansions of respective premise sets A and A’.
Then, E' < E if and only if FA(E) |E Fa(E").

Proof. From Lemma 2.7, we get E' < E iff P(cons(Fa(E"))) C P(cons(F4(E))),
which is equivalent to Fi4(F) = Fu(E'). O

3 Parsimonious stable expansions

In this section, we derive complexity results for reasoning with parsimonious stable
expansions, which are a natural concept of restricted stable expansions. According to
Occam’s entia non sunt multiplicanda praeter necessitatem, we restrict the stable ex-
pansions of a premise set to those whose objective part does not contain the objective
part of any other stable expansion as a subset.

Definition 3.1 A stable expansion E of a set A is parsimonious iff there exists no
stable expansion E' of A such that E' < F.

Note that in the example A = {Lp — p}, only the stable expansion E(()) is
parsimonious, which eliminates the undesired stable expansion E({p}).

The complexity of reasoning with parsimonious stable expansions has, to our best
knowledge, not been considered yet. We give in this section a precise characterization
of these problems in terms of completeness results for classes at the second and the
third level of PH.

We start with characterizing the complexity of deciding whether E' < E for stable
expansions F, E' of respective premise sets A and A’. By Theorem 2.8, this problem
can efficiently be reduced to a propositional implication test, which is a well-known
intractable problem. A computationally more advantageous, that is polynomial time
checkable, criterion for checking whether E' < F is unlikely to exist, however, since
this would entail NP = P.

Theorem 3.1 Given sets A, A’ of premises and the kernels A, A" of stable expansions
E, E" of A and A', respectively, deciding whether E' < E is co-NP-complete.

Proof. By Theorem 2.8, this problem is polynomially transformable into deciding
whether ¢ |= ¢ for p,¢ € L, which is in co-NP. co-NP-hardness is shown by a
polynomial transformation from deciding whether ¢ € L is a tautology. Without loss
of generality we may assume that ¢ is satisfiable. Let p be a propositional variable
not occurring in ¢, and define A = A’ = {Lp — p,—Lp — ¢}. Then, A = {Lp} and
N = {—Lp} are A-full sets. Let E = SEs(A), E' = SEA(A’) be the corresponding
expansions. By Theorem 2.8, E' < E holds iff F4(E) = F4(F'); since F4(F) = p,
FA(E") = ¢, this holds iff ¢ is a tautology. O

Note that deciding whether a premise set has a parsimonious stable expansion is
not harder than deciding whether a stable expansion exists.

Proposition 3.2 Deciding if a premise set A has a parsimonious stable expansion is
P _complete.
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Proof. Since A is finite, only finitely many A-full sets and hence only finitely
many stable expansions of A exist. Hence it is clear that A has a parsimonious stable
expansion iff A has any stable expansion. Since the latter problem is 3¥-complete
[9, Theorem 4.1], the result follows. O

We consider now the problem of recognizing parsimonious stable expansions.

Theorem 3.3 Given a set of premises A and the kernel A of a stable expansion F
of A, deciding whether E is parsimonious is II¥ -complete. TIE-hardness holds even
if B is consistent.

Proof. = Membership of this problem in IT¥ is shown as follows. FE is not parsi-
monious if and only if there exists a stable expansion E’ of A such that F' < FE.
A guess ' C A*P for A4(E') can be verified in polynomial time with an NP ora-
cle, because checking whether A’ is the kernel of some stable expansion E’ is in AY
(Proposition 2.1) as well as deciding whether E’ < E. given the respective kernels
(follows from Theorem 3.1).

Hardness of this problem for TIZ is shown by a reduction from validity checking
of a QBF ® =V, ---Vy,,3z1 - - - Iz F. We define a set of premises A as follows. Let
Yi,---,y and s be additional variables. Let

A = {Ly; » y;, L-y; » ~y; : 1 <i<m} U
{yin—yi = s:1<i<m}U{s =AY A Aym Ay )} U

m

{LIA (i & ) = —F)}

=1

Note that A is consistent and has no inconsistent expansion since 4 U A” is
consistent. Let Ay = AL, It is easily verified by Definition 2.5 that A, is A-full; the
corresponding stable expansion Fy = SE4(Ao) is Ey = E({y1, 2., - -+ Ym, 7Y, S})-

For each stable expansion E of A it holds that s € F iff E = Ey. s € E means
{y;,—yl : 1 <i<m} C E, and since p € F entails Ly € E, Ay C E holds. Since F
is consistent, A4(F) = Ag and hence E = Ey follows.

We further note that each stable expansion E of A must satisfy F < Fy. Indeed,
it is not hard to see that F4(Fj) is logically equivalent to s Ay; A=yi A= - Aym A=yl
and since F4(F) is always satisfied if true is assigned to yi,...,¥m,s and false to
Yly- -y Um, we have Fu(Ey) = F4(E). Thus by Theorem 2.8, E < Ej.

We claim that Ej is the only stable expansion of A (and hence clearly parsimo-
nious) if and only if ® is valid.

Assume @ is not valid, that is, there exists a truth assignment v to yi,...,ym
such that 4z, ---dz F, is contradictory, i.e. =F), is a tautology. Define the set K, as
follows:

K, = {Ly;,—~L—y;:v(y;) =true,1 <i<m}U
{=Ly;, L=y : v(y;) = false,1 <i <m} U

{LIA (i © yi) = =F)}
i=1
Then, K, is A-full. To show this, we observe that A U K, is consistent with the set
S =Ayi,y. : v(y;) = true, 1 <i <m} U {~y;, v, : v(y) = false, 1 <i < m}U{=s}.
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Since for each Ly; we have Ly; — y;, we thus clearly obtain AUK, | vy; iff Ly; € K,
and AUK, W~ y; iff -Ly; € K, for 1 < i < m. The argumentation for L—y! is
analogous.

[t remains to verify that AUK, = A", (y; <> y.) — —F holds. Clearly, this holds
iff AUK, U{A~,(y; > yi)} = —F holds. Since AUK, U{A",(y; <> )} is consistent
and logically implies y; = v(y;), for 1 < i < m, this holds iff AU K, U {A~,(y; <
yi)} E —F,, which is fulfilled as =F, is a tautology; thus K, is A-full. Since K, # Ay,
it follows that SE4(K,) # Ey (and hence SE4(K,) < FEy) holds.

Conversely, assume there exists a stable expansion E # E; (and hence E < Ej).
Then, A", (y; <> yl) — —F € FE holds, because L(A",(y; < y.) — —-F) € A,
A C E, and for all v € Ly, L) € E entails ¢» € E (this follows immediately from
the definition of a stable expansion). Since AI*,(y; <> yi) — —F € L, by Lemma 2.7
it follows that F4(F) E A%, (y; <> yi) — —F. Clearly, this holds iff G = = F holds,
where G = Fu(E) U{AZ,(y; <> yi)}. G is satisfied by the truth assignment u to
Sy Y1, YLy - - - Ym, Yb, defined as follows:

true if ~L—y. € F :
u(s) = false, p(y;) = p(yl) = { false if L—|y’-y€ PR for 1 <i<m.

Since G |= —F, we have that for the restriction v of 1 to 1, ..., ym, G, = —F,. Thus
by trivial interpolation properties, = —F, follows, i.e. Vz; - - - V2= F, is valid. Hence,
Jy1 - - -y Vzq - - -V~ F is valid, which means that & = Vy, - - - Vy,,,321 - - - d2; F' is not
valid. Thus the claim is proved.

It is clear that A and Ag can be constructed in polynomial time. Thus we have
the theorem. O

The complexity of checking if a stable expansion is parsimonious has a detrimental
effect on the complexity of brave reasoning with the parsimonious stable expansions
of a set of premises.

Theorem 3.4 Deciding whether a formula ¢ € Ly belongs to some parsimonious
stable expansion of a set A of premises is XL -complete. XL -hardness holds even if
w € L and every parsimonious stable expansion of A is consistent.

Proof. Membership of this problem in £ can be shown as follows. Guess A C A+~
such that A = A4(F) and ¢ € FE for some parsimonious stable expansion E of A.
Since checking if A is the kernel of some stable expansion is in A (Proposition 2.1),
checking whether SE4(A) is parsimonious is in ITJ (Theorem 3.3), and checking
whether ¢ € E holds is in AP (Corollary 2.4), the guess can be verified in polynomial
time with a ¥ oracle. Hence the problem is in I,

We show 3F-hardness by a polynomial transformation of validity checking of a
QBF & = dxy - -- 32, Yy, - - - Vy,, 321 - - - 2, F into this problem. Let yi,...,y/ and s
be additional variables, and define

A = {x;e Ly 1<i<n}U{Ly; > y;, L-y; =~y : 1 <i<m}U
{yiN—yi = s:1<i<m}U{s = (i A=y A Aym A=y )} U
m
U{L(A (yi & yi) = =F)}.
i=1

Note that A has no inconsistent stable expansion since AU A" is consistent, and that
this set of premises is close to A in the proof of Theorem 3.3. The only difference are
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the additional premises Lz; <> x;, 1 <17 < n, and that F' can be built on z{,...,z,,

Yy oy Ymy 215 - - -, 2 instead of yi, ..., Ym, 21, -+, 21
For every truth assignment v to xy,...,z,, the set
A, = {Lz;:v(x;) = true,1 <i<n}U{=Lx;:v(zx;) = false,1 <i<n}U
{Ly1, L=y1, - -y Lyms Loy} U{L( N\ (i € yi) = —F)}
i=1

is A-full. Let E, = SE4(A,) denote the corresponding expansion. Note that x; € E,
iff v(x;) = true and —x; € E, iff v(x;) = false, for all 1 < ¢ < n. Thus clearly
E, A E,, E, A FE, holds iff v # v/ holds.

It is not difficult to show that every stable expansion F fulfills either z; € E or
—z; € F, for all 1 <i < n;let 7(F) be the truth assignment to zy, ..., z, given by E.
As a consequence, E < E’ entails that 7(E) = 7(E"), for all stable expansions E, E’
of A. Furthermore, s € E iff E = E () must always hold as well as E' < E.(g); this
can be shown analogous to s € F iff E = FEj, and E < Ej in the proof of Theorem 3.3.

Since s € E implies F = E,(p), it follows that s belongs to a parsimonious
stable expansion of A if and only if there exists a v such that E, is parsimonious.
Along the line of argumentation taken in the proof of Theorem 3.3 to prove that
Ey is parsimonious iff ® is valid, it is straightforward to show that for each truth
assignment v to xy,...,x,, E, is parsimonious if and only if Yy, - - -Vy,,,32; - - - A2, F,,
is valid. Consequently, s belongs to a parsimonious stable expansion of A if and only
if ® =dxy---Jx,Vyp - - - Vy,,dz1 - - - d2z F is valid.

Clearly, A and ¢ = s can be constructed in polynomial time, whence our theorem.
(I

An analogous result for cautious reasoning with parsimonious stable expansions
can be easily derived from this result.

Theorem 3.5 Deciding whether a formula o € Ly is in all parsimonious stable
ezpansions of a set A of premises is I15 -complete. TI} -hardness even holds if every
parsimonious stable expansion of A is consistent.

Proof. Membership of the complementary problem, deciding whether ¢ does not
occur in some parsimonious stable expansion of A, in ¥ can be shown similar to
membership of brave reasoning with parsimonious stable expansions in 7. A guess
A C A*F on the kernel of a parsimonious stable expansion E of A can be verified
in polynomial time with a 7 oracle (see proof of Theorem 3.4 for details). Given
A and A, deciding whether ¢ ¢ FE is in Al (cf. Corollary 2.4), hence possible with
one call to a ¥ oracle. Consequently, deciding whether ¢ does not occur in some
parsimonious stable expansion of A is in ££. Thus it follows that deciding whether
¢ occurs in all parsimonious stable expansions of A is in ITL.

Hardness for IT} is shown from Theorem 3.4. Given ¢ € £;, and A, consider the
three problems of deciding whether

(i) — Ly occurs in all parsimonious stable expansions of A,
(i) — Ly does not occur in all parsimonious stable expansions of A,

(¢7i) @ occurs in some parsimonious stable expansion of A.
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If every parsimonious stable expansion of A is consistent, (ii) and (iii) are equiv-
alent problems, and hence by Theorem 3.4 (i) is ¥f'-hard. It is also clear that (i) is
the complementary problem for (4); hence, (i) is IT5 -hard, even if every parsimonious
stable expansion of A is consistent. Thus the theorem follows. O

While focusing on parsimonious stable expansions gets cautious reasoning from
the second to the third level of the polynomial hierarchy in the general case, it is
interesting to note that for purely propositional formulae, parsimony does not affect
computational complexity. In particular, the following holds.

Theorem 3.6 Let ¢ € L and let A be a set of premises. Deciding whether ¢ belongs
to all parsimonious stable expansions of A is TIY -complete.

Proof. Indeed, since A has only a finite number of stable expansions, it is easily
verified that ¢ belongs to all parsimonious stable expansions of A if and only if ¢
belongs to all stable expansions of A, and this problem is in IT} [24]. TI}-hardness
holds since cautious reasoning with all stable expansions is already IT}-hard for purely
propositional formulae [9, proof of Theorem 4.5]. O

4 Moderately Grounded Expansions

Another promising concept for strengthening standard AEL is the suggestion by
Konolige [11] to restrict the stable expansions to moderately grounded expansions,
which are the stable expansions whose objective parts do not strictly contain the
objective part of any stable set that includes the premises.

Definition 4.1 A stable expansion E of a set A is moderately grounded iff there
exists no stable set S such that AC S and S < E.

Every moderately grounded expansion is parsimonious, but the converse does not
hold in general. For example, if A = {Lp — p,p — q, Lq}, then E({p, ¢}) is the only,
and hence clearly parsimonious, stable expansion of A. E({p,¢}) is not moderately
grounded, however, since F({q}) is a stable set containing A and E({q}) < E({p, q}).

Moderately grounded expansions can also be characterized by a fixed point equa-
tion and use of modal logic.

Proposition 4.1 [11, 31]
E is a moderately grounded expansion of a set of premises A iff

E = conskas(AU{-Lyp:p € L—E})
where conskas s the consequence operator of the modal logic K45.

We remark that Niemeld’s L-hierarchic expansions [23] strengthen the concept of
moderated groundedness.

The following result provides a characterization of moderately grounded expan-
sions which is useful for a recognition algorithm.

Lemma 4.2 Let A be a set of premises and S O A be a consistent stable set. Then,
['=SnA* gs full for A" = AU{p: Lp €T} and SE4(T) < S.
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Proof. Note that S is consistent, and hence either Ly € I' or =Ly € T" holds, for
all Ly € A",

Recall that T is A’-full iff for all Ly € A" (i) A UT kE ¢ iff Ly € T, and (i)
A"UT J£ ¢ iff =Ly € T. Notice that A’UT C S and that A" = A",
(1): If AAUT | ¢, then S = ¢, hence Ly € S and thus Ly € T'. Conversely, if
Lo €T, then ¢ € {¢: Ly € T}, hence clearly A’ UT = ¢.
(17): Assume A" UT }~ ¢, but =Ly ¢ T'. Consequently, Ly € T', and thus ¢ € {¢ :
Ly € T'}. Tt follows A' UT = ¢, which is a contradiction. Hence, A" UT F ¢ implies
—Lyp € T'. Conversely, assume =Ly € T'. This entails ¢ ¢ S, hence S £~ . Since
A'UT C S, it follows A'UT = ¢, and (i7) holds.

Now we observe that E' = SE.(I') < S holds: P(E') = P(cons(A"UT)) by
Proposition 2.3, and since A'UT C S, P(E’) C P(S). O

Theorem 4.3 A stable expansion E of a premise set A is moderately grounded iff
there exists no set I C A%l such that T is full for A = AU {p : Ly € T} and
SE4(T) < E.

Proof. Recall that E is moderately grounded iff there exists no stable set S such
that S < F and A C S.

Since every stable expansion is a stable set, the only if direction clearly holds.

If F is not moderately grounded, then there exists a stable set S O A such that
S < E. Since S is consistent, by Lemma 4.2 I' = SN AL is full for AU{p: Ly € '}
and SEA(I') < S, hence SE4(T') < E. Thus the if direction holds, and the result
follows. O

With this result, we are able to show that recognizing moderately grounded ex-
pansions is in IT. We also show that the problem is hard for this class, and hence
no substantially better criterion for a recognition algorithm can be expected.

Theorem 4.4 Given a set of premises A and the kernel A of a stable expansion E
of A, deciding whether E is moderately grounded is I} -complete.

Proof. A guess I' C A*" on the kernel of a stable expansion E' of A’ = AU {¢ :
Ly € T'} such that E' < E can be verified in polynomial time with an NP oracle
(Proposition 2.1, Theorem 3.1). Since by Theorem 4.3 such a T" exists iff £ is not
moderately grounded, the problem is clearly in ITZ.

We show hardness for this class by a reduction from deciding whether ® € QBF,y
for a QBF ®. Let ® = Vy;---Vy,,dz1---3zF. We define a set of premises A as
follows. Let p be an additional variable, and define

A:{LyléylaaLym_}yma Lp%(ylAAym)JLp_}pa va—'G}

where G = F(Lyy,..., Lym,21,-..,2) is the formula obtained from F' if all occur-
rences of the atom y; are replaced by Ly;, for all 1 < < m.
We notice that AUA is consistent, hence A has only consistent stable expansions.
It is easy to verify that the set Ag = A" is A-full, and that the corresponding stable
expansion Fy of A satisfies Ey = E({p, y1,...,Ym}), hence Fa(Ey) ={p,v1,--,Ym}-
Furthermore, it is not hard to see that Ej is the only stable expansion E of A
such that p € E, since the latter implies A4(E) = Ag, hence E = Ej.
We claim that Ej is not moderately grounded iff ® is not valid.
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Assume that @ is not valid. Hence, there exists a truth assignment v to yy,...,ym
such that dz; ---dz F, is contradictory, i.e. =F,, is a tautology.

Define S = E({y; : v(y;) = true,1 < i < n}). Note that =Lp € S, and that
Ly; € S if v(y;) = true and that =Ly, € S if v(y;) = false, for 1 < i < m, which
entails that =G € S. It is thus easy to see that A C S holds. Since S < Fj, it follows
that Fj is not moderately grounded, and the if direction is shown.

Now assume Ej is not moderately grounded. By Theorem 4.3, we know that there
exists ' C AL such that T'is full for A’ = AU{p: Ly € T} and E' = SE4(T) < Ej.
This entails p ¢ E’, and hence ~Lp € E'. Let the truth assignment p to y1,...,Ym
be defined by

_J true if Ly; €T .
plyi) = { false if =Ly, € " ’ for I <i<m.

Consequently, LV —F), € Fa(E') holds. Since by Theorem 2.8 we have F4(E)) =
Fy(E"), it follows {p,y1,...,Ym} = —F,. Since in F, only z; variables occur, by
trivial interpolation properties this holds iff = —F), holds, i.e. =F), is a tautology.
Consequently, 3z, -+ -3z F), is contradictory, which implies that ® is not valid. Hence
the only if direction holds, and the claim is proved.

Since A and Ay are clearly constructible in polynomial time, the theorem follows.
|

With this result, we can characterize the complexity of the reasoning tasks for
moderately grounded expansions as follows.

Theorem 4.5 Let A be a set of premises and let ¢ € Ly,. Deciding whether ¢ occurs
in some moderately grounded expansions of A is XL -complete. XL -hardness holds
even if ¢ € L and every moderately grounded expansion of A is consistent.

Proof. A guess A C A*" on the kernel of a moderately grounded expansion F
of A can be verified in polynomial time with a X1 oracle. Indeed, deciding whether
A is the kernel of a stable expansion of A is possible with one call to a 3 oracle
(cf. Proposition 2.1), and by Theorem 4.4, deciding whether the corresponding stable
expansion E is moderately grounded is possible with one call to a % oracle. On a
successful guess, deciding whether ¢ € E holds is possible with another call to a ¥
oracle (cf. Corollary 2.4). It follows from this that brave reasoning with moderately
grounded expansions is in X1

The proof of ¥Z-hardness is an extension of the construction in the proof of
Theorem 4.4, which is analogously obtained as the one in the proof of Theorem 3.4.
Given a QBF & = 3z ---32,Vy, - - - Yy, 21 - - -2 F, we construct a premise set A
as follows.

A = {zy o Lxy, ...,z < L,y U{Lyy = 1, .oy LY — Ym} U
{Lp— (i A+ Aym), Lp = p, LpV -G}
where G = F(x1,...,%n, Ly1, ..., Lym, 21, ..., 2) is the formula obtained from F' if
all occurrences of the atom y; are replaced by Ly;, for all 1 < ¢ < m.

Notice that A has only consistent stable expansions, as A U A" is consistent.
For every truth assignment v to xy,...,z,, the set
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A, = {Lz;:v(x;) =true,1 <i<n}U{=Lx;:v(x;) = false,1 <i <n}U
{Lp7 Lyla e Lym}

is A-full, and if E, = SFE4(A,), then x; € E, iff v(z;) = true and —z; € E, iff
v(x;) = false. Therefore, E, A E,, E,, A E, iff v # .

It holds that if p € E for some stable expansion E of A, then E = FE, for some
v. Hence p belongs to some moderately grounded expansion of A iff some E, is
moderately grounded; since E, is moderately grounded iff Vy, ---Vy,, 32, - - - 2/ F), is
valid, p belongs to some moderately grounded expansion of A iff ® is valid. Since A,
@ = p are constructible in polynomial time, the result follows. O

Using this result, we can easily derive that even checking for the existence of
moderately grounded expansions is at the third level of the polynomial hierarchy.

Theorem 4.6 Deciding whether a premise set A has a moderately grounded expan-
sion is XY -complete. XL -hardness holds even if every moderately grounded expansion
of A is consistent.

Proof.  Membership of this problem in ¥ holds since a guess A C A*" on the
kernel of a moderately grounded expansion of A can be verified in polynomial time
with a X% oracle (see proof of Theorem 4.5 for details).

Hardness for % is shown by a slight extension of the construction in the proof
of Theorem 4.5. Recall that we constructed there a premise set A such that ev-
ery moderately grounded expansion of A is consistent, and a formula ¢, which is
the propositional atom p, such that deciding whether ¢ occurs in any moderately
grounded expansion of A is ¥'-hard.

Let g be a propositional letter not occurring in A and define A" = AU{Lp — ¢, Lq}.

It can be easily seen that A’UA'" is consistent, hence A’ has only consistent stable
expansions. Every stable expansion F of A’ must contain Lg, hence ¢ and thus also
Lp, since Lp — ¢ is the only formula in A’ that allows to derive q.

Hence, we obtain that the only A’-full sets are the sets Al, = A, U {Lq} for each
truth assignment v to the x; variables, with corresponding stable expansions

E, = E({x;:v(z;) =true,1 <i<n}U{-z;:v(x;) = false,1 <i<n}U
{yla <o Yms Py q})

of A’, which correspond one-to-one to the stable expansions

E, = E({xz;:v(z;) = true,1 <i<n}U{-z;:v(x;) = false,1 <i<n}U
{yla R ymap})

of A.

By use of the interpolation theorem, it follows that there exists a stable set S < FE,,
such that S O A iff there exists a stable set S’ < F;, such that S’ O A’, for all
v. Hence, E, is moderately grounded for A iff E/ is moderately grounded for A’.
Since deciding whether some E,, is moderately grounded for A is ¥5-hard (which is
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the case iff p occurs in some moderately grounded expansion of A), it follows that
deciding whether A’ has any moderately grounded expansion is $£-hard. Since every
moderately grounded expansion of A’ is consistent, this holds under the asserted
restriction; the theorem follows. O

Theorem 4.7 Let A be a set of premises and let ¢ € L. Deciding whether ¢ occurs
in all moderately grounded expansions of A is IIY -complete. This holds even if ¢ € L
and every moderately grounded expansion of A is consistent.

Proof. A guess A C A*" on the kernel of a moderately grounded expansion E of
A can be verified in polynomial time with a 3 oracle. On a successful guess, it can
be verified in polynomial time with a NP oracle whether ¢ ¢ E. Hence, cautious
reasoning with moderately grounded expansions is clearly in TI.

For the hardness part, note that L occurs in all moderately grounded expansions of
A iff A has no consistent moderately grounded expansion. By Theorem 4.6, deciding
whether A has a consistent moderately grounded expansion is $£-hard, even if every
moderately grounded expansion of the premise set is consistent. Thus IT}-hardness
of the problem under the asserted restriction follows. O

5 Normal form

An interesting issue is the complexity of autoepistemic reasoning in the case where
premise sets are in some normalized form. It is pointed out in [11, Proposition 3.9]
that each set T' C L}, has a K45 equivalent set in which each sentence is of the form

Loy V-V Loy, VL V-V aLly, Vw

where all ¢;,1; and w are objective formulae, and all disjuncts except w may be
absent; there exists such a finite set if 7" is finite. Actually, formulae where n < 1
suffice for this purpose. We refer in the sequel to premise sets in the more general
form as normalized premise sets and to those in the more strict format (n < 1) as
K-normal premise sets. All lower complexity bounds derived for normal form in this
section carry over to K-normal form.

The considered normal form is more restricted than Moore’s normal form [20, 16],
according to which each ¢ € L can be represented by an equivalent formula ©; A
-+ - A O, where

@i = L(,Oi,l VeV L@i,mi V _‘L'Q//'i,l VeV _‘lei,ni V Wi,

and w; € Lforalll <<k,

In particular, the considered normal form does not allow nestings of L operators,
which entails that the corresponding language constitutes a rather small fragment
of the language L. However, in the context of consistent stable sets and stable
expansions, studies of autoepistemic logic can be simplified (without loss of generality)
by restriction to premise sets from this fragment; replacing an arbitrary premise set A
with a normalized premise set A’ equivalent to A with respect to stable sets and stable

expansions may result in a large (exponential) increase in the size of the premise set
(cf. [16, Proposition 3.5,4.4] and pp. 601,602 ibid).
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It turns out that under the considered format, reasoning with moderately grounded
expansions is most probably easier than in the general case and not harder than in
standard AEL. This is in contrast to standard AEL expansions and parsimonious
stable expansions, for which reasoning from normalized premise sets has the same
complexity as in the general case.

Let us first consider standard AEL expansions. The following theorem strengthens
Proposition 2.5.

Theorem 5.1 Let A be a premise set in normalized form. Then, (i) deciding whether
A has any stable expansion is XL -complete; (ii) deciding whether ¢ € L1 occurs in
some stable expansion of A is 35 -complete; and (iii) deciding whether ¢ € Ly, occurs
in all stable expansions of A is IIY -complete. £F-hardness of (i) and (ii) and IIL -
hardness of (iii) hold even if A is in K-normal form and every stable expansion of A
18 consistent.

Proof. The membership parts are obvious by Proposition 2.5.

The hardness parts are shown by suitable transformations of deciding whether
for a QBF ® = Jy; -+ -y, V21 - - -V F it holds that ® € QBFy5 resp. ® ¢ QBF, 5.
Construct the following normalized set of premises:

A={=LyiVyi, Ly V=1, ..., " Lym V Ym, Ly V =Y, LEV L}

Note that A U A” is consistent, hence A has only consistent stable expansions. Now
consider the three problems of deciding whether

(a) A has a stable expansion,
(b) T occurs in a stable expansion of A,
(¢) L occurs in all stable expansions of A.

Clearly, (a) and (b) are equivalent problems, and since A has only consistent stable
expansions, (c¢) is a complementary problem to (a). It is easy to see that the premise
set

A" ={Lyi <y, Lym < Ym, LF}

is logically equivalent to A. In [9, Proof of Theorem 4.1] it is shown that A’ has a
stable expansion iff @ is valid. It follows that (a) and (b) are £2-hard and that (c) is
IT]-hard. Since A is in K-normal form, the result follows. O

Next we consider parsimonious stable expansions, for which normal form of prem-
ise sets also does not affect the complexity of reasoning.

Theorem 5.2 Let A be a premise set in normal form. Then, (i) deciding whether A
has any parsimonious stable expansion is X -complete; (i) deciding whether ¢ € Ly,
occurs in some parsimonious stable expansion of A is ¥ -complete; and (iii) deciding
whether ¢ € Ly, occurs in all parsimonious stable expansions of A is IIL -complete.
SP-hardness of (i), XL -hardness and (i), and TIY -hardness of (iii) hold even if A is
in K-normal form and every parsimonious stable expansion of A is consistent.

47



Proof. XI-completeness of (i) follows immediately from arguments in the proof
of Proposition 3.2 and Theorem 5.1. For (i) and (7ii), we observe that each formula
in the premise set A constructed in the proof of Theorem 3.4 is equivalent to a
small set of formulae in K-normal form. Each formula Lz; <+ z; is equivalent to
{=Lx; Vv x;, Lx; V -x;}, Ly; — y; to {=~Ly; V y;}, L=y, — —y! to {=~L—y. Vv —y.}, and
the formula L(AZ,(y; <> vi) — —F) to {L(A",(y; <> yi) — —F) Vv L}. All other
formulae in A are objective and thus already in K-normal form. Consequently, A can
be replaced by an equivalent premise set in K-normal form in polynomial time. Thus
by proofs analogous to those of Theorems 3.4,3.5, the theorems follows. O

Now let us turn to moderately grounded expansions. Normalized premise sets
lower the complexity of reasoning by one level of the polynomial hierarchy, and locate
the problems at the second level. More precisely, the problems are complete for the
same complexity classes as the respective problems under standard AEL expansions.
We start with the following lemma.

Lemma 5.3 Given a set of premises A, deciding whether there exists a consistent
stable set S such that S O A is in NP.

Proof. From Lemma 4.2 it is immediate that we may require without loss of
generality that S is a consistent stable expansion of A" = AU {¢ : Ly € T'}, where
' = SN A% is the kernel of S. Now proceed as follows. Guess I' C A*" and truth
assignments vg, vy, ..., v, to the atoms in A, where m = |A”|. The guess is valid if
A"UT is satisfied by vy and A’ UT U {—y;} is satisfied by v; for 1 < i < n, where
{¢1,...,n} = {p : 7Ly € T'}. This holds because in this case I" is A’-full and the
corresponding stable expansion is consistent. The space needed to represent the guess
I' and vy, ..., v, is clearly polynomial in the input size, and the guess can be verified
in polynomial time. Thus the existence of a suitable S can be decided with an NP
algorithm, and the lemma follows. O

Lemma 5.4 Let A be a premise set in normal form, and let A be the kernel of a
stable expansion E of A. Deciding whether E is moderately grounded is in AY.

Proof. Since A is normalized, each formula in A is of type

Loy V-V Loyp VL V-V Ly, Vw.

Denote by €2 the set of the propositional parts w of the formulae in A. It is not hard
to see that F4(E) is logically equivalent to QN E.
We construct a premise set A” from A and A as follows:

A"=AU{-Lp: Lo e A} U{-Lw:weQ—F}U{-Lw V---V-aLw,V 1},

where {Lwq,...,Lwi} = {Lw : w € QN E}. For every w € (, deciding whether
weQ—FEorwe QN E is by Proposition 2.3 possible in polynomial time with an
NP oracle. Consequently, A” can be constructed in polynomial time with an NP
oracle.

We claim that there exists a consistent stable set S such that S D A” iff E' is not
moderately grounded.

Assume E is not moderately grounded. That is, there exists a stable set S D A
such that S < E. We notice that S is consistent. Consider =Ly € {=Ly : =Ly €
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AYU{—-Lw:w € Q— E}. Such a =Ly exists only if E is consistent, and in this case
it follows ¢» ¢ E. Since S < E and ¢ € L, it follows that ¢) ¢ S and hence =Ly € S.
Finally, consider the formula ® = =Lw; V---V = Lw, V 1. We show that © € S holds.
Assume O ¢ S. Since O is a disjunction of negated modal atoms —Lw; and L, it
follows that Lw,; € S, for all 1 <i < k. This implies {w,...,wr} =QNE C S. Since
QN E is logically equivalent to F4(E), it follows from Lemma 2.7 that P(E) C P(S),
ie. £ < S. However, this is in contradiction to E A S, which is implied by the
assertion that S < E. Consequently, © € S must hold. It follows S D A”. Thus the
if direction is proved.

Conversely, assume there exists a consistent stable set S D A”. We may by
Lemma 4.2 assume that S is a stable expansion E’ of A’ = A" U{¢: Ly € '} where
[ = E'NA"*L is the kernel of E’. We observe that A"l = ALU{Lw : w € Q} and that
the set {¢: Ly € T'} contains only objective formulae. Furthermore, for each w € Q,
if we E', then Lw € E’ and hence Lw € T holds. It is thus not hard to see from the
structure of A’ that Fa(E") is equivalent to the set G = {¢ : Ly € I'}. Now consider
Lo €. If Lo € A", then Ly € A and hence Ly € E, for otherwise Ly, ~Lyp € E'
would hold, contradicting the consistency of E’; if Ly € {Lw : w € Q}, we infer
Ly € E by an analogous argument. Consequently, for each Ly € T', it holds that
Ly € F, and thus ¢ € E. It follows that G C E. Thus from Lemma 2.7, it follows
that P(E') C P(E), i.e. E' < E. On the other hand, £ < E’ does not hold. Indeed,
since = Lw; V-V —Lw, V L € E' and E’ is consistent, it follows that —=Lw; € E'
for some i. This implies that w; ¢ E’. However, w; € E holds from the construction
of A”. Since w; is an objective formula, it follows P(E) € P(E'), i.e. E £ E'. Thus
we have that ' < F, E A F', i.e. E' < E. Since E' D A, it follows that E is not
moderately grounded. Thus the only if direction holds, and the claim is proved.

By Lemma 5.3, deciding whether there exists for A” a consistent stable set S such
that S D A” is possible with one call to an NP oracle. Thus given A and A, deciding
whether E is moderately grounded is possible in polynomial time with an NP oracle,
and the lemma follows. O

We thus obtain the following.

Theorem 5.5 Let A be a premise set in normal form. Then, (i) deciding whether A
has a moderately grounded expansion is 35 -complete; (ii) deciding whether o € Lj,
occurs in some stable expansion of A is LI -complete; and (iii) deciding whether ¢ €
L, occurs in all stable expansions of A is IIL -complete. XL -hardness of (i), (i1) and
I17 -hardness of (iii) hold even if A is in K-normal form and every stable expansion
of A is consistent.

Proof. The key for all membership proofs is that a guess A C A*" on the kernel of
a moderately grounded expansion E of A can be verified in polynomial time with an
NP oracle. This holds since deciding whether A is A-full is in AL’ (Proposition 2.1)
and deciding whether the stable expansion corresponding to A is moderately grounded
is in AP (Lemma 5.4). Consequently, (i) is clearly in X7

On a successful guess A, deciding whether ¢ € E is in A? (Corollary 2.4). Conse-
quently, (ii) is in 3¥. Likewise deciding whether ¢ ¢ E is in Al’. This implies that
deciding whether ¢ does not occur in some moderately grounded expansion of A is
in 2. It follows from this that the complementary problem, i.e. (i4i), is in ITL.

The hardness parts are shown by proving a property of the premise set
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A={=LyiVyi, Ly V=1, ..., " Lym V Ym, Ly V =Y, LEV L}

in the proof of Theorem 5.1. We show that each stable expansion E of A is moderately
grounded. Hence, we may replace "stable expansion” in (a)-(¢) in the proof of The-
orem 5.1 equivalently with "moderately grounded expansion”, and we immediately
obtain the asserted hardness results.

Assume that E is not moderately grounded. Then, by Theorem 4.3, there exists
[ C A*L such that T is full for A’ = AU{p : Ly € T} and E' < E where I'
is the kernel of the stable expansion E' of A’. Let A = A4(F). Clearly, LF € A
and LF € T". Since A has only consistent stable expansions, F, E' are consistent.
Consequently, Ly; € E iff y; € E and —Ly; € F iff —y; € F holds, for all 1 <i < m.
Similarly, Ly; € E' iff y; € E' and =Ly; € E" iff =y; € E’ holds, for all 1 < i < m.
Since E' < E implies P(E') C P(FE), it follows I' = A. Consequently, AUA = A'UT
and A'UT = AUA, and hence F4(F) = Fa(E'). Thus by Lemma 2.7 P(E) = P(E’),
which means E' A E, contradiction. Consequently, E is moderately grounded. O

6 Discussion and Conclusion

The complexity results in the previous sections show that reasoning with parsimonious
stable expansions is most likely much harder than reasoning with all stable expansions,
which is at the second level of the polynomial hierarchy PH. The same holds for
reasoning with moderately grounded expansions. As a consequence, brave reasoning
in these strengthened versions of standard AEL cannot be polynomially transformed
into brave or cautious reasoning in standard AEL, unless % = 3P or 38 = 117,
which is considered very unlikely. For cautious reasoning, we have an analogous result.

In practical terms, this means that even if we have arbitrarily many oracle calls
for brave or cautious reasoning in standard AEL for free, it is unlikely that we can
compute the answer for brave reasoning in the strengthened versions in polynomial
time. The same holds for cautious reasoning. Notice, however, that if ¢ is an objective
formula, cautious reasoning with parsimonious stable expansions is no harder than
cautious reasoning in standard AEL, and in fact is of the same difficulty.

The reason for the extreme intractability of parsimonious stable expansions and
moderately grounded expansions are the following three sources of complexity:

1. logical consequence in classical propositional logic (E)
2. the large (exponential) number of candidates E for stable expansions of A

3. for each stable expansion F of A, the (potentially exponential) number of can-
didates for a stable expansion E’ of A (stable set S D A) such that E' < E
(S < E),

where “exponential” refers to the number of distinct modal atoms in the premise set
A. Sources 1 and 2 are already present in Moore’s formulation of AEL, while source 3
is introduced by parsimony and moderate groundedness.

To gain tractability, all three sources have to be eliminated. A straightforward
but unsatisfactory way to achieve this is to bound the length of the encoding of A by
a constant. More practical restrictions are yet to be found.
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Our results on reasoning from premise sets where the knowledge is represented
in a normalized format show an interesting effect of strengthening AEL on the com-
plexity of autoepistemic reasoning. Under this format, brave and cautious reasoning
are at the second level of the polynomial hierarchy if standard AEL expansions are
considered. The problems are lifted to the third level if standard AEL expansions
are restricted to parsimonious stable expansions. However, the further restriction
from parsimonious stable expansions to moderately grounded expansions locates the
reasoning tasks at the second level of the polynomial hierarchy again. Thus the com-
plexity of autoepistemic reasoning from normalized premise sets is nonmonotonic in
these successive strengthenings of AEL.

Reasoning with parsimonious or moderately grounded autoepistemic expansions
is, to our best knowledge, the first problem in AT known to be £¥-complete. Actually,
few practical problems of this complexity are known to date (see [7] for others).

We note that more recently, higher-level complexity results within PH have been
derived for other forms of non-classical reasoning. (See also [1] for a comprehensive
survey of the field.)

Nonmonotonic Logics. Gottlob [9] has shown that several reasoning tasks in a
number of nonmonotonic propositional logics are complete for some classes of the
second level of PH. In particular, he showed that besides autoepistemic logic, in
Reiter’s default logic [26], in McDermott and Doyle’s nonmonotonic logic [17, 18], and
in Marek and Truszczyniski’s nonmonotonic logic N [15], which all have a fixed point
semantics, deciding whether a fixed point exists is ¥7-complete, deciding whether a
formula belongs to some fixed point is $5-complete, and deciding whether a formula
belongs to all fixed points is ITY-complete. For default logic, similar results have been
independently obtained by Stillman [30] and Papadimitriou and Sideri [25].

Revision and Update of Propositional Theories. Several operators o for revising
or updating a knowledge base (theory) T with a sentence F have been proposed
which handle arising inconsistencies appropriately. Nebel [22] and Eiter and Gottlob
[6] have shown that for almost all update operators o, deciding whether the revised
knowledge base T o F' implies a formula G is at the second level of PH and for many
of them TT}-complete.

Closed World Reasoning and Circumscription. Eiter and Gottlob [5] have shown
that inference with a propositional theory under various forms of the closed world
assumption and under circumscription is at the second level of PH. In particular,
deciding whether the circumscription CIRC(F) logically implies a formula G, i.e. G
is satisfied in every minimal model of F', is shown to be IT{-complete.

TMS. Rutenburg [27] has shown that for a certain variant of truth maintenance
system (TMS) [4] deciding whether there exists a “nogood” of certain size is X1-
complete.

Abduction. Eiter and Gottlob [7] analyzed the complexity of logical abduction [3]
in the full propositional context. It appears that deciding whether an abduction prob-
lem has a solution is ¥Z-complete. The same holds for checking a certain property
of hypotheses, i.e. abducible propositions. Moreover, we show that special variants
of abduction are even ¥1-complete.

All these results suggest that nonmonotonic reasoning is more complex than clas-
sical reasoning in the propositional context; for logic programs and the first-order
case, this is definitively known for many approaches, cf. [26, 28, 2, 13].
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