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Abstra
t. We investigate the 
omplexity of autoepistemi
 reasoningwith parsimonious and moderately grounded expansions. A stable ex-pansion of an autoepistemi
 set of premises is parsimonious if its obje
-tive (i.e. nonmodal) part does not 
ontain the obje
tive part of any otherstable expansion. We prove that de
iding whether a formula ' belongsto at least one parsimonious stable expansion of a �nite base set A is
omplete for �P3 , while de
iding 
ontainment in all parsimonious stableexpansions is 
omplete for �P3 . Similar results are derived for autoepis-temi
 reasoning with moderately grounded expansions. In parti
ular,we show that de
iding whether a formula ' belongs to some moderatelygrounded expansion of a �nite base set A is �P3 -
omplete, and thatde
iding whether ' belongs to all moderately grounded expansions is�P3 -
omplete. These results suggest that reasoning with parsimoniousstable expansions and moderately grounded expansions is stri
tly harderthan reasoning in Moore's standard version of autoepistemi
 logi
. Wealso address the 
omplexity of reasoning if the set A is in a normalizedform, and derive 
ompleteness results for this 
ase.1 Introdu
tionIn this paper we study the 
omplexity of de
ision problems for variants of Moore'sAutoepistemi
 Logi
 (AEL) [20℄. AEL is known as a su

essful tool for formalizingprin
iples of nonmonotoni
 reasoning. This logi
 is based on the language of propo-sitional logi
 extended by a modal belief operator L. Informally, if ' is a formula(possibly 
ontaining o

urren
es of L), L' means ' is believed or also, ' is in theknowledge base, where the knowledge base is supposed to 
ontain the set of all beliefsof an ideally rational introspe
tive agent.In AEL, ea
h given set A of initial beliefs is mapped to a set of expansions,where ea
h expansion is an alternative possible set of total beliefs based on A. Themain inferen
e tasks of AEL are to de
ide whether a given formula ' o

urs in atleast one stable expansion of A (brave reasoning), and to determine whether a givenformula ' o

urs in all stable expansions of A (
autious reasoning). The 
omplexityof these problems for a �nite set A was investigated in [9℄, where it was shown that�Internet e-mail: feiter,gottlobg�vexpert.dbai.tuwien.a
.at31



these problems are 
omplete for respe
tively �P2 and �P2 , thus harder than NP and
o-NP.In the present paper, we 
onsider stronger versions of AEL, in parti
ular parsi-monious stable expansions and moderately grounded expansions of a �nite base setA. A natural strengthening of the 
on
ept of stable expansion is to require thatthe obje
tive (i.e. nonmodal) part of a stable expansion must be minimal 
omparedto all other stable expansions with respe
t to set in
lusion. We refer to su
h stableexpansions as parsimonious. Expansions of this type des
ribe the minimal dedu
tively
losed obje
tive theories that a rational agent may adopt if every a

epted belief L'must be grounded in the agent's knowledge base, i.e. ' must be derivable from theknowledge base and the beliefs.Our investigation into the 
omplexity of reasoning with parsimonious stable ex-pansions 
overs the main de
ision problems in autoepistemi
 reasoning. In parti
ular,we show that de
iding whether a formula ' belongs to at least one parsimonious sta-ble expansion of a �nite base set A is 
omplete for �P3 , while de
iding for 
ontainmentin all parsimonious stable expansions is 
omplete for �P3 . However, de
iding whetherA has any parsimonious stable expansion is �P2 -
omplete, and hen
e of the same
omplexity as de
iding whether A has any stable expansion.Similar results are shown for reasoning with moderately grounded expansions,whi
h were introdu
ed in [11℄ (see [31℄ for another development of the same 
on
ept).Informally, a moderately grounded expansion of A is a stable expansion of A whoseobje
tive part is minimal over the obje
tive parts of stable belief sets that in
lude A.Moderately grounded expansions 
orrespond to a more 
onservative 
on
ept of be-lieving whi
h, in parti
ular 
ontexts, is more appropriate than the one 
orrespondingto standard AEL [11℄. Noti
e that moderate groundedness strengthens the 
on
eptof parsimony, sin
e moderately grounded expansions are parsimonious, but the 
on-verse does not ne
essarily hold. We show that brave reasoning with the moderatelygrounded expansions of a �nite base set A is �P3 -
omplete, while 
autious reasoningis �P3 -
omplete. Furthermore, we show that even de
iding whether there exists anymoderately grounded expansion for A is �P3 -
omplete.Thus, unless the polynomial time hierar
hy 
ollapses at some low level, brave aswell as 
autious reasoning with parsimonious stable expansions or with moderatelygrounded expansions is stri
tly harder than with standard AEL expansions. Theintuitive explanation for this is that minimality-
he
king introdu
es an additionalsour
e of 
omplexity. As a 
onsequen
e of our results, unless the polynomial hierar
hy
ollapses, there 
annot be any polynomial transformation from parsimonious AEL ormoderately grounded AEL to standard AEL.Our analysis also devotes attention to the 
omplexity of autoepistemi
 reason-ing from base sets where the knowledge is represented in some spe
ial format. Inparti
ular, we 
onsider base sets where all formulae are of the formL'1 _ � � � _ L'm _ :L 1 _ � � � _ :L n _ !where all 'i;  j and ! are obje
tive formulae and only ! must be present. Formulaeof this type have been 
onsidered in the 
ontext of moderate groundedness in [11℄.Noti
e that this format, whi
h is more restri
tive than the Moore normal form [20, 16℄,only allows for formulae without nestings of L operators, and hen
e generates merelya small fragment of the autoepistemi
 language.32



We show that for the 
ase that the set A is normalized, brave reasoning with themoderately grounded expansions of su
h �nite premise sets is �P2 -
omplete, and that
autious reasoning is �P2 -
omplete.These results are interesting sin
e the 
omplexity of standard AEL as well asparsimonious AEL remains una�e
ted by normalized premise sets, whi
h means thatin this 
ase moderately grounded expansions are as easy as standard AEL expan-sions, while parsimonious stable expansions are stri
tly harder unless the polynomialhierar
hy 
ollapses.The rest of the paper is organized as follows. Se
tion 2 introdu
es the 
on
eptsof 
omplexity theory ne
essary for our analysis and gives a brief summary of AELand previously derived related 
omplexity results. Se
tion 3 
ontains results on parsi-monious stable expansions, while Se
tion 4 
ontains results on moderately groundedexpansions. In Se
tion 5, we investigate into the impa
t of normalized premise setson the 
omplexity of autoepistemi
 reasoning. Se
tion 6, whi
h 
on
ludes the paper,gives a dis
ussion of the results and reviews related 
omplexity results for other formsof nonmonotoni
 reasoning.2 Preliminaries2.1 Computational ComplexityWe start with a brief review of the relevant 
on
epts of 
omplexity theory. The readeris assumed to be familiar with the basi
 
on
epts of NP-
ompleteness; an ex
ellentintrodu
tion to that �eld is [8℄. Most of the problems we 
onsider are NP-hard, butare not known to be in NP or a similar 
lass su
h as 
o-NP. All of them reside inthe polynomial hierar
hy (PH), however, whi
h has been introdu
ed in [19℄ as a 
om-putational analog to the Kleene arithmeti
 hierar
hy of re
ursion theory [8, 10℄. The
lasses of PH are de�ned by ora
le Turing ma
hines and 
ontain, unless the hierar
hy
ollapses, problems of in
reasing 
omplexity. They provide thus a way for 
hara
ter-izing the 
omplexity of some problems harder thanNP-
omplete problems, espe
iallyif 
ompleteness of a problem for some 
lass 
an be shown. Problems 
omplete for a
lass su�er from, depending on the 
lass, several sour
es of 
omplexity ea
h of whi
hleads to intra
tability. We su

eed to establish 
ompleteness results for all 
onsideredproblems.Ora
le Turing ma
hines are ordinary Turing ma
hines equipped with an ora
letape. Roughly speaking, the ora
le tape enables the ma
hine to 
he
k in unit timewhether a string belongs to the ora
le set, whi
h is a formal language atta
hed to thema
hine. Con
erning de
ision problems, one 
an think of an ora
le set as a \subrou-tine for solving a 
ertain de
ision problem in unit time". PC (NPC) are the de
isionproblems solvable in polynomial time by some deterministi
 (nondeterministi
) ora
leTuring ma
hine with an ora
le set for any problem in C. The 
lasses �Pk ;�Pk ; and�Pk of PH are de�ned as follows:�P0 = �P0 = �P0 = Pand for all k � 0, �Pk+1 = P�Pk ; �Pk+1 = NP�Pk ; �Pk+1 = 
o-�Pk+1:33



In parti
ular, NP = �P1 , 
o-NP = �P1 , �P2 = NPNP, and �P3 = NPNPNP. Notethat �P2 = PNP is the 
lass of problems de
idable in deterministi
 polynomial timewith an NP ora
le set. PH is equal to S1k=0�Pk . We say that a problem is at the k-thlevel of PH i� it is 
omplete for �Pk+1 under Turing redu
tions (i.e., it is in �Pk+1 and�Pk -hard or �Pk -hard).A well-known problem at the k-th level of PH, k � 1, is de
iding the validity ofa quanti�ed Boolean formula (QBF) with k \quanti�er alternations". A QBF is asenten
e of the form Q1x1 � � �QnxnF , where F is a propositional formula on pairwisedistin
t variables x1; : : : ; xn and Qi 2 f8; 9g is a quanti�er ranging over ffalse; trueg.1Su
h a formula has k quanti�er alternations if the quanti�er pre�x Q1 � � �Qn is of type9 � � � 98 � � � 89 � � � 9 � � � or 8 � � � 89 � � � 98 � � � 8 � � � with k alternating quanti�er groups,i.e. k is the maximum number su
h that there exist 1 � i1 < i2 < � � � < ik�1 < nwith Qij 6= Qij+1, for all 1 � j � k � 1. De
iding if a QBF � satis�es � 2 QBFk;9(� 2 QBFk;8), where QBFk;9 (QBFk;8) denotes the set of valid QBFs with k quanti�eralternations and Q1 = 9 (Q1 = 8) is well-known to be �Pk -
omplete (�Pk -
omplete).Re
all that a problem � is 
omplete for a 
lass C of de
ision problems i� � belongsto C and is C-hard, i.e., ea
h problem �0 in C is polynomial time transformable into�.2.2 Autoepistemi
 Logi
 (AEL)L is assumed to be an ordinary language of well-formed propositional formulae over a
ountable set of propositional variables, built with synta
ti
 operators :;^;_,!;$,>, and ?, where > and ? are 
onstants for truth and falsity, respe
tively. Theautoepistemi
 language LL is the expansion of L obtained by adding a unary modaloperator L, whi
h is an \introspe
tive" operator referring to the knowledge of arational agent. Intuitively, a formula L' means that the formula ' is believed, i.e.,is assumed to be valid. Note that nested o

urren
es of L are possible; LL' meansthat the agent believes in his belief in '.For our 
omplexity study, we assume that the knowledge base of the agent is givenby a �nite set of formulae from LL.De�nition 2.1 A set of (autoepistemi
) premises is a �nite subset of LL.The letter A will be reserved to denote a set of premises throughout the rest ofthis paper. Autoepistemi
 logi
 in its general setting also respe
ts in�nite knowledgebases, whi
h is beyond the s
ope of our analysis.Within LL, formulae from L are 
alled obje
tive formulae. For ea
h set S � LL,we denote by P (S) the obje
tive part S \ L of S, i.e., the obje
tive formulae in S.Interpretations of LL are de�ned as ordinary propositional interpretations whereformulae of the form L' are 
onsidered as atoms. More pre
isely, the atoms of aformula are all propositional atoms plus all \modal" atoms, whi
h are all subformulaeL whi
h do not o

ur in the s
ope of an L operator. For example, p _ LL(p ^ q)has the atoms p and LL(p ^ q). An interpretation assigns ea
h formula from LL atruth value by the 
lassi
al rules of truth re
ursion, based upon truth values for theatoms; ' 2 LL (S � LL) is satis�ed in this interpretation i� ' is true (all formulae1In fa
t, Quanti�ed Propositional Formula (QPF) rather than QBF would be 
orre
t. Note thatQPFs are 
losed se
ond-order formulae. In abuse of terminology, we do not distinguish between theisomorphi
 
on
epts of QPF and QBF. 34



in S are true). The 
onsequen
e relation j= is de�ned as follows. If S � LL and' 2 LL, then S j= ' i� ' is satis�ed in all interpretations whi
h satisfy S. The
onsequen
e operator 
ons is de�ned as 
ons(S) = f' 2 LL : S j= 'g. Note that
lassi
al propositional logi
 is naturally extended from L to LL.The main obje
tive of autoepistemi
 logi
 (AEL) is, as mentioned above, to modelintrospe
tive knowledge. The alternative belief sets that an ideal agent may adoptfrom a set of premises are 
alled the stable expansions of the premises; they 
anformally be de�ned by a �xed point equation as follows.De�nition 2.2 [20℄ E � LL is a stable expansion of a set of premises A i�E = 
ons(A [ fL' : ' 2 Eg [ f:L' : ' =2 Eg):Thus, a belief set of an ideal agent 
ontains the premises A and the belief ineverything whi
h is in the belief set (L' for ' 2 E) and no belief in anything whi
h isnot in the belief set (:L' for ' =2 E). The 
on
ept of a stable expansion is strongerthan the 
on
ept of a stable set, whi
h is a type of a belief set de�ned as follows.De�nition 2.3 A set S � LL is 
alled stable if S satis�es the following three 
ondi-tions:(i) S = 
ons(S),(ii) ' 2 S ) L' 2 S,(iii) ' =2 S ) :L' 2 S.Every stable expansion of a premise set A is a stable set 
ontaining A, but the
onverse does not hold in general. For example, 
onsider the set A = fLpg where pis a propositional letter. A has no stable expansion sin
e the belief Lp 
an not begrounded in the premises. LL is a stable set, however, whi
h 
ontains Lp.It is well-known that every stable set S is uniquely 
hara
terized by its obje
tivepart P (S), and that for ea
h set of obje
tive formulae T � L there exists a uniquestable set S � T su
h that P (S) = P (
ons(T )) [20, 12℄. This stable set is denoted byE(T ). If a premise set A is obje
tive, then E(A) is the only stable expansion of A.De�nition 2.4 The partial order � on the stable sets of LL is de�ned by S1 � S2 i�P (S1) � P (S2).As usual, we write S1 � S2 for S1 � S2 ^ S1 6= S2. For example, 
onsiderA = fLp ! pg. A has two stable expansions: E(fpg) and E(;). Noti
e thatE(;) � E(fpg).Several �nitary 
hara
terizations of the stable expansions of a set of premisesappear in the literature [29, 16, 24℄. We use here the 
riterion by Niemel�a in [24℄. Forany formula ' 2 LL denote by 'L the set of all subformulae L of '. Furthermore,for S � LL, let SL = S'2S 'L, and let S�L = fL ;:L : L 2 SLg.De�nition 2.5 For a set A of premises, � � A�L is A-full i� both 
onditions (i) and(ii) hold for ea
h L' 2 AL: (i) A [ � j= ' i� L' 2 � (ii) A [ � 6j= ' i� :L' 2 �.Note that if � is A-full, then for ea
h L' 2 AL, either L' 2 � or :L' 2 �.35



Proposition 2.1 [24℄ Given a premise set A and K � A�L, de
iding whether K isA-full is in �P2 .The one-to-one 
orresponden
e between stable expansions and A-full sets is well-known.Proposition 2.2 [24℄ For ea
h stable expansion E of a set of premises A, there existsa uniquely determined A-full set �, given by � = A�L \ (fL' : L' 2 Eg [ f:L' :' =2 Eg). Conversely, ea
h A-full set � indu
es a unique stable expansion of A.The stable expansion 
orresponding to the A-full set � is denoted by SEA(�),and the A-full set 
orresponding to the stable expansion E, whi
h is 
alled the kernelof E, by �A(E). It is immediate from Proposition 2.2 that �A(LL) = AL for everypremise set A.Logi
al 
onsequen
e of a formula from a stable expansion of a set of premises 
anbe des
ribed as follows. (Note: sin
e stable expansions are dedu
tively 
losed, logi
al
onsequen
e is equivalent to membership in the expansion).Let QS(') denote the set of all quasi-subformulae of ' 2 LL. Quasi-subformulaeare de�ned as subformulae in the usual way ex
ept that every formula L does nothave genuine subformulae. For example, ' = L(p _ Lq) ^ (Lp _ LLr) has QS(') =f'; L(p _ Lq); Lp _ LLr; Lp; LLrg.Proposition 2.3 [24℄ Let E be a stable expansion of a set A of premises and ' 2 LL.Let B = fL 2 QS(') :  2 Eg, C = f:L : L 2 QS(');  =2 Eg. Then, ' 2 Ei� A [ �A(E) [ B [ C j= '.In the 
ase ' 2 L we have B = C = ;, and hen
e ' 2 E i� A [ �A(E) j= '. Inparti
ular, ? 2 E, i.e. E = LL, i� A [ �A(E) is not 
onsistent. Sin
e �A(LL) = ALand AL is A-full if A [AL is not 
onsistent, it holds that LL is a stable expansion ofA i� A [ AL is not 
onsistent.Proposition 2.3 leads to the following upper bound for de
iding whether a formulabelongs to a parti
ular stable expansion E of a premise set A.Corollary 2.4 [24℄ Given a set of premises A and the kernel � of a stable expansionE of A, de
iding if ' 2 LL belongs to E is in �P2 .The three main de
ision problems in autoepistemi
 reasoning are(i) de
iding whether A has a stable expansion,(ii) de
iding whether a formula ' belongs to some stable expansion of A (bravereasoning),(iii) de
iding whether a formula ' belongs to all stable expansions of A (
autiousreasoning).Re
ently, Gottlob presented a pre
ise 
omplexity 
hara
terization of those problems.Proposition 2.5 [9℄ Given a set of premises A, (i) de
iding whether A has a stableexpansion is �P2 -
omplete; (ii) de
iding whether a formula ' belongs to some stableexpansion of A is �P2 -
omplete; and (iii) de
iding whether a formula ' belongs to allstable expansions of A is �P2 -
omplete. 36



Not all 
omputational issues are answered by these results, however. Severalresear
hers have argued that stable expansions are too permissive for modeling thebelief sets of an ideal agent, sin
e the derivation of fa
ts from \ungrounded" beliefsmay o

ur [11, 21, 14, 15, 23℄. For example, the expansion E(fpg) of fLp ! pgseems defeasible, sin
e p 
an only be derived on behalf of the belief Lp in p. Stronger
on
epts of groundedness for expansions have been proposed in [11, 21, 15, 23℄.The notion of strongly grounded expansions [11℄ and the equivalent 
on
epts ofstrongly iterative and robust expansions [14℄ are syntax dependent and only de�nedfor premise sets in normal form.A promising approa
h are iterative expansions of Marek and Trusz
zy�nski [14℄,whi
h strengthen the 
on
ept of stable expansions. (See also [23℄ for an elegant enu-meration-based 
hara
terization.) It appears that the 
omplexity of the three mainde
ision problems is not a�e
ted.Proposition 2.6 [9℄ Given a set of premises A, (i) de
iding whether A has an iter-ative expansion is �P2 -
omplete; (ii) de
iding whether a formula ' belongs to someiterative expansion of A is �P2 -
omplete; and (iii) de
iding whether a formula ' be-longs to all iterative expansions of A is �P2 -
omplete.In the rest of this se
tion, we derive a simple, but useful 
riterion for membershipof an obje
tive formula in a stable expansion, based on the kernel 
hara
terization.We �rst introdu
e additional notation.De�nition 2.6 Let ' 2 LL, and let � be a truth assignment to (not ne
essarily all)atoms a1; : : : ; an of '. Then, '� denotes the formula that results if ea
h o

urren
eof ai in ' is repla
ed by > if �(ai) = true and by ? if �(ai) = false, for all 1 � i � n.For example, if ' = p ^ (Lp ! LLq _ Lq) and �(p) = true, �(Lq) = false, then'� = > ^ (Lp! LLq _ ?).De
iding whether an obje
tive formula ' 2 L belongs to E 
an be redu
ed to animpli
ation problem on obje
tive formulae as follows. For every stable expansion E ofa set A of premises, let �E be the truth assignment to AL de�ned by �E(L ) = true ifL 2 �A(E) and �E(L ) = false if L =2 �A(E). Then, let FA(E) = f'�E : ' 2 Ag.Note that FA(E) 
ontains only obje
tive formulae.We 
an thus formulate the following easy lemma from Proposition 2.3.Lemma 2.7 Let E be a stable expansion of a set A of premises, and let ' 2 L.Then, ' 2 E i� FA(E) j= '.Proof. Sin
e ' 2 L, by Proposition 2.3 ' 2 E holds i� A [ �A(E) j= '. Sin
e(A [ �A(E))L = AL, and for ea
h L' 2 AL, either L' 2 �A(E) or :L' 2 �A(E), itis 
lear that A[�A(E) j= ' i� FA(E)[�A(E) j= '. Sin
e no atom in �A(E) o

ursin FA(E) or in ', we have by trivial interpolation properties that FA(E)[�A(E) j= 'i� FA(E) j= '. 2Thus a stable expansion E of A is in
onsistent, i.e. E = LL, if and only if FA(E)is in
onsistent.The previous lemma allows to redu
e de
iding whether E 0 � E for stable expan-sions E;E 0 of premise sets A;A0 to a propositional impli
ation test.37



Theorem 2.8 Let E;E 0 be stable expansions of respe
tive premise sets A and A0.Then, E 0 � E if and only if FA(E) j= FA0(E 0).Proof. From Lemma 2.7, we get E 0 � E i� P (
ons(FA0(E 0))) � P (
ons(FA(E))),whi
h is equivalent to FA(E) j= FA0(E 0). 23 Parsimonious stable expansionsIn this se
tion, we derive 
omplexity results for reasoning with parsimonious stableexpansions, whi
h are a natural 
on
ept of restri
ted stable expansions. A

ording toO

am's entia non sunt multipli
anda praeter ne
essitatem, we restri
t the stable ex-pansions of a premise set to those whose obje
tive part does not 
ontain the obje
tivepart of any other stable expansion as a subset.De�nition 3.1 A stable expansion E of a set A is parsimonious i� there exists nostable expansion E 0 of A su
h that E 0 � E.Note that in the example A = fLp ! pg, only the stable expansion E(;) isparsimonious, whi
h eliminates the undesired stable expansion E(fpg).The 
omplexity of reasoning with parsimonious stable expansions has, to our bestknowledge, not been 
onsidered yet. We give in this se
tion a pre
ise 
hara
terizationof these problems in terms of 
ompleteness results for 
lasses at the se
ond and thethird level of PH.We start with 
hara
terizing the 
omplexity of de
iding whether E 0 � E for stableexpansions E;E 0 of respe
tive premise sets A and A0. By Theorem 2.8, this problem
an eÆ
iently be redu
ed to a propositional impli
ation test, whi
h is a well-knownintra
table problem. A 
omputationally more advantageous, that is polynomial time
he
kable, 
riterion for 
he
king whether E 0 � E is unlikely to exist, however, sin
ethis would entail NP = P.Theorem 3.1 Given sets A;A0 of premises and the kernels �, �0 of stable expansionsE, E 0 of A and A0, respe
tively, de
iding whether E 0 � E is 
o-NP-
omplete.Proof. By Theorem 2.8, this problem is polynomially transformable into de
idingwhether ' j=  for ';  2 L, whi
h is in 
o-NP. 
o-NP-hardness is shown by apolynomial transformation from de
iding whether ' 2 L is a tautology. Without lossof generality we may assume that ' is satis�able. Let p be a propositional variablenot o

urring in ', and de�ne A = A0 = fLp! p;:Lp! 'g. Then, � = fLpg and�0 = f:Lpg are A-full sets. Let E = SEA(�), E 0 = SEA(�0) be the 
orrespondingexpansions. By Theorem 2.8, E 0 � E holds i� FA(E) j= FA(E 0); sin
e FA(E) � p,FA(E 0) � ', this holds i� ' is a tautology. 2Note that de
iding whether a premise set has a parsimonious stable expansion isnot harder than de
iding whether a stable expansion exists.Proposition 3.2 De
iding if a premise set A has a parsimonious stable expansion is�P2 -
omplete.
38



Proof. Sin
e A is �nite, only �nitely many A-full sets and hen
e only �nitelymany stable expansions of A exist. Hen
e it is 
lear that A has a parsimonious stableexpansion i� A has any stable expansion. Sin
e the latter problem is �P2 -
omplete[9, Theorem 4.1℄, the result follows. 2We 
onsider now the problem of re
ognizing parsimonious stable expansions.Theorem 3.3 Given a set of premises A and the kernel � of a stable expansion Eof A, de
iding whether E is parsimonious is �P2 -
omplete. �P2 -hardness holds evenif E is 
onsistent.Proof. Membership of this problem in �P2 is shown as follows. E is not parsi-monious if and only if there exists a stable expansion E 0 of A su
h that E 0 � E.A guess �0 � A�L for �A(E 0) 
an be veri�ed in polynomial time with an NP ora-
le, be
ause 
he
king whether �0 is the kernel of some stable expansion E 0 is in �P2(Proposition 2.1) as well as de
iding whether E 0 � E, given the respe
tive kernels(follows from Theorem 3.1).Hardness of this problem for �P2 is shown by a redu
tion from validity 
he
kingof a QBF � = 8y1 � � � 8ym9z1 � � � 9zlF . We de�ne a set of premises A as follows. Lety01; : : : ; y0m and s be additional variables. LetA = fLyi ! yi; L:y0i ! :y0i : 1 � i � mg [fyi ^ :y0i ! s : 1 � i � mg [ fs! (y1 ^ :y01 ^ � � � ^ ym ^ :y0m)g [fL( m̂i=1(yi $ y0i)! :F )gNote that A is 
onsistent and has no in
onsistent expansion sin
e A [ AL is
onsistent. Let �0 = AL. It is easily veri�ed by De�nition 2.5 that �0 is A-full; the
orresponding stable expansion E0 = SEA(�0) is E0 = E(fy1;:y01; : : : ; ym;:y0m; sg).For ea
h stable expansion E of A it holds that s 2 E i� E = E0. s 2 E meansfyi;:y0i : 1 � i � mg � E, and sin
e ' 2 E entails L' 2 E, �0 � E holds. Sin
e Eis 
onsistent, �A(E) = �0 and hen
e E = E0 follows.We further note that ea
h stable expansion E of A must satisfy E � E0. Indeed,it is not hard to see that FA(E0) is logi
ally equivalent to s^y1^:y01^� � �^ym^:y0m,and sin
e FA(E) is always satis�ed if true is assigned to y1; : : : ; ym; s and false toy01; : : : ; y0m, we have FA(E0) j= FA(E). Thus by Theorem 2.8, E � E0.We 
laim that E0 is the only stable expansion of A (and hen
e 
learly parsimo-nious) if and only if � is valid.Assume � is not valid, that is, there exists a truth assignment � to y1; : : : ; ymsu
h that 9z1 � � � 9zl F� is 
ontradi
tory, i.e. :F� is a tautology. De�ne the set K� asfollows: K� = fLyi;:L:y0i : �(yi) = true; 1 � i � mg [f:Lyi; L:y0i : �(yi) = false; 1 � i � mg [fL( m̂i=1(yi $ y0i)! :F )gThen, K� is A-full. To show this, we observe that A [K� is 
onsistent with the setS = fyi; y0i : �(yi) = true; 1 � i � mg [ f:yi;:y0i : �(yi) = false; 1 � i � mg [ f:sg:39



Sin
e for ea
h Lyi we have Lyi ! yi, we thus 
learly obtain A[K� j= yi i� Lyi 2 K�and A [ K� 6j= yi i� :Lyi 2 K�, for 1 � i � m. The argumentation for L:y0i isanalogous.It remains to verify that A[K� j= Vmi=1(yi $ y0i)! :F holds. Clearly, this holdsi� A[K� [fVmi=1(yi $ y0i)g j= :F holds. Sin
e A[K� [fVmi=1(yi $ y0i)g is 
onsistentand logi
ally implies yi � �(yi), for 1 � i � m, this holds i� A [ K� [ fVmi=1(yi $y0i)g j= :F�, whi
h is ful�lled as :F� is a tautology; thus K� is A-full. Sin
e K� 6= �0,it follows that SEA(K�) 6= E0 (and hen
e SEA(K�) � E0) holds.Conversely, assume there exists a stable expansion E 6= E0 (and hen
e E � E0).Then, Vmi=1(yi $ y0i) ! :F 2 E holds, be
ause L(Vmi=1(yi $ y0i) ! :F ) 2 A,A � E, and for all  2 LL, L 2 E entails  2 E (this follows immediately fromthe de�nition of a stable expansion). Sin
e Vmi=1(yi $ y0i)! :F 2 L, by Lemma 2.7it follows that FA(E) j= Vmi=1(yi $ y0i) ! :F . Clearly, this holds i� G j= :F holds,where G = FA(E) [ fVmi=1(yi $ y0i)g. G is satis�ed by the truth assignment � tos; y1; y01; : : : ; ym; y0m de�ned as follows:�(s) = false; �(yi) = �(y0i) = ( true if :L:y0i 2 Efalse if L:y0i 2 E ; for 1 � i � m:Sin
e G j= :F , we have that for the restri
tion � of � to y1; : : : ; ym, G� j= :F� . Thusby trivial interpolation properties, j= :F� follows, i.e. 8z1 � � � 8zl:F� is valid. Hen
e,9y1 � � � 9ym8z1 � � � 8zl:F is valid, whi
h means that � = 8y1 � � � 8ym9z1 � � � 9zl F is notvalid. Thus the 
laim is proved.It is 
lear that A and �0 
an be 
onstru
ted in polynomial time. Thus we havethe theorem. 2The 
omplexity of 
he
king if a stable expansion is parsimonious has a detrimentale�e
t on the 
omplexity of brave reasoning with the parsimonious stable expansionsof a set of premises.Theorem 3.4 De
iding whether a formula ' 2 LL belongs to some parsimoniousstable expansion of a set A of premises is �P3 -
omplete. �P3 -hardness holds even if' 2 L and every parsimonious stable expansion of A is 
onsistent.Proof. Membership of this problem in �P3 
an be shown as follows. Guess � � A�Lsu
h that � = �A(E) and ' 2 E for some parsimonious stable expansion E of A.Sin
e 
he
king if � is the kernel of some stable expansion is in �P2 (Proposition 2.1),
he
king whether SEA(�) is parsimonious is in �P2 (Theorem 3.3), and 
he
kingwhether ' 2 E holds is in �P2 (Corollary 2.4), the guess 
an be veri�ed in polynomialtime with a �P2 ora
le. Hen
e the problem is in �P3 .We show �P3 -hardness by a polynomial transformation of validity 
he
king of aQBF � = 9x1 � � � 9xn8y1 � � � 8ym9z1 � � � 9zl F into this problem. Let y01; : : : ; y0m and sbe additional variables, and de�neA = fxi $ Lxi : 1 � i � ng [ fLyi ! yi; L:y0i ! :y0i : 1 � i � mg [fyi ^ :y0i ! s : 1 � i � mg [ fs! (y1 ^ :y01 ^ � � � ^ ym ^ :y0m)g [[fL( m̂i=1(yi $ y0i)! :F )g:Note that A has no in
onsistent stable expansion sin
e A[AL is 
onsistent, and thatthis set of premises is 
lose to A in the proof of Theorem 3.3. The only di�eren
e are40



the additional premises Lxi $ xi, 1 � i � n, and that F 
an be built on x1; : : : ; xn;y1; : : : ; ym; z1; : : : ; zl instead of y1; : : : ; ym; z1; : : : ; zl.For every truth assignment � to x1; : : : ; xn, the set�� = fLxi : �(xi) = true; 1 � i � ng [ f:Lxi : �(xi) = false; 1 � i � ng [fLy1; L:y01; : : : ; Lym; L:y0mg [ fL( m̂i=1(yi $ y0i)! :F )gis A-full. Let E� = SEA(��) denote the 
orresponding expansion. Note that xi 2 E�i� �(xi) = true and :xi 2 E� i� �(xi) = false, for all 1 � i � n. Thus 
learlyE� 6� E�0 , E�0 6� E� holds i� � 6= � 0 holds.It is not diÆ
ult to show that every stable expansion E ful�lls either xi 2 E or:xi 2 E, for all 1 � i � n; let �(E) be the truth assignment to x1; : : : ; xn given by E.As a 
onsequen
e, E � E 0 entails that �(E) = �(E 0), for all stable expansions E;E 0of A. Furthermore, s 2 E i� E = E�(E) must always hold as well as E � E�(E); this
an be shown analogous to s 2 E i� E = E0, and E � E0 in the proof of Theorem 3.3.Sin
e s 2 E implies E = E�(E), it follows that s belongs to a parsimoniousstable expansion of A if and only if there exists a � su
h that E� is parsimonious.Along the line of argumentation taken in the proof of Theorem 3.3 to prove thatE0 is parsimonious i� � is valid, it is straightforward to show that for ea
h truthassignment � to x1; : : : ; xn, E� is parsimonious if and only if 8y1 � � � 8ym9z1 � � � 9zl F�is valid. Consequently, s belongs to a parsimonious stable expansion of A if and onlyif � = 9x1 � � � 9xn8y1 � � � 8ym9z1 � � � 9zl F is valid.Clearly, A and ' = s 
an be 
onstru
ted in polynomial time, when
e our theorem.2 An analogous result for 
autious reasoning with parsimonious stable expansions
an be easily derived from this result.Theorem 3.5 De
iding whether a formula ' 2 LL is in all parsimonious stableexpansions of a set A of premises is �P3 -
omplete. �P3 -hardness even holds if everyparsimonious stable expansion of A is 
onsistent.Proof. Membership of the 
omplementary problem, de
iding whether ' does noto

ur in some parsimonious stable expansion of A, in �P3 
an be shown similar tomembership of brave reasoning with parsimonious stable expansions in �P3 . A guess� � A�L on the kernel of a parsimonious stable expansion E of A 
an be veri�edin polynomial time with a �P2 ora
le (see proof of Theorem 3.4 for details). GivenA and �, de
iding whether ' =2 E is in �P2 (
f. Corollary 2.4), hen
e possible withone 
all to a �P2 ora
le. Consequently, de
iding whether ' does not o

ur in someparsimonious stable expansion of A is in �P3 . Thus it follows that de
iding whether' o

urs in all parsimonious stable expansions of A is in �P3 .Hardness for �P3 is shown from Theorem 3.4. Given ' 2 LL and A, 
onsider thethree problems of de
iding whether(i) :L' o

urs in all parsimonious stable expansions of A,(ii) :L' does not o

ur in all parsimonious stable expansions of A,(iii) ' o

urs in some parsimonious stable expansion of A.41



If every parsimonious stable expansion of A is 
onsistent, (ii) and (iii) are equiv-alent problems, and hen
e by Theorem 3.4 (ii) is �P3 -hard. It is also 
lear that (ii) isthe 
omplementary problem for (i); hen
e, (i) is �P3 -hard, even if every parsimoniousstable expansion of A is 
onsistent. Thus the theorem follows. 2While fo
using on parsimonious stable expansions gets 
autious reasoning fromthe se
ond to the third level of the polynomial hierar
hy in the general 
ase, it isinteresting to note that for purely propositional formulae, parsimony does not a�e
t
omputational 
omplexity. In parti
ular, the following holds.Theorem 3.6 Let ' 2 L and let A be a set of premises. De
iding whether ' belongsto all parsimonious stable expansions of A is �P2 -
omplete.Proof. Indeed, sin
e A has only a �nite number of stable expansions, it is easilyveri�ed that ' belongs to all parsimonious stable expansions of A if and only if 'belongs to all stable expansions of A, and this problem is in �P2 [24℄. �P2 -hardnessholds sin
e 
autious reasoning with all stable expansions is already�P2 -hard for purelypropositional formulae [9, proof of Theorem 4.5℄. 24 Moderately Grounded ExpansionsAnother promising 
on
ept for strengthening standard AEL is the suggestion byKonolige [11℄ to restri
t the stable expansions to moderately grounded expansions,whi
h are the stable expansions whose obje
tive parts do not stri
tly 
ontain theobje
tive part of any stable set that in
ludes the premises.De�nition 4.1 A stable expansion E of a set A is moderately grounded i� thereexists no stable set S su
h that A � S and S � E.Every moderately grounded expansion is parsimonious, but the 
onverse does nothold in general. For example, if A = fLp! p; p! q; Lqg, then E(fp; qg) is the only,and hen
e 
learly parsimonious, stable expansion of A. E(fp; qg) is not moderatelygrounded, however, sin
e E(fqg) is a stable set 
ontaining A and E(fqg) � E(fp; qg).Moderately grounded expansions 
an also be 
hara
terized by a �xed point equa-tion and use of modal logi
.Proposition 4.1 [11, 31℄E is a moderately grounded expansion of a set of premises A i�E = 
onsK45(A [ f:L' : ' 2 L � Eg)where 
onsK45 is the 
onsequen
e operator of the modal logi
 K45.We remark that Niemel�a's L-hierar
hi
 expansions [23℄ strengthen the 
on
ept ofmoderated groundedness.The following result provides a 
hara
terization of moderately grounded expan-sions whi
h is useful for a re
ognition algorithm.Lemma 4.2 Let A be a set of premises and S � A be a 
onsistent stable set. Then,� = S \ A�L is full for A0 = A [ f' : L' 2 �g and SEA0(�) � S.42



Proof. Note that S is 
onsistent, and hen
e either L' 2 � or :L' 2 � holds, forall L' 2 AL.Re
all that � is A0-full i� for all L' 2 A0L, (i) A0 [ � j= ' i� L' 2 �, and (ii)A0 [ � 6j= ' i� :L' 2 �. Noti
e that A0 [ � � S and that A0L = AL.(i): If A0 [ � j= ', then S j= ', hen
e L' 2 S and thus L' 2 �. Conversely, ifL' 2 �, then ' 2 f' : L' 2 �g, hen
e 
learly A0 [ � j= '.(ii): Assume A0 [ � 6j= ', but :L' =2 �. Consequently, L' 2 �, and thus ' 2 f' :L' 2 �g. It follows A0 [ � j= ', whi
h is a 
ontradi
tion. Hen
e, A0 [ � 6j= ' implies:L' 2 �. Conversely, assume :L' 2 �. This entails ' =2 S, hen
e S 6j= '. Sin
eA0 [ � � S, it follows A0 [ � 6j= ', and (ii) holds.Now we observe that E 0 = SEA0(�) � S holds: P (E 0) = P (
ons(A0 [ �)) byProposition 2.3, and sin
e A0 [ � � S, P (E 0) � P (S). 2Theorem 4.3 A stable expansion E of a premise set A is moderately grounded i�there exists no set � � A�L su
h that � is full for A0 = A [ f' : L' 2 �g andSEA0(�) � E.Proof. Re
all that E is moderately grounded i� there exists no stable set S su
hthat S � E and A � S.Sin
e every stable expansion is a stable set, the only if dire
tion 
learly holds.If E is not moderately grounded, then there exists a stable set S � A su
h thatS � E. Sin
e S is 
onsistent, by Lemma 4.2 � = S \A�L is full for A[f' : L' 2 �gand SEA0(�) � S, hen
e SEA0(�) � E. Thus the if dire
tion holds, and the resultfollows. 2With this result, we are able to show that re
ognizing moderately grounded ex-pansions is in �P2 . We also show that the problem is hard for this 
lass, and hen
eno substantially better 
riterion for a re
ognition algorithm 
an be expe
ted.Theorem 4.4 Given a set of premises A and the kernel � of a stable expansion Eof A, de
iding whether E is moderately grounded is �P2 -
omplete.Proof. A guess � � A�L on the kernel of a stable expansion E 0 of A0 = A [ f' :L' 2 �g su
h that E 0 � E 
an be veri�ed in polynomial time with an NP ora
le(Proposition 2.1, Theorem 3.1). Sin
e by Theorem 4.3 su
h a � exists i� E is notmoderately grounded, the problem is 
learly in �P2 .We show hardness for this 
lass by a redu
tion from de
iding whether � 2 QBF2;8for a QBF �. Let � = 8y1 � � � 8ym9z1 � � � 9zlF . We de�ne a set of premises A asfollows. Let p be an additional variable, and de�neA = fLy1 ! y1; : : : ; Lym ! ym; Lp! (y1 ^ � � � ^ ym); Lp! p; Lp _ :Ggwhere G = F (Ly1; : : : ; Lym; z1; : : : ; zl) is the formula obtained from F if all o

ur-ren
es of the atom yi are repla
ed by Lyi, for all 1 � i � m.We noti
e that A[AL is 
onsistent, hen
e A has only 
onsistent stable expansions.It is easy to verify that the set �0 = AL is A-full, and that the 
orresponding stableexpansion E0 of A satis�es E0 = E(fp; y1; : : : ; ymg), hen
e FA(E0) � fp; y1; : : : ; ymg.Furthermore, it is not hard to see that E0 is the only stable expansion E of Asu
h that p 2 E, sin
e the latter implies �A(E) = �0, hen
e E = E0.We 
laim that E0 is not moderately grounded i� � is not valid.43



Assume that � is not valid. Hen
e, there exists a truth assignment � to y1; : : : ; ymsu
h that 9z1 � � � 9zlF� is 
ontradi
tory, i.e. :F� is a tautology.De�ne S = E(fyi : �(yi) = true ; 1 � i � ng). Note that :Lp 2 S, and thatLyi 2 S if �(yi) = true and that :Lyi 2 S if �(yi) = false, for 1 � i � m, whi
hentails that :G 2 S. It is thus easy to see that A � S holds. Sin
e S � E0, it followsthat E0 is not moderately grounded, and the if dire
tion is shown.Now assume E0 is not moderately grounded. By Theorem 4.3, we know that thereexists � � A�L su
h that � is full for A0 = A[f' : L' 2 �g and E 0 = SEA0(�) � E0.This entails p =2 E 0, and hen
e :Lp 2 E 0. Let the truth assignment � to y1; : : : ; ymbe de�ned by �(yi) = ( true if Lyi 2 �false if :Lyi 2 � ; for 1 � i � m:Consequently, ?_:F� 2 FA0(E 0) holds. Sin
e by Theorem 2.8 we have FA(E0) j=FA0(E 0), it follows fp; y1; : : : ; ymg j= :F�. Sin
e in F� only zi variables o

ur, bytrivial interpolation properties this holds i� j= :F� holds, i.e. :F� is a tautology.Consequently, 9z1 � � � 9zlF� is 
ontradi
tory, whi
h implies that � is not valid. Hen
ethe only if dire
tion holds, and the 
laim is proved.Sin
e A and �0 are 
learly 
onstru
tible in polynomial time, the theorem follows.2 With this result, we 
an 
hara
terize the 
omplexity of the reasoning tasks formoderately grounded expansions as follows.Theorem 4.5 Let A be a set of premises and let ' 2 LL. De
iding whether ' o

ursin some moderately grounded expansions of A is �P3 -
omplete. �P3 -hardness holdseven if ' 2 L and every moderately grounded expansion of A is 
onsistent.Proof. A guess � � A�L on the kernel of a moderately grounded expansion Eof A 
an be veri�ed in polynomial time with a �P2 ora
le. Indeed, de
iding whether� is the kernel of a stable expansion of A is possible with one 
all to a �P2 ora
le(
f. Proposition 2.1), and by Theorem 4.4, de
iding whether the 
orresponding stableexpansion E is moderately grounded is possible with one 
all to a �P2 ora
le. On asu

essful guess, de
iding whether ' 2 E holds is possible with another 
all to a �P2ora
le (
f. Corollary 2.4). It follows from this that brave reasoning with moderatelygrounded expansions is in �P3 .The proof of �P3 -hardness is an extension of the 
onstru
tion in the proof ofTheorem 4.4, whi
h is analogously obtained as the one in the proof of Theorem 3.4.Given a QBF � = 9x1 � � � 9xn8y1 � � � 8ym9z1 � � � 9zl F , we 
onstru
t a premise set Aas follows.A = fx1 $ Lx1; : : : ; xn $ Lxng [ fLy1 ! y1; : : : ; Lym ! ymg [fLp! (y1 ^ � � � ^ ym); Lp! p; Lp _ :Ggwhere G = F (x1; : : : ; xn; Ly1; : : : ; Lym; z1; : : : ; zl) is the formula obtained from F ifall o

urren
es of the atom yi are repla
ed by Lyi, for all 1 � i � m.Noti
e that A has only 
onsistent stable expansions, as A [ AL is 
onsistent.For every truth assignment � to x1; : : : ; xn, the set44



�� = fLxi : �(xi) = true; 1 � i � ng [ f:Lxi : �(xi) = false; 1 � i � ng [fLp; Ly1; : : : ; Lymgis A-full, and if E� = SEA(��), then xi 2 E� i� �(xi) = true and :xi 2 E� i��(xi) = false. Therefore, E� 6� E�0 , E�0 6� E� i� � 6= � 0.It holds that if p 2 E for some stable expansion E of A, then E = E� for some�. Hen
e p belongs to some moderately grounded expansion of A i� some E� ismoderately grounded; sin
e E� is moderately grounded i� 8y1 � � � 8ym9z1 � � � zlF� isvalid, p belongs to some moderately grounded expansion of A i� � is valid. Sin
e A,' = p are 
onstru
tible in polynomial time, the result follows. 2Using this result, we 
an easily derive that even 
he
king for the existen
e ofmoderately grounded expansions is at the third level of the polynomial hierar
hy.Theorem 4.6 De
iding whether a premise set A has a moderately grounded expan-sion is �P3 -
omplete. �P3 -hardness holds even if every moderately grounded expansionof A is 
onsistent.Proof. Membership of this problem in �P3 holds sin
e a guess � � A�L on thekernel of a moderately grounded expansion of A 
an be veri�ed in polynomial timewith a �P2 ora
le (see proof of Theorem 4.5 for details).Hardness for �P3 is shown by a slight extension of the 
onstru
tion in the proofof Theorem 4.5. Re
all that we 
onstru
ted there a premise set A su
h that ev-ery moderately grounded expansion of A is 
onsistent, and a formula ', whi
h isthe propositional atom p, su
h that de
iding whether ' o

urs in any moderatelygrounded expansion of A is �P3 -hard.Let q be a propositional letter not o

urring inA and de�ne A0 = A[fLp! q; Lqg.It 
an be easily seen that A0[A0L is 
onsistent, hen
e A0 has only 
onsistent stableexpansions. Every stable expansion E of A0 must 
ontain Lq, hen
e q and thus alsoLp, sin
e Lp! q is the only formula in A0 that allows to derive q.Hen
e, we obtain that the only A0-full sets are the sets �0� = �� [ fLqg for ea
htruth assignment � to the xi variables, with 
orresponding stable expansionsE 0� = E(fxi : �(xi) = true; 1 � i � ng [ f:xi : �(xi) = false; 1 � i � ng [fy1; : : : ; ym; p; qg)of A0, whi
h 
orrespond one-to-one to the stable expansionsE� = E(fxi : �(xi) = true; 1 � i � ng [ f:xi : �(xi) = false; 1 � i � ng [fy1; : : : ; ym; pg)of A.By use of the interpolation theorem, it follows that there exists a stable set S � E�su
h that S � A i� there exists a stable set S 0 � E 0� su
h that S 0 � A0, for all�. Hen
e, E� is moderately grounded for A i� E 0� is moderately grounded for A0.Sin
e de
iding whether some E� is moderately grounded for A is �P3 -hard (whi
h is45



the 
ase i� p o

urs in some moderately grounded expansion of A), it follows thatde
iding whether A0 has any moderately grounded expansion is �P3 -hard. Sin
e everymoderately grounded expansion of A0 is 
onsistent, this holds under the assertedrestri
tion; the theorem follows. 2Theorem 4.7 Let A be a set of premises and let ' 2 LL. De
iding whether ' o

ursin all moderately grounded expansions of A is �P3 -
omplete. This holds even if ' 2 Land every moderately grounded expansion of A is 
onsistent.Proof. A guess � � A�L on the kernel of a moderately grounded expansion E ofA 
an be veri�ed in polynomial time with a �P2 ora
le. On a su

essful guess, it 
anbe veri�ed in polynomial time with a NP ora
le whether ' =2 E. Hen
e, 
autiousreasoning with moderately grounded expansions is 
learly in �P3 .For the hardness part, note that? o

urs in all moderately grounded expansions ofA i� A has no 
onsistent moderately grounded expansion. By Theorem 4.6, de
idingwhether A has a 
onsistent moderately grounded expansion is �P3 -hard, even if everymoderately grounded expansion of the premise set is 
onsistent. Thus �P3 -hardnessof the problem under the asserted restri
tion follows. 25 Normal formAn interesting issue is the 
omplexity of autoepistemi
 reasoning in the 
ase wherepremise sets are in some normalized form. It is pointed out in [11, Proposition 3.9℄that ea
h set T � LL has a K45 equivalent set in whi
h ea
h senten
e is of the formL'1 _ � � � _ L'm _ :L 1 _ � � � _ :L n _ !where all 'i;  j and ! are obje
tive formulae, and all disjun
ts ex
ept ! may beabsent; there exists su
h a �nite set if T is �nite. A
tually, formulae where n � 1suÆ
e for this purpose. We refer in the sequel to premise sets in the more generalform as normalized premise sets and to those in the more stri
t format (n � 1) asK-normal premise sets. All lower 
omplexity bounds derived for normal form in thisse
tion 
arry over to K-normal form.The 
onsidered normal form is more restri
ted than Moore's normal form [20, 16℄,a

ording to whi
h ea
h ' 2 LL 
an be represented by an equivalent formula �1 ^� � � ^ �k, where�i = L'i;1 _ � � � _ L'i;mi _ :L i;1 _ � � � _ :L i;ni _ !i;and !i 2 L for all 1 � i � k.In parti
ular, the 
onsidered normal form does not allow nestings of L operators,whi
h entails that the 
orresponding language 
onstitutes a rather small fragmentof the language LL. However, in the 
ontext of 
onsistent stable sets and stableexpansions, studies of autoepistemi
 logi
 
an be simpli�ed (without loss of generality)by restri
tion to premise sets from this fragment; repla
ing an arbitrary premise set Awith a normalized premise set A0 equivalent to A with respe
t to stable sets and stableexpansions may result in a large (exponential) in
rease in the size of the premise set(
f. [16, Proposition 3.5,4.4℄ and pp. 601,602 ibid).46



It turns out that under the 
onsidered format, reasoning with moderately groundedexpansions is most probably easier than in the general 
ase and not harder than instandard AEL. This is in 
ontrast to standard AEL expansions and parsimoniousstable expansions, for whi
h reasoning from normalized premise sets has the same
omplexity as in the general 
ase.Let us �rst 
onsider standard AEL expansions. The following theorem strengthensProposition 2.5.Theorem 5.1 Let A be a premise set in normalized form. Then, (i) de
iding whetherA has any stable expansion is �P2 -
omplete; (ii) de
iding whether ' 2 LL o

urs insome stable expansion of A is �P2 -
omplete; and (iii) de
iding whether ' 2 LL o

ursin all stable expansions of A is �P2 -
omplete. �P2 -hardness of (i) and (ii) and �P2 -hardness of (iii) hold even if A is in K-normal form and every stable expansion of Ais 
onsistent.Proof. The membership parts are obvious by Proposition 2.5.The hardness parts are shown by suitable transformations of de
iding whetherfor a QBF � = 9y1 � � � 9ym8z1 � � � 8zlF it holds that � 2 QBF2;9 resp. � =2 QBF2;9.Constru
t the following normalized set of premises:A = f:Ly1 _ y1; Ly1 _ :y1; : : : ;:Lym _ ym; Lym _ :ym; LF _ ?gNote that A [ AL is 
onsistent, hen
e A has only 
onsistent stable expansions. Now
onsider the three problems of de
iding whether(a) A has a stable expansion,(b) > o

urs in a stable expansion of A,(
) ? o

urs in all stable expansions of A.Clearly, (a) and (b) are equivalent problems, and sin
e A has only 
onsistent stableexpansions, (
) is a 
omplementary problem to (a). It is easy to see that the premiseset A0 = fLy1 $ y1; : : : ; Lym $ ym; LFgis logi
ally equivalent to A. In [9, Proof of Theorem 4.1℄ it is shown that A0 has astable expansion i� � is valid. It follows that (a) and (b) are �P2 -hard and that (
) is�P2 -hard. Sin
e A is in K-normal form, the result follows. 2Next we 
onsider parsimonious stable expansions, for whi
h normal form of prem-ise sets also does not a�e
t the 
omplexity of reasoning.Theorem 5.2 Let A be a premise set in normal form. Then, (i) de
iding whether Ahas any parsimonious stable expansion is �P2 -
omplete; (ii) de
iding whether ' 2 LLo

urs in some parsimonious stable expansion of A is �P3 -
omplete; and (iii) de
idingwhether ' 2 LL o

urs in all parsimonious stable expansions of A is �P3 -
omplete.�P2 -hardness of (i), �P3 -hardness and (ii), and �P3 -hardness of (iii) hold even if A isin K-normal form and every parsimonious stable expansion of A is 
onsistent.
47



Proof. �P2 -
ompleteness of (i) follows immediately from arguments in the proofof Proposition 3.2 and Theorem 5.1. For (ii) and (iii), we observe that ea
h formulain the premise set A 
onstru
ted in the proof of Theorem 3.4 is equivalent to asmall set of formulae in K-normal form. Ea
h formula Lxi $ xi is equivalent tof:Lxi _ xi; Lxi _ :xig, Lyi ! yi to f:Lyi _ yig, L:y0i ! :y0i to f:L:y0i _ :y0ig, andthe formula L(Vmi=1(yi $ y0i) ! :F ) to fL(Vmi=1(yi $ y0i) ! :F ) _ ?g. All otherformulae in A are obje
tive and thus already in K-normal form. Consequently, A 
anbe repla
ed by an equivalent premise set in K-normal form in polynomial time. Thusby proofs analogous to those of Theorems 3.4,3.5, the theorems follows. 2Now let us turn to moderately grounded expansions. Normalized premise setslower the 
omplexity of reasoning by one level of the polynomial hierar
hy, and lo
atethe problems at the se
ond level. More pre
isely, the problems are 
omplete for thesame 
omplexity 
lasses as the respe
tive problems under standard AEL expansions.We start with the following lemma.Lemma 5.3 Given a set of premises A, de
iding whether there exists a 
onsistentstable set S su
h that S � A is in NP.Proof. From Lemma 4.2 it is immediate that we may require without loss ofgenerality that S is a 
onsistent stable expansion of A0 = A [ f' : L' 2 �g, where� = S \ A�L is the kernel of S. Now pro
eed as follows. Guess � � A�L and truthassignments �0; �1; : : : ; �m to the atoms in A, where m = jALj. The guess is valid ifA0 [ � is satis�ed by �0 and A0 [ � [ f:'ig is satis�ed by �i for 1 � i � n, wheref'1; : : : ; 'ng = f' : :L' 2 �g. This holds be
ause in this 
ase � is A0-full and the
orresponding stable expansion is 
onsistent. The spa
e needed to represent the guess� and �0; : : : ; �m is 
learly polynomial in the input size, and the guess 
an be veri�edin polynomial time. Thus the existen
e of a suitable S 
an be de
ided with an NPalgorithm, and the lemma follows. 2Lemma 5.4 Let A be a premise set in normal form, and let � be the kernel of astable expansion E of A. De
iding whether E is moderately grounded is in �P2 .Proof. Sin
e A is normalized, ea
h formula in A is of typeL'1 _ � � � _ L'm _ :L 1 _ � � � _ :L n _ !:Denote by 
 the set of the propositional parts ! of the formulae in A. It is not hardto see that FA(E) is logi
ally equivalent to 
 \ E.We 
onstru
t a premise set A00 from A and � as follows:A00 = A [ f:L' : :L' 2 �g [ f:L! : ! 2 
� Eg [ f:L!1 _ � � � _ :L!k _ ?g;where fL!1; : : : ; L!kg = fL! : ! 2 
 \ Eg. For every ! 2 
, de
iding whether! 2 
 � E or ! 2 
 \ E is by Proposition 2.3 possible in polynomial time with anNP ora
le. Consequently, A00 
an be 
onstru
ted in polynomial time with an NPora
le.We 
laim that there exists a 
onsistent stable set S su
h that S � A00 i� E is notmoderately grounded.Assume E is not moderately grounded. That is, there exists a stable set S � Asu
h that S � E. We noti
e that S is 
onsistent. Consider :L 2 f:L' : :L' 248



�g [ f:L! : ! 2 
�Eg. Su
h a :L exists only if E is 
onsistent, and in this 
aseit follows  =2 E. Sin
e S � E and  2 L, it follows that  =2 S and hen
e :L 2 S.Finally, 
onsider the formula � = :L!1_� � �_:L!k_?. We show that � 2 S holds.Assume � =2 S. Sin
e � is a disjun
tion of negated modal atoms :L!i and ?, itfollows that L!i 2 S, for all 1 � i � k. This implies f!1; : : : ; !kg = 
\E � S. Sin
e
\E is logi
ally equivalent to FA(E), it follows from Lemma 2.7 that P (E) � P (S),i.e. E � S. However, this is in 
ontradi
tion to E 6� S, whi
h is implied by theassertion that S � E. Consequently, � 2 S must hold. It follows S � A00. Thus theif dire
tion is proved.Conversely, assume there exists a 
onsistent stable set S � A00. We may byLemma 4.2 assume that S is a stable expansion E 0 of A0 = A00 [ f' : L' 2 �g where� = E 0\A00�L is the kernel of E 0. We observe that A00L = AL[fL! : ! 2 
g and thatthe set f' : L' 2 �g 
ontains only obje
tive formulae. Furthermore, for ea
h ! 2 
,if ! 2 E 0, then L! 2 E 0 and hen
e L! 2 � holds. It is thus not hard to see from thestru
ture of A0 that FA0(E 0) is equivalent to the set G = f' : L' 2 �g. Now 
onsiderL' 2 �. If L' 2 AL, then L' 2 � and hen
e L' 2 E, for otherwise L';:L' 2 E 0would hold, 
ontradi
ting the 
onsisten
y of E 0; if L' 2 fL! : ! 2 
g, we inferL' 2 E by an analogous argument. Consequently, for ea
h L' 2 �, it holds thatL' 2 E, and thus ' 2 E. It follows that G � E. Thus from Lemma 2.7, it followsthat P (E 0) � P (E), i.e. E 0 � E. On the other hand, E � E 0 does not hold. Indeed,sin
e :L!1 _ � � � _ :L!k _ ? 2 E 0 and E 0 is 
onsistent, it follows that :L!i 2 E 0for some i. This implies that !i =2 E 0. However, !i 2 E holds from the 
onstru
tionof A00. Sin
e !i is an obje
tive formula, it follows P (E) 6� P (E 0), i.e. E 6� E 0. Thuswe have that E 0 � E, E 6� E 0, i.e. E 0 � E. Sin
e E 0 � A, it follows that E is notmoderately grounded. Thus the only if dire
tion holds, and the 
laim is proved.By Lemma 5.3, de
iding whether there exists for A00 a 
onsistent stable set S su
hthat S � A00 is possible with one 
all to an NP ora
le. Thus given A and �, de
idingwhether E is moderately grounded is possible in polynomial time with an NP ora
le,and the lemma follows. 2We thus obtain the following.Theorem 5.5 Let A be a premise set in normal form. Then, (i) de
iding whether Ahas a moderately grounded expansion is �P2 -
omplete; (ii) de
iding whether ' 2 LLo

urs in some stable expansion of A is �P2 -
omplete; and (iii) de
iding whether ' 2LL o

urs in all stable expansions of A is �P2 -
omplete. �P2 -hardness of (i); (ii) and�P2 -hardness of (iii) hold even if A is in K-normal form and every stable expansionof A is 
onsistent.Proof. The key for all membership proofs is that a guess � � A�L on the kernel ofa moderately grounded expansion E of A 
an be veri�ed in polynomial time with anNP ora
le. This holds sin
e de
iding whether � is A-full is in �P2 (Proposition 2.1)and de
iding whether the stable expansion 
orresponding to � is moderately groundedis in �P2 (Lemma 5.4). Consequently, (i) is 
learly in �P2 .On a su

essful guess �, de
iding whether ' 2 E is in �P2 (Corollary 2.4). Conse-quently, (ii) is in �P2 . Likewise de
iding whether ' =2 E is in �P2 . This implies thatde
iding whether ' does not o

ur in some moderately grounded expansion of A isin �P2 . It follows from this that the 
omplementary problem, i.e. (iii), is in �P2 .The hardness parts are shown by proving a property of the premise set49



A = f:Ly1 _ y1; Ly1 _ :y1; : : : ;:Lym _ ym; Lym _ :ym; LF _ ?gin the proof of Theorem 5.1. We show that ea
h stable expansion E of A is moderatelygrounded. Hen
e, we may repla
e "stable expansion" in (a)-(
) in the proof of The-orem 5.1 equivalently with "moderately grounded expansion", and we immediatelyobtain the asserted hardness results.Assume that E is not moderately grounded. Then, by Theorem 4.3, there exists� � A�L su
h that � is full for A0 = A [ f' : L' 2 �g and E 0 � E where �is the kernel of the stable expansion E 0 of A0. Let � = �A(E). Clearly, LF 2 �and LF 2 �. Sin
e A has only 
onsistent stable expansions, E;E 0 are 
onsistent.Consequently, Lyi 2 E i� yi 2 E and :Lyi 2 E i� :yi 2 E holds, for all 1 � i � m.Similarly, Lyi 2 E 0 i� yi 2 E 0 and :Lyi 2 E 0 i� :yi 2 E 0 holds, for all 1 � i � m.Sin
e E 0 � E implies P (E 0) � P (E), it follows � = �. Consequently, A[� j= A0 [�and A0[� j= A[�, and hen
e FA(E) � FA0(E 0). Thus by Lemma 2.7 P (E) = P (E 0),whi
h means E 0 6� E, 
ontradi
tion. Consequently, E is moderately grounded. 26 Dis
ussion and Con
lusionThe 
omplexity results in the previous se
tions show that reasoning with parsimoniousstable expansions is most likely mu
h harder than reasoning with all stable expansions,whi
h is at the se
ond level of the polynomial hierar
hy PH. The same holds forreasoning with moderately grounded expansions. As a 
onsequen
e, brave reasoningin these strengthened versions of standard AEL 
annot be polynomially transformedinto brave or 
autious reasoning in standard AEL, unless �P3 = �P2 or �P3 = �P2 ,whi
h is 
onsidered very unlikely. For 
autious reasoning, we have an analogous result.In pra
ti
al terms, this means that even if we have arbitrarily many ora
le 
allsfor brave or 
autious reasoning in standard AEL for free, it is unlikely that we 
an
ompute the answer for brave reasoning in the strengthened versions in polynomialtime. The same holds for 
autious reasoning. Noti
e, however, that if ' is an obje
tiveformula, 
autious reasoning with parsimonious stable expansions is no harder than
autious reasoning in standard AEL, and in fa
t is of the same diÆ
ulty.The reason for the extreme intra
tability of parsimonious stable expansions andmoderately grounded expansions are the following three sour
es of 
omplexity:1. logi
al 
onsequen
e in 
lassi
al propositional logi
 (j=)2. the large (exponential) number of 
andidates E for stable expansions of A3. for ea
h stable expansion E of A, the (potentially exponential) number of 
an-didates for a stable expansion E 0 of A (stable set S � A) su
h that E 0 � E(S � E),where \exponential" refers to the number of distin
t modal atoms in the premise setA. Sour
es 1 and 2 are already present in Moore's formulation of AEL, while sour
e 3is introdu
ed by parsimony and moderate groundedness.To gain tra
tability, all three sour
es have to be eliminated. A straightforwardbut unsatisfa
tory way to a
hieve this is to bound the length of the en
oding of A bya 
onstant. More pra
ti
al restri
tions are yet to be found.50



Our results on reasoning from premise sets where the knowledge is representedin a normalized format show an interesting e�e
t of strengthening AEL on the 
om-plexity of autoepistemi
 reasoning. Under this format, brave and 
autious reasoningare at the se
ond level of the polynomial hierar
hy if standard AEL expansions are
onsidered. The problems are lifted to the third level if standard AEL expansionsare restri
ted to parsimonious stable expansions. However, the further restri
tionfrom parsimonious stable expansions to moderately grounded expansions lo
ates thereasoning tasks at the se
ond level of the polynomial hierar
hy again. Thus the 
om-plexity of autoepistemi
 reasoning from normalized premise sets is nonmonotoni
 inthese su

essive strengthenings of AEL.Reasoning with parsimonious or moderately grounded autoepistemi
 expansionsis, to our best knowledge, the �rst problem in AI known to be �P3 -
omplete. A
tually,few pra
ti
al problems of this 
omplexity are known to date (see [7℄ for others).We note that more re
ently, higher-level 
omplexity results within PH have beenderived for other forms of non-
lassi
al reasoning. (See also [1℄ for a 
omprehensivesurvey of the �eld.)Nonmonotoni
 Logi
s. Gottlob [9℄ has shown that several reasoning tasks in anumber of nonmonotoni
 propositional logi
s are 
omplete for some 
lasses of these
ond level of PH. In parti
ular, he showed that besides autoepistemi
 logi
, inReiter's default logi
 [26℄, in M
Dermott and Doyle's nonmonotoni
 logi
 [17, 18℄, andin Marek and Trusz
zy�nski's nonmonotoni
 logi
 N [15℄, whi
h all have a �xed pointsemanti
s, de
iding whether a �xed point exists is �P2 -
omplete, de
iding whether aformula belongs to some �xed point is �P2 -
omplete, and de
iding whether a formulabelongs to all �xed points is �P2 -
omplete. For default logi
, similar results have beenindependently obtained by Stillman [30℄ and Papadimitriou and Sideri [25℄.Revision and Update of Propositional Theories. Several operators Æ for revisingor updating a knowledge base (theory) T with a senten
e F have been proposedwhi
h handle arising in
onsisten
ies appropriately. Nebel [22℄ and Eiter and Gottlob[6℄ have shown that for almost all update operators Æ, de
iding whether the revisedknowledge base T Æ F implies a formula G is at the se
ond level of PH and for manyof them �P2 -
omplete.Closed World Reasoning and Cir
ums
ription. Eiter and Gottlob [5℄ have shownthat inferen
e with a propositional theory under various forms of the 
losed worldassumption and under 
ir
ums
ription is at the se
ond level of PH. In parti
ular,de
iding whether the 
ir
ums
ription CIRC (F ) logi
ally implies a formula G, i.e. Gis satis�ed in every minimal model of F , is shown to be �P2 -
omplete.TMS. Rutenburg [27℄ has shown that for a 
ertain variant of truth maintenan
esystem (TMS) [4℄ de
iding whether there exists a \nogood" of 
ertain size is �P2 -
omplete.Abdu
tion. Eiter and Gottlob [7℄ analyzed the 
omplexity of logi
al abdu
tion [3℄in the full propositional 
ontext. It appears that de
iding whether an abdu
tion prob-lem has a solution is �P2 -
omplete. The same holds for 
he
king a 
ertain propertyof hypotheses, i.e. abdu
ible propositions. Moreover, we show that spe
ial variantsof abdu
tion are even �P3 -
omplete.All these results suggest that nonmonotoni
 reasoning is more 
omplex than 
las-si
al reasoning in the propositional 
ontext; for logi
 programs and the �rst-order
ase, this is de�nitively known for many approa
hes, 
f. [26, 28, 2, 13℄.51
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