Extension of the Relational Algebra to
Probabilistic Complex Values

Thomas Eiter!, Thomas Lukasiewicz!, and Michael Walter? 3

! Institut und Ludwig Wittgenstein Labor fiir Informationssysteme, TU Wien
Favoritenstrafie 9-11, A-1040 Wien, Austria
{eiter, lukasiewicz}@kr.tuwien.ac.at

2 Institut fir Informatik, Universitit Giefien
Arndtstrafie 2, D-35392 Gieflen, Germany

Abstract. We present a probabilistic data model for complex values.
More precisely, we introduce probabilistic complex value relations, which
combine the concept of probabilistic relations with the idea of complex
values in a uniform framework. We then define an algebra for querying
database instances, which comprises the operations of selection, projec-
tion, renaming, join, Cartesian product, union, intersection, and differ-
ence. We finally show that most of the query equivalences of classical
relational algebra carry over to our algebra on probabilistic complex
value relations. Hence, query optimization techniques for classical rela-
tional algebra can easily be applied to optimize queries on probabilistic
complex value relations.

1 Introduction

Databases are a central component of many business and information systems.
During the past two decades, relational database systems have replaced earlier
systems and have become a standard for data management. Various needs in
practice, however, cannot be appropriately managed with current commercial
database systems, which are largely based on the plain relational data model.

An important such need is the integration of models of uncertainty into
databases. Applications that involve uncertainty abound. Research on this issue
can be divided into four categories [5]: (1) handling null values, (2) retrieval of
incomplete data, (3) management of vague data (for example, “John is tall”) in
fuzzy set approaches, and (4) management of ambiguous or imprecise data (for
example, “John’s salary is between 50K and 70K”) in probabilistic approaches.
Another important issue is the management of structured objects. The relational
model has been early generalized for storing structured objects [16], which was
a step towards object-oriented database systems (see [1] for a background on
complex values and a historic account).

3 Current address: IBM Germany, Uberseering 24, D-22297 Hamburg, Germany.
E-mail: MiWalter@de.ibm. com.

In many applications, especially in the business domain, uncertainty stems
from ambiguity rather than from vagueness. Several models for incorporating
ambiguity into the relational model have thus been proposed so far (e.g., [4,2, 5,
12, 8]; see Section 7 for a discussion of these and further approaches). Informally,
they attach a probability to each tuple and/or to each value in a set of possible
values of an imprecise attribute of a tuple. The operations of relational algebra
are then generalized to combine these probabilities in a suitable way, adopting
some underlying assumptions (like independence or disjointness of events).

In this paper, we extend this line of research to databases storing structured
objects. In detail, we present a probabilistic data model for complex values. To
our knowledge, there is not much work in this direction so far. A probabilistic
version of NF2 relations has been presented in [7] (building on earlier work [8] and
making some limiting assumptions; see Section 7 for a comparison to our work).

Our model generalizes a similar model of annotated tuples [12] to complex
values [1]. Informally, every complex value v is associated with a probability
interval [I,u] and an event e, forming a quadruple (v,l,u,e). The interval [, u]
represents the likelihood that v belongs to the database, and e records informa-
tion about how this value was derived. Note that interval probabilities provide
a greater flexibility than point probabilities, and seem better suited especially
to represent imprecise and subjective probabilistic knowledge. Moreover, we use
intervals also for technical reasons (under the assumed probabilistic knowledge,
even when using only point probabilities, we generally specify a set of probabil-
ity distributions, rather than a unique single distribution). The following is an
example of a relation containing probabilistic complex values:

| v T 7T u] ¢ |
patient diseases

John [{lung cancer, tuberculosis} 07109 | e1Ver
patient diseases

Jack {leprosy} 0.5 0.7 €3

Observe that in the above model, probabilities are assigned to a complex
value as a whole, and no impreciseness in attributes, given by sets of values with
probabilities attached, can be explicitly expressed in the language. It has been
shown in [12] that each tuple with imprecise attribute values can be represented
by an annotated tuple, and that such a representation can be efficiently com-
puted. Applying similar techniques, complex values with imprecise attributes
may be represented by probabilistic complex values as above. To keep our model
simple, we do not consider imprecise attributes here.

On top of our model, we define a relational algebra that uses, following [12],
generic functions ®, @, © for computing the probability range of the conjunction,
disjunction, and difference of two events e; and e; from the probability ranges
[l1,uv1] and [l2,u2] of e; and ey, respectively. Instances of these functions are
selected according to the relationship between e; and es. For example, if e; and
eo are independent, then the probability range of e; Aes is given by [l; -l2, ug -uz].
However, if nothing is known about how e; and ey relate, then it is given by

[max(0, + lo — 1), min(u1,us)]. Such generic functions allow us to remove the
explicit or implicit assumptions about joint occurrence of tuples and/or attribute
values in relations that are present in other approaches (see [4,2, 5, 8]).

We further refine [12] by giving a model-theoretic definition of probabilistic
combination strategies, which assumes a probabilistic semantics in which prob-
ability distributions are defined over a set of possible worlds. Furthermore, we
propose probabilistic difference strategies that are not necessarily derived from
conjunction strategies and negation. We show that these refinements lead to
more precise results in certain cases (see Example 2.8).

The main contributions of this work can be briefly summarized as follows:

o We give a model-theoretic definition of probabilistic conjunction, disjunction,
and difference strategies, which is based on a possible worlds semantics.

e We present a data model that is based on probabilistic complex value rela-
tions, which generalizes previous data models in the literature [12,1].

o We define an algebra for querying database instances.

e We present equivalence results for query expressions, which can be used
for query optimization. Since our model generalizes the one in [12], these
results also apply to [12] as a special case. Note that the results on query
equivalences in [12] are limited to the relationship between compaction and
the standard relational algebra operators.

The rest of this paper is organized as follows. Section 2 gives some preliminar-
ies. Sections 3 and 4 define the data model and the algebra. In Sections 5 and 6,
we focus on query equivalences and optimization. Section 7 discusses related
work, and Section 8 gives a short summary and an outlook on future research.

Note that for space limitations, proofs of the results are omitted (detailed
proofs of the results are essentially given in [18]).

2 Probabilistic Background

In this section, we describe the probabilistic background of our approach to prob-
abilistic complex value databases. We assume a semantics in which probabilities
are defined over a set of possible worlds (see especially [3,9,17,10]). Note that
we adopt some technical notions from [13, 14].

The main aim of this section is to give a model-theoretic definition of prob-
abilistic conjunction, disjunction, and difference strategies, which have been in-
troduced by an axiomatic characterization in [12]. Given the probability ranges
of two events e; and es, these strategies compute the probability range of the
events e1 V es, €1 A ez, and e; A —es, respectively. We allow a variety of differ-
ent probabilistic conjunction, disjunction, and difference strategies to take into
account the different dependencies between the two events e; and es.

We assume a set of basic events B = {by,bs,...,b,} with n > 1. The set of
events is the closure of B under the Boolean operations — and A . As usual, we use
(e1Ves) to abbreviate —(—e; A—e2). We use L and T to abbreviate the false event
(b1 A—by1) and the true event —(by A—by), respectively. A probabilistic pair (e, [I,u])
consists of an event e and an interval [[,u] C [0,1], where ! and u are rational
numbers. We use L and T to abbreviate (L,[0,0]) and (T, [1,1]), respectively.

Informally, each tuple ¢ in our probabilistic complex value database will be
associated with a probabilistic pair (e, [/, u]). Intuitively, this means that ¢ is
identified with e and that the probability of ¢ lies in the interval range [I,u].
More precisely, each tuple in a base relation will be assigned a probabilistic pair
(e, [I,u]) with a basic event e. Moreover, each derived tuple ¢ will be assigned a
general probabilistic pair (e, [l,u]), where e encodes some information on how ¢
is computed from tuples in the base relations.

An implication (resp., negative correlation, positive correlation, independence)
formula is an expression a — b (resp., NC(a,b), PC(a,b), Ind(a, b)) with events a
and b. A dependence information on two events a and b is a subset of KB*(a, b) =
{Ind(a,b), NC(a,b), PC(a,b),a—=b,b—a,aANb— L, T = aVb}.

Informally, to express that the probability of two events e; and ez lies in the
intervals [l1,u1] and [l2, us], respectively, we will use the two probabilistic pairs
(e1,[l1,u1]) and (ez, [l2,uz]), respectively. The relationship between e; and e
will then be encoded by some dependence information KB C KB*(e1,es).

A classical interpretation I is a truth assignment to the basic events in B,
which is extended to all events as usual (that is, (e; Aes) is true in I iff e; and ey
are true in I, and —e is true in I iff e is not true in I). We write I |= e iff e is
true in /. We use Zp to denote the set of all classical interpretations on B.

A probabilistic interpretation Pr is a mapping Pr: Ig — [0, 1] such that all
Pr(I) with I € Zg sum up to 1. It is extended to all events e as follows:

Pr(e) = ¥ rezy. 1e Pr(D).

It is important to point out that probabilistic interpretations are defined on
the set of all classical interpretations and not on the set of all basic events.
That is, we do not assume that the basic events are pairwise mutually exclusive.
Moreover, we do not assume that the basic events are pairwise independent.

The truth of probabilistic pairs, implication formulas, negative correlation
formulas, positive correlation formulas, and independence formulas F' in a prob-
abilistic interpretation Pr, denoted Pr |= F, is defined as follows:

Pr = (e, [l,u]) iff Pr(e) € [l,u],

Pr=a—b iff Pr(aAb) = Pr(a),
Pr = NC(a,b) iff Pr(a A —b) = min(Pr(a), Pr(-b)),
Pr = PC(a,b) iff Pr(aAb)=min(Pr(a),Pr(b)),
Pr = Ind(a,b) iff Pr(aAb) = Pr(a)- Pr(b).

A probabilistic interpretation Pr is a model of a formula F iff Pr = F.
Pr is a model of a set of formulas F, denoted Pr |= F, iff Pr is a model of all
F € F. The set F is satisfiable iff a model of F exists. A formula F' is a logical
consequence of F, denoted F |= F, iff each model of F is also a model of F.

The next result shows that there are combinations of probabilistic pairs
(e1,[l1,u1]) and (es, [l2,u2])} with dependence information KB C KB*(ey,e3)
that are unsatisfiable (note that this fact remains unmentioned in [12]).

~ o~~~

Lemma 2.1. Letp; = (e1, [l1,u1]) and p2 = (e, [l2,u2]) be two probabilistic pairs
and let KB be a dependence information on ey and ez such that KB U {p1,p2}
is satisfiable. Then, all the following conditions hold:

1. IfKB '= ei1Nex = 1, then 11 + 15 < 1.

2. If KB = e — ea, then 1y < us.

3. If KB = ey — e1, then ly < uy.

4. If KBl=T — ey Ve, then ug +uz > 1.
Example 2.2. Let p; and ps be given by (e, [.5, 1]) and (—e, [.6, 1]), respectively,
and let KB = (). Then, KB U {p1,p2} is not satisfiable, since KB =e A —e — L
and 0.5 + 0.6 > 1 (intuitively, the lower bound 0.6 for the probability of —e
implies the upper bound 0.4 < 0.5 for the probability of e).

We next define the notion of tight logical consequence for probabilistic pairs.
A probabilistic pair (e,[l,u]) is a tight logical consequence of a satisfiable set
of formulas F, denoted F ':tight (e,[l,u]), iff | and w are the infimum and
supremum, respectively, of Pr(e) subject to all models Pr of F.

We are now ready to define probabilistic conjunctions, disjunctions, and dif-
ferences of probabilistic pairs. Let p; = (e1, [l1, u1]) and p2 = (e, [l2,u2]) be two
probabilistic pairs and let KB C KB*(ey, e2) such that KB U {p1,p2} is satisfi-
able. The probabilistic conjunction, disjunction, and difference of p; and ps under
KB, denoted py @ kg p2, P1 DB P2, and p; © kg p2, respectively, are defined as the
probabilistic pairs (e; Aesg, [I,u]), (e1 Ves, [, u]), and (e; A—ez, [I, u]), respectively,
where [I,u] such that (e1 Aeq,[l,u]), (e1 Ve, [l,u]), and (e1 A —ez,[l, u]), respec-
tively, are tight logical consequences of KB U {p;,p2} (note that the structure of
KB ensures that both [and u are rational).

Informally, to compute the probability range [I,u] of e; A ea, €1 V ez, or
e1 A—ey from the probability ranges [I1,u1] and [l2,u2] of e; and ez, respectively,
we first collect all available dependence information KB C KB*(e1,e2) on e;
and ey. We then check whether KB U {(ey, [l1,u1]), (€2, [l2, u2])} is satisfiable. If
this is the case, it just remains to compute the unique tight logical consequences
(61/\62, [l7 U]), (61V627 [l7u])7 or (61/_162, [lau]) of KBU{(ela [lla ul]): (627 [l2> u2])}
Both the satisfiability check and the computation of the tight logical consequence
can effectively be done by using linear and nonlinear programming techniques.

We next introduce the notions of probabilistic conjunction, disjunction, and
difference strategies. Let us first give some motivating background.

In query expressions of our algebra, each occurrence of a probabilistic com-
bination operator stands for the probabilistic combination of several pairs of
probabilistic pairs. Moreover, each such occurrence will be parameterized with a
dependence information KBs C KB*(a,b), where a and b are two new distinct
basic events. For example, 7, U®i» r; will denote the union of two relations r;
and ro under the dependence information KB;, = {Ind(a,b)}. This dependence
information KBg; can now be used in the following ways:

DyYNAMIC DEPENDENCE: Given two probabilistic pairs p; = (eq,[l1,u1]) and
D2 = (e, [l1,uz]), we compute p; @ xp P2, P1 ®kB P2, and p; ©kp p2, where
KB is given by KBy U {e; = a,a — e1,e2 — b,b — ea}.

StaTIC DEPENDENCE: For any two probabilistic pairs p; = (e, [l1,u1]) and p2 =
(e2, [I1,uz2]), we compute py ®kg,, Ph, P1 ®kB., Py, and py Oka,, Py, Where
pi = (a,[l1,u1]) and ph = (b,[l1,uz]), instead of p; ®kp P2, P1 BB P2, and
p1 © kB P2, respectively (that is, we ignore the concrete events e; and es).

DyNAMIC DEPENDENCE has nice properties from the semantic point of view,
since it exploits all the (locally) available dependence information. STATIC DE-
PENDENCE, in contrast, implies nice computational properties. Firstly, the de-
pendence information KBy is in itself complete (that is, we do not have to
compute any other relationships that are implicitly encoded in the structure of
some concrete events e; and e3). Secondly, some specific dependence information
KBg; often implies nice algebraic properties of ®kg,,, ®ks,,, and Skg,,, which
are known in advance, and can thus be exploited for query optimization.

In the sequel, we implicitly assume STATIC DEPENDENCE (which can be seen
as one of the main motivations behind probabilistic combination strategies).

Let KB C KB*(a,b) be a dependence information on two distinct basic

events a and b. The probabilistic conjunction (resp., disjunction, difference)
strategy for KB is the unique function ® (resp., @, ©) that associates any
two probabilistic pairs (e, [l1,u1]) and (es,[l2,us2]), where KB U {(a, [l1,u1]),
(b, [l2,uz])} is satisfiable, with the probabilistic pair (a, [l1,u1]) ®ks (b, [l2,u2])
(resp., (a, [l1,u1]) ®kp (b, [l2,u2]), (a,[l1,u1]) ©kB (b, [l2,uz])).
Example 2.3. Let p; = (e1,[l1,u1]) and p2 = (ez, [l2,u2]) be two probabilistic
pairs. The probabilistic conjunction, disjunction, and difference strategies for KB
among @, {Ind(a,b)}, {PC(a,b)}, {a — b}, and {a Ab — L} (we refer to these
cases by ignorance, independence, positive correlation, left implication, and mu-
tual exclusion, respectively) are given in Table 1. Note that the probabilistic
conjunction and disjunction strategies for ignorance, independence, positive cor-
relation, and mutual exclusion are already known from [12].

Table 1. Examples of probabilistic combination strategies

ignorance 1 Qig p2 = (e1 Aez, [max(0,l; + Iz — 1), min(u1, u2)])

p1 Big p2 = (e1 V ez, [max(ly,l2), min(1, uy + u2)])

P1 Oig p2 = (e1 A —ea, [max(0,l; — u2), min(ug, 1 — 12)])
independence P1 ®inp2 = (e1 Aea, [l1 - o, w1 - us)

P1®Binp2 = (e1Vea, [l1 + 12— 11 -lo,ur +u2 — u1 - u2])

P1Oinp2 = (e1 A—ea, [l1- (1 —u2),ur- (1 —12)])
positive correlation | p1 ®pc p2 = (e1 A e2, [min(l1,l2), min(u1, u2)])

P1 Dpe p2 = (€1 V ez, [max(ly, l2), max(u1, u2)])

P1 Ope P2 = (e1 A mez, [max(0,l; — u2), max(0, uy — I2)])

(e1 A e, [l2, min(ui, u2)])
P1 @i p2 = (e1V ez, [max(ly,l2), u1])
D1 O p2 = (e1 A —ez, [max(0,l1 — u2), w1 — l2])

left implication p1 ®ui p2

mutual exclusion | p1 @me p2 = (e1 Aez, [0,0])
D1 Pme p2 = (€1 V ez, [min(1,5 + I2), min(1, u1 + u2)])
P1 Ome 2 = (e1 A ez, [l1, min(u1, 1 —12)])

We next focus on the properties of probabilistic combination strategies. Let
us first introduce some necessary notations.

For probabilistic pairs p= (e, [, u]), we write ¢(p) to denote [, u]. For intervals
[r1,51], [r2, s2] € [0, 1], we write [r1, $1] < [ra, s2] to denote r; <7y and s; < s3. For
probabilistic pairs p1 and pa, we write p; C p2, p1 =p2, p1 < p2, and p; > ps to
denote ¢(p1) Ct(p2), t(p1) =t(p2), ¢(p1) < t(p2), and t(p1) > t(p2), respectively.

Let KB C KB*(a,b) with two distinct basic events a and b. The probabilistic
conjunction (resp., disjunction) strategy ® (resp., ®) for KB is commutative iff
DP1®P2 = p2®py (resp., p1®p2 = p2®p1) for all probabilistic pairs p; and ps. It is
associative iff (p1 @ p2) ®p3 = p1 @ (p2 @ p3) (resp., (p1 Bp2) Bps = p1 B (P2Dp3))
for all probabilistic pairs p;, p2, and p3. We say that ® is distributive over @ iff
p1 ® (p2 ® p3) = (p1 ® p2) ® (p1 ® p3) for all probabilistic pairs py, pa, and ps.

For associative probabilistic disjunction strategies @ and probabilistic pairs
P1,D2,---,Pr With k > 1, we write @ie[hk] p; to denote p; B ps D -+ - D pg-

Example 2.4. It can easily be verified that the probabilistic conjunction and
disjunction strategies for ignorance, independence, positive correlation, and mu-
tual exclusion are all commutative and associative. Moreover, for positive corre-
lation, the conjunction strategy is distributive over the disjunction strategy.

Rather than defining probabilistic conjunction and disjunction strategies by
a rigorous foundation on probability theory, the work in [12] gives a characteri-
zation by the postulates BOTTOMLINE, IGNORANCE, IDENTITY, ANNIHILATOR,
COMMUTATIVITY, ASSOCIATIVITY, and MONOTONICITY (see [12] for details).

Indeed, all probabilistic conjunction and disjunction strategies satisfy IGNO-
RANCE, (a slight variant of) IDENTITY, and ANNIHILATOR.

Lemma 2.5. Let KB C KB*(a,b) with two distinct basic events a and b. Let ®,
@, and © be the probabilistic combination strategies for KB. Then, the conditions
shown in Table 2 hold for all probabilistic pairs p1 = (e1,[l1,u1]) and p2 =
(e2,[la, us]) such that KB U {(a,[l,u1]), (b, [l2,us2])} is satisfiable.

Table 2. Properties of probabilistic combination strategies

IGNORANCE |p1 @ p2 C p1 Qig p2
p1 D p2 C p1 Dig P2
p1Op2 C p1 Oig P2
IDENTITY p1 ®p2 = po, if [l1,u1] =[1,1],aANb— L ¢ KB, and a - b ¢ KB
p1®p2 = p1, if [lo,u2] =[1,1],aANb— L & KB, and b — a ¢ KB
p1 @ p2 = po, if [l1,u1] =[0,0, T2 aVb¢g KB, and b — a ¢ KB
p1 ®p2 = p1, if [l2,u2] =[0,0, T >aVb¢ KB,anda - b ¢ KB
p1Op2 = p1, if [l2,u2] =[0,0, T >aVb¢g KB,anda —+ b ¢ KB
ANNIHILATOR |p1 @ p2 = L, if [l1,u1] =[0,0] or [l2, u2] =[0,0]
p1@®p2 = T, if [l1,ua] = [1,1] or [l2,u2] = [1,1]
p1©6p = L, if [l1,U1] = [0,0] or [lz,uZ] = [1, 1]

However, there are probabilistic conjunction and disjunction strategies ®
and @ that do not satisfy the postulate BOTTOMLINE, which says that p1 ® ps <
(e1/e2, [min(l1,12), min(u1,u2)]) and p1 ®p2 > (e1Ves, [max(li, l2), max(u1, u2)]),
respectively, for all probabilistic pairs p1 = (e1,[l1,u1]) and pa = (e, [l2,u2])
such that p; ® po and p; @ po, respectively, are defined.

Example 2.6. We show that the probabilistic conjunction and disjunction stra-
tegies for left implication do not satisfy BOTTOMLINE. Let the two probabilistic
pairs p; and po be given by (eq,[.2,.7]) and (es, [.5, .8]), respectively. It can easily
be verified that {b — a, (a,[.2,.7]), (b, [.5, .8])} is satisfiable. Moreover, we get:

P ®li P2 = (61 A €a, [5, 7]), but [min(ll, l2), min(ul, U2)] = [.2, 7] ;
p1 D p2 = (e1 Ve, [.5,.7]), but [max(ly,l2), max(u1,us2)] = [.5,.8].

Furthermore, there are probabilistic conjunction and disjunction strategies
that do not satisfy COMMUTATIVITY (that is, that are not commutative).

Example 2.7. We show that the probabilistic conjunction and disjunction stra-
tegies for left implication do not satisfy COMMUTATIVITY. Let the two proba-
bilistic pairs p; and p, be given by (e1,[.2,.7]) and (eq, [.5,.6]), respectively. It
can easily be verified that {b — a,(a,[.2,.7]), (b,[.5, .6]) } is satisfiable. We get:

P1 ®ui p2 = (e1 A ez, [.5,.6]) Z (e2 Aer,[.2,.6]) = p2 ®uip1,
P1 @i p2 = (e1 Nea,[.5,.7]) # (ea Aer, [.5,.6]) = p2 @i p1 -

Finally, we give an example in which our rigorous model-theoretic approach
yields more precise intervals than the axiomatic approach in [12].

Example 2.8. Let us consider the case of left implication. Let the two proba-
bilistic pairs p; and py be given by (e1,[.2,.7]) and (ez, [.5,.6]), respectively. It
can easily be verified that {b — a,(a,[.2,.7]), (b,[.5,.6])} is satisfiable. We get:

p1 ®ui p2 = (e1 A ez, [.5,.6]),
P11 @up2 = (e1Ve,[.5,.7]),
P1 S p2 = (e1 A e, [0,.2]).

The approach in [12], in contrast, just produces the probability ranges [.2, .6],
[.5,.7], and [0, .5], respectively, which are obtained from p; and ps by the com-
putations p1 Qpep2 = (e1 Aea,[.2,.6]), p1 Bpep2 = (e1 Vea,[.5,.7]), and p1 &p2 =
(e1,[.2,.7]) ®ig (—e2,[.4,.5]) = (ex A —es, [0, .5]), respectively.

3 Data Model

In this section, we define probabilistic complex value relations.

Let A be a nonempty set of attribute names and let 7 be a nonempty set of
atomic types. We define complexr value types (or simply types) by induction as
follows. Every atomic type from 7T is a type. If T is a type, then the set {T'}

is a type. If Ay,..., A with k& > 1 are distinct attribute names from A and
Ti,...,Ty are types, then the mapping T = {(A1,T1),...,(Ak,Tk)} is a type
(called tuple type). It is abbreviated by [A;y: T1,..., Ag: Tk]. We call Ay, ..., Ay
the top-level attribute names of T. We use T.A; to denote T;.

Every atomic type T € T is assigned a domain dom(T). We define complex
values by induction as follows. For all atomic types T' € T, every v € dom(T) is
a complex value of type T. If vy, . .., v with & > 0 are complex values of type T,
then the set {vy,..., v} is a complex value of type {T'}. If Ay,..., Ay with k> 1
are distinct attribute names from A and vy, ...,v; are complex values of types
Ti,..., Ty, then the mapping {(A41,v1),..., (Ak,vk)} is a complex value of type
[A1: Th,...,A: Ty]. It is abbreviated by [A1: v1,..., Ag: vg].

Given a tuple type T', a complex value tuple (cv-tuple) of type T is simply
a complex value of type T. For cv-tuples t = [A1: vy1,..., Ak : vg], we use v.4;
to denote v;. A complex value relation (cv-relation) of type T is a finite set of
cv-tuples of type T.

A probabilistic complex value tuple (pcv-tuple) of type T is a mapping ¢ of the
kind {(data,v), (Ib,7), (ub, s), (path,e)}, where v is a cv-tuple of type T, r and
s are rational numbers with 0 < r < s <1, and e is an event. It is abbreviated
by [data: v, Ib: 7, ub: s, path: e]. We use t.data, t.lb, t.ub, t.path, and ¢.prob to
denote v, r, s, e, and ([r, s], e), respectively. A probabilistic complez value relation
(pev-relation) of type T is a finite set of pcv-tuples of type T'.

A base pcv-relation is a pcv-relation r such that ¢.path € B for all ¢ € r and
that t;.path # tg.path for all ¢1,t2 € r with t;.data # to.data. A probabilistic
complez value database is a finite set of base pcv-relations that are defined over
pairwise disjoint sets of basic events.

A pcv-relation r is called compact iff t1.prob = t5.prob for all ¢t1,t2 € r with
t;.data = ty.data. In the sequel, we identify compact pcv-relations r of type R
with pairs (4, u), where § is a cv-relation of type R and p is a mapping from ¢
to the set of all probabilistic pairs.

Each non-compact pcv-relation can be transformed into a compact pcv-rela-
tion by applying a compaction operation: Given a pcv-relation r and a commu-
tative and associative probabilistic disjunction strategy &, the compaction of r
under @, denoted x®(r), is defined as the pcv-relation (§, u), where:

e § = {v|Jwer: wdata =v},
e (1(v) = Dyer, w.data—y w-prob for all v € 4.

In the sequel, we thus assume that all pcv-relations are compact. Moreover,
we assume that t.prob Z L for all tuples ¢ in a pcv-relation r (that is, we make
the closed world assumption that t.prob = L for all ¢ ¢ r).

Example 3.1. A compact pcv-relation is shown in Table 3. It contains infor-
mation about chemical experiments in which several substances are checked for
a certain ingredient. Each experiment yields information about the substance
analyzed (substance-id), the laboratory (lab), the date (date), the assistants who
did the experiment (assistants), and the result (a-result).

The probabilistic information in this pcv-relation can be interpreted as sub-
jective belief of an agent. Each pcv-tuple ¢ then means that the probability that
t.data holds in the real world ranges from t.Ilb to t.ub. For example, the first
pcv-tuple ¢ could say that the probability that substance S89 was analyzed in
laboratory L17 on 02/17/99 by Jack and Jill with positive a-result lies between
0.7 and 0.8 (this could mean that we are unsure about the whole information in
t.data or that we are just unsure about the a-result). Another possible interpre-
tation is that the probability that the positive a-result describes correctly the
properties of substance S89 lies between 0.7 and 0.8.

Table 3. A compact pcv-relation

| data || Ib | ub |path|
substance-id a-arrangement a-result
389 lab date assistants 4 0.7 | 0.8 | et
L17 | 02/17/99 | {Jack, Jill}
substance-id a-arrangement a-result
389 lab date assistapts 4 06 | 09 | e
L10 | 02/13/99 | {Joe, Jim}
substance-id a-arrangement a-result
S64 lab date assistants _ 0.5 | 0.7 | es
L12 | 02/17/99 | {Janet, Jill}
4 Algebra

In this section, we define an algebra on probabilistic complex value relations.

4.1 Selection, Projection, and Renaming

We first define the selection operation on pcv-relations.

Let x be a tuple variable. We define terms by induction as follows. A term is
a complex value v, the tuple variable x, or an expression t.A, where ¢ is a term
and A belongs to AU {data, b, ub}. We define selection conditions by induction
as follows. If ¢, and ¢ are terms and 6 belongs to {=,<,€,C}, then t1 6t2 is a
selection condition (called atomic selection condition). If ¢1 and ¢ are selection
conditions, then —¢; and (¢1 A @2) are selection conditions. We use (¢1 V ¢2) to
abbreviate —(=¢1 A —¢s).

The interpretation of a term ¢ in a pcv-tuple w, denoted [t],, is inductively
defined by [v]y = v, [#]w = w, and [t.A]y = [t]w.4 if [t]w.A is defined.

A selection condition ¢ is applicable to a tuple type T iff for all atomic
selection conditions t; #t5 that occur in ¢ and all pcv-tuples w of type T':
[t1]w, [t2]w, and [t1]w 6 [t2]w are defined. A selection condition ¢ is probability-
free iff it does not contain the expressions Ib and ub.

For selection conditions ¢ that are applicable to T', the satisfaction of ¢ in a
pev-tuple w of type T, denoted w = ¢, is inductively defined as follows:

® W ':tl 0t2 iff [tl]we[tg]w,
o w = ¢ iff not w = ¢,
e wlE(pAY) iff wE ¢ and w =Y.

Let » = (0, u) be a pcv-relation of type R and let ¢ be a selection condition
that is applicable to R. The selection on r with respect to ¢, denoted o4(r), is
the pcv-relation (&', u') of type R, where:

e ¢ = {v|Fwer: wdata=v, w [¢},
e u'(v) = p(v) for all v € §'.

Example 4.1. Let us take the pcv-relation given in Table 3. Let the selection
condition ¢ be defined by

¢ = ((x.Ib > 0.7 V z.data.a-result = —) A
Jack € z.data.a-arrangement.assistants) .

The result of the selection operation with respect to ¢ is shown in Table 4.

Table 4. Result of selection

| data [16] ub [path]
substance-id a-arrangement a-result
589 lab| date | assistants 4 0.7 | 0.8 | e
L17] 02/17/99] {Jack, Jill}

We next concentrate on the projection operation on pcv-relations. We define
the subtype relationship on all types by induction as follows. If T' is an atomic
type from 7T, then T be a subtype of T'. If T is a subtype of T, then {71} is a
subtype of {T>}. If Ay,..., Ay with k£ > 1 are distinct attribute names from A
and T1,...,T;,51,-..,S, with | <k are types such that 771,...,7; are subtypes
of S1,...,S;, then [A1: Ty,..., A;: Tj] is a subtype of [A1: S1,..., Ak: Skl

Let v be a complex value of type T and let S be a subtype of T. The pro-
jection of v to S, denoted wg(v), is by induction defined as follows. If S is an
atomic type, then mg(v) = v. If v = {v1,...,v;} and S = {5}, then 7g(v) =
{71'5/(’1}1),.. .,WSI(Uk)}. Ifv= [All V1, - ..,Ak: Uk] and S = [Al: Sl,.. .,Al: Sl],
then 7r5(v) = [A1 : 7r,gl(’l)1), LA T, (’Ul)].

Let r be a cv-relation of type R and let S be a subtype of R. The projection
of r to S, denoted wg(r), is the cv-relation {mg(t) |t € r} of type S.

Let r = (6, 1) be a pev-relation of type R, let S be a subtype of R, and let &
be a commutative and associative disjunction strategy. The projection of r to S
under @, denoted 7§ (r), is defined as the pev-relation (&', ') of type S, where:

e ' = {vens(d)] Dues, nsw)=o #(w) # L},
o 1 (v) = Dues, ns(w)mo Mw) for all v € d'.

Example 4.2. The projection of the pcv-relation from Table 3 to a tuple type
over the attribute names substance-id and a-result under @, is given in Table 5.

Table 5. Result of projection

| data || Ib | ub | path |
substance-id | a-result
S39 T 0.7 | 09 | e1Ves
substance-id | a-result
S64 — 0.5 | 0.7 es

We finally define the renaming operation on pcv-relations. Let T be a type
and let A denote the set of all attribute names that occur in T'. A renaming
condition for T is an expression By,...,B; <« Ci,...,C;, where By,...,B; is
a sequence of distinct attribute names from A and C4,...,C; is a sequence of
distinct attribute names from A — (A — {By,..., B;}).

Let T beatypeandlet N = By,...,B; « (4,...,C] be arenaming condition
for T. The renaming of T with respect to N, denoted pn(T), is obtained from T
by replacing each attribute name B; with ¢ € [1:{] by the new attribute name Cj;.

Let v be a complex value of type T and let N = By,...,B; «+ C1,...,C
be a renaming condition for T'. The renaming of v with respect to N, denoted
pn (v), is obtained from v by replacing each attribute name B; with ¢ € [1:{] by
the new attribute name C;.

Let r be a cv-relation of type R and let N be a renaming condition for R. The
renaming of r with respect to N, denoted px(r), is the cv-relation {pn(t) |t € T}
of type pn(R). Let r = (4,) be a pcv-relation of type R and let N be a
renaming condition for R. The renaming of r with respect to N, denoted pn(r),
is the pcv-relation (¢, u') of type pn(R), where:

e &' = pn(9),
o 1'(v) = p(py (v)) for all v € §'.

4.2 Join and Cartesian Product

We now define the join operation on pcv-relations.

Two tuple types T7 and T5 over the sets of top-level attribute names A, and
A, respectively, are join-compatible iff Ty.A = T>.A for all A € A; N As. The
join of two such types T and T, denoted 77 > T, is the tuple type T over
AU AQ, where TA=T1.Aif Ac A and TA=T5.Aif A€ As.

Let v; and vy be two cv-tuples of join-compatible types 77 and T over Ay
and A,, respectively, with v;.A = vy.A for all A € A; N As. The join of vy
and vy, denoted vy < vy, is defined as the cv-tuple v of type 17 b T, where
vA=v.Aif A€ A andv.A=v.Aif A€ As.

Let r1 and 73 be two cv-relations of join-compatible types R; and Rs over A
and A, respectively. The join of 11 and ro, denoted 11 <74, is the cv-relation r of
type Ry Ry with r= {tl >Xto | t1€T1,t2 € Tg,tl.AZtQ.A for all Ac A, OAQ}.

Let ry = (81, 1) and r2 = (02, u2) be two pev-relations of join-compatible
types Ry and Rs, respectively, and let ® be a probabilistic conjunction strategy.
The join of 71 and ry under ®, denoted ri <®ry, is defined as the pcv-relation
(6, u) of type Ry < Ry, where:

o) = {U c (51 > 62 | HI(T‘-R1 (U)) by 'LL2(71'R2 (’U)) ¢ L}7
o u(v) = p1 (R, (v)) ® p2(mr, (v)) for all v € 4.

Example 4.3. The join of the pcv-relations from Tables 5 and 6 under the
probabilistic conjunction strategy ®;, is given in Table 7.

Table 6. Second input pcv-relation of join

| data [b | ub | path]
subsiézr;ce-id B—re_sult 08 | 08 es
substsa3n7ce-id ﬁ-ri'b:“lt 08 | 1.0 es
Table 7. Result of join
| data [1 [ub | path |
subs’gasr;ce-id a-rj_sult ﬂ'fe_smt 0.56 | 0.72 | (e1Ve2)Aes

We next define the Cartesian product as a special case of join. Two tuple
types T1 and T5 over the sets of top-level attribute names A; and As, respec-
tively, are Cartesian-product-compatible iff A; and A, are disjoint. The Carte-
sian product of such types Ty and T, denoted 17 x T5, is the tuple type T; < 1.

Let r1 and ro be two pcv-relations of Cartesian-product-compatible types
Ry and R,, respectively, and let ® be a probabilistic conjunction strategy. The
Cartesian product of r1 and ro under ®, denoted r x®ry, is the pcv-relation
r1 <® 7y of type Ry x Rs.

4.3 TUnion, Intersection, and Difference

We now define the union, intersection, and difference operation on pcv-relations.
Let r1 = (01, 1) and 7o = (2, p2) be two pev-relations of the same type R.
Let ® / @/ © be a probabilistic conjunction/disjunction/difference strategy.
The union of 1 and ry under @, denoted r; U®ry, is the pev-relation (6, u)
of type R, where:

ed={wedh —Gh|lmwdLELIU{ved -6 |LBu(v)ZL}U
{vediNéda|p(v) ® pa(v) # L},

[lq(’t))@J. if v edy —da
o u(v) = ¢ L@ pu(v) if v €dy—0dy
p1(v) ® pa(v) if v € 61 Nda.

Example 4.4. The union of the pcv-relations from Tables 5 and 8 under the
probabilistic disjunction strategy @, is given in Table 9.

Table 8. Second input pcv-relation of union

| data || Ib | ub | path |
substance-id | a-result
S39 T 0.2 | 0.3 €6
substance-id | a-result
537 — 0.3 | 04 er

Table 9. Result of union

| data || Ib | ub | path
substance-id | a-result
339 T 0.7 | 0.9 e1 VeaVes
substance-id | a-result
537 — 03| 04 er
substance-id | a-result 05 | o7 e
S64 — . . 3

The intersection of 11 and ro under ®, denoted r; N®ry, is the pcv-relation
(6, u) of type R, where:

e d={veannd|m) puv)#Ll}
o u(v) = p1(v) ® pa(v).

The difference of 1 and ro under ©, denoted r, —°rs, is the pcv-relation
(6, u) of type R, where:

= {Ue(sl—(52'#1(U)9J_$éJ_}U{U€(51052|/J/1(U)6M2(’U);J_},

. (’U) _ ul(v)@L if v €dy — b2
a w1 (v) © ps(v) ifvedNds.

4.4 Relationship to Classical Relational Algebra

It turns out that pcv-relations and the algebra on pcv-relations properly extend
classical relations and the classical relational algebra.

Obviously, each tuple ¢ in a classical relation r can be expressed by the
pev-tuple (t) = [data: ¢, Ib: 1, ub: 1, path: e;] with e; € B in an appropriate
pev-relation (7). Hence, it now remains to show that the results of our algebraic

operations on such pcv-relations corresponds to the results of the classical alge-
braic operations on the original classical relations.

Note first that each event t.path in a pcv-tuple ¢ with [t.Ib,¢.ub] = [1,1] is
logically equivalent to T. Moreover, we have the following result.

Lemma 4.5. Let ®, ®, and © be the probabilistic combination strategies for any
case among ignorance, independence, and positive correlation. Then, the result
of applying ®, &, and © to the probabilistic pairs L and T is given in Fig. 1.

®|LT e|LT eo|LT
L1 1L T L1
TILT T|TT T|TL1

Fig. 1. Probabilistic combinations of 1 and T

This result easily shows that under the probabilistic combination strategies
for the cases ignorance, independence, and positive correlation, our selection,
projection, renaming, join, Cartesian product, union, intersection, and differ-
ence on the pcv-relations e(r) correspond to the classical selection, projection,
renaming, join, Cartesian product, union, intersection, and difference, respec-
tively, on the original classical relations r.

4.5 Computational Complexity

We now show that under certain assumptions, the introduced operations on pcv-
relations can be done in polynomial time in the size of the input relations. The
results of this section are implicit in [18].

Let KB C KB*(a,b) be a dependence information on two distinct basic events
a and b. The satisfiability check for KB is polynomial-time-computable iff the
satisfiability of KB U{(a, [l1,u1]), (b, [l2,u2])} can be decided in polynomial time
in the input size of I1,u1, l2, us. The probabilistic conjunction (resp., disjunction,
difference) strategy for KB is polynomial-time-computable iff (a,[l1,u1]) @kB
(b, [l2,u2]) (resp., (a,[l1,u1]) Dka (b, [l2,u2]), (a,[l1,u1]) ©kB (b, [l2,u2])) can be
computed in polynomial time in the input size of Iy, uy,l2, us.

Example 4.6. The satisfiability checks and the probabilistic combination stra-
tegies for the cases ignorance, independence, positive correlation, left implication,
and mutual exclusion are all polynomial-time-computable.

In the sequel, we implicitly assume that all involved satisfiability checks and
probabilistic combination strategies are polynomial-time-computable. OQur first
result shows that then all unary operations can be done in polynomial time.

Theorem 4.7. a) Given a not necessarily compact pcv-relation r of type R,
and a commutative and associative probabilistic disjunction strategy @, the com-
paction k®(r) can be computed in polynomial time in the input size of r.

b) Given a pcv-relation r of type R, a selection condition ¢ applicable to R, and
a renaming condition N for R, both the selection o4(r) and the renaming pn(r)
can be computed in linear time in the input size of r.

¢) Given a pcv-relation r of type R, a subtype S of R, and a commutative and
associative probabilistic disjunction strategy @, the projection 7(2-9 (r) can be com-

puted in polynomial time in the input size of r.
The next result deals with the binary operations on pcv-relations.

Theorem 4.8. a) Given two pcv-relations r1 and ro of join-compatible (resp.,
Cartesian-product-compatible) types Ry and Ry, and a probabilistic conjunction
strategy ®, the join r1 <® ro (resp., Cartesian product 11 X®ry) can be computed
in polynomial time in the input size of r1 and r2.

b) Given two pcv-relations r1 and 7o of the same type R, and a probabilistic
conjunction (resp., disjunction, difference) strategy ® (resp., ®, ©), the inter-
section r1 N® ry (Tesp., union r1 U® ro, difference 11 —© r3) can be computed in
polynomial time in the input size of r1 and ro.

Note that the same results also hold for the generalization of our alge-
braic operations to DYNAMIC DEPENDENCE, if we impose further restrictions
on the events in the input relations. For example, if we assume that all events
are conjunctions of basic events, or that all events are disjunctions of basic
events, or that all events are defined on pairwise disjoint sets of basic events
(in these cases, for any KB C KB*(a,b), the concrete dependence information
{F € KB*(a,b) | KBU {e; = a,a — ej,e3 = b,b — ex} = F'} can be computed
in polynomial time in the input size of a and b).

5 Query Equivalences

We now concentrate on query equivalences. We implicitly assume that all in-
volved conjunction and disjunction strategies are commutative and associative.

Our first result shows that the join operation can be reduced to renaming,
Cartesian product, selection, and projection like in classical relational algebra.

Theorem 5.1. Letry and ry be pcv-relations of join-compatible types Ry and R,
respectively. Let ® and @ be a probabilistic conjunction and disjunction strategy.
Let Ay and A, denote the sets of top-level attribute names of Ry and R, re-
spectively. Let pn replace each A € Ay N Az by the new attribute name A'. Let
¢ be the conjunction of all x. A’ = x.A with A€ A;NA,y. Let R = Ry < R,.

7y <% g = W%(‘)'d)(PN(Tl) x® 2)) - (1)

We next show that most other query equivalences of the classical relational
algebra also carry over to our algebra on pcv-relations. The following theorem
shows that selections with respect to conjunctive selection conditions can be
decomposed, and that sequences of selections can be reordered.

Theorem 5.2. Let r be a pcv-relation of type R. Let ¢1 and ¢a be two selection
conditions that are applicable to R.

Tp1ng2(T) = 05, (05 (7)) (2)
0¢1 (U¢2 (T’)) = O¢s (Cf¢1 (T)) . (3)

The next result shows that sequences of projections can be reordered and
that certain selections can be pushed through projections.

Theorem 5.3. Let r be a pcv-relation of type R. Let T be a subtype of R and
let S be a subtype of T. Let ¢ be a probability-free selection condition applicable
to T. Let ® be a probabilistic disjunction strategy.

ng (@R (r)) = 7&(r (4)
[

7 (04(r)) = o (xf (7)) . (5)

The following theorem shows that selections and projections can be pushed
through renaming operations.

Theorem 5.4. Letr be a pcv-relation of type R. Let N be a renaming condition
for R. Let ¢ be a selection condition applicable to pn(R) and let S be a subtype
of pn(R). Let ¢' and S’ be obtained from ¢ and S, respectively, by performing
the renaming pl_\,l. Let @ be a probabilistic disjunction strategy.

<
~—
~—

as(pn(r)) = pn(os (6)
7§ (pn () = pn(T& (1)) - (7)

The next theorem shows that joins are commutative and associative, and
that certain selections and projections can be pushed through join operations.

Theorem 5.5. Letry, ro, and rs be pcv-relations of the pairwise join-compatible
types R1, R, and R3, respectively. Let ® and @ be conjunction and disjunction
strategies such that ® is distributive over @. Let ¢1 and ¢ be probability-free
selection conditions that are applicable to Ry and Ra, respectively. Let S be a
subtype of R1 > Ro. Let Ay, Ag, and A denote the sets of top-level attribute
names of R1, Ra, and S, respectively. Let the tuple type S1 over (AU As) N Ay
be defined by S1.A = S.A for all A € (A — A2)NA; and S;.A = R;.A for
all A € A1 N As, and let the tuple type Sy over (A U A1) N Ao be defined by
Sy A=S5.A forall A€ (A—A;)NAs and S2.A = Ry.A for all A€ A; N A,.

1 <% ry =1y <€ 1y (8)

(ry 4% 1) pa® 13 =71 D4 (1 ><® 73) 9)
Tpinga(r1 2% 12) = 04, (r1) 2 04, (r2) (10)
g (r1 2% rp) = g (1§, (r1) >® 7g, (r2)) - (11)

As Cartesian product is a special case of join, we get the following corollary.

Corollary 5.6. Let 71, 12, and r3 be pcv-relations of the pairwise Cartesian-
product-compatible types Ry, Ra, and R3, respectively. Let ® and & be conjunc-
tion and disjunction strategies such that ® is distributive over ®. Let ¢1 and
¢2 be probability-free selection conditions that are applicable to Ry and Rs, re-
spectively. Let S be a subtype of Ry x Ry. Let Ay, Az, and A denote the sets
of top-level attribute names of Ry, Re, and S, respectively. Let the tuple type S1

over ANA; be defined by S1.A = S.A for all A € ANA1, and let the tuple type
So over AN As be defined by So.A =5.A for all A€ AN As.

1 X®ry =19 x® 1y (12)

(r1 x®ry) x®rg =1 x® (ry x®r3) (13)
Tginga(r1 X% 12) = 04, (r1) X® 0, (r2) (14)
mg(r1 x®ry) =78 (1) x® 78, (r2). (15)

The next result finally shows that union and intersection operations are com-
mutative and associative, and that certain selections can be pushed through
union, intersection, and difference. Moreover, we show that projections can be
pushed through union, and that intersection is a special case of join.

Theorem 5.7. Let ry, ra, and r3 be pcv-relations of type R. Let ® /@ /O be a
probabilistic conjunction/disjunction/difference strategy. Let ¢ be a probability-
free selection condition that is applicable to R and let S be a subtype of R.

rU®ry =ry U% g (16)

(ry U® ra) U® g =1y U® (rp UP 1) (17)
rN®ry =ryN®ry (18)

(ri N®ra) N® 1y = 7 N® (r2 N® 1) (19)
0p(r1 U® ry) = 04(r1) UP 0y(r2) (20)
og(r1 ﬂ® r2) = 04(r1) N® ay(rs) (21)
ap(r1 = r2) = 04(r1) = o4(r2) (22)
WESB(H UPry) = W?(Tl) u® TS 2(re) (23)
rN®ry =1 x®ry. (24)

6 Query Optimization

In this section, we briefly concentrate on query optimization.

We have seen that most of the query equivalences of classical relational alge-
bra also hold for the algebra on pcv-relations. Hence, we can use the same query
equivalences like in classical relational algebra to move especially selections but
also projections as much inside a given query expression as possible:

1. We can use (2) to break up conjunctive selection conditions.

2. We can use (3), (5), (6), (10), (14), (21), (20), and (22) to move selection
operations as much inside the query expression as possible.

3. We can use (9), (13), (19), and (17) to structure the query expression in a
better way.

4. We can use (4), (5), (7), (11), (15), and (23) to move projection operations
as much inside the query expression as possible.

Example 6.1. Let T be an atomic type. Let Ry = [A: T, By: T,C1: T], Ry =
[A: T,BQZ T,CQZ T], R3 = [A T,B3: T,Cg: T], Sl = [A T,Clt T], SQ =
[A:T,C5:T),S3=[A: T,C5: T],and S3 = [A: T, Cy: T, Cs: T, Cs5: T] be tuple
types. Let r1, r2, and r3 be pcv-relations over Ry, Rs, and R3, respectively. Let ¢
and ¢, denote the selection conditions z.data.C'y = v and z.data.Cy = z.data.Cs,
respectively, where v is a complex value of type T'. Then, the query expression

T¢1702 (”?W((Tl pa®re o) pa®re r3))

can be transformed into the following equivalent query expression (since the
conjunction strategy ®p, is distributive over the disjunction strategy @®,.):

Spe ®pe Dpe
Moy (061 (r1)) ¥ 04, (mg)" (r2) p<®re g 2" (r3)) .

7 Related Work

In this section, we give a brief comparison to related work in the literature.

Our approach generalizes annotated tuples of ProbView [12]. As argued in
[12], ProbView generalizes various approaches (like, for example, [2,4]). Cavallo
and Pittarelli [4] view relations in a (flat) relational database as probability
distribution functions, where tuples in the same relation are viewed as pairwise
disjoint events whose probabilities sum up to 1. Drawbacks of this approach have
been pointed out in [5]. An extension of the model using probability intervals,
which are viewed as constraints on the probabilities, is reviewed in [15]. Barbard
et al. [2] have considered a probabilistic extension to the relational model, in
which imprecise attributes are modeled as probability distributions over finite
sets of values. Their approach assumes that key attributes are deterministic (have
probability 1) and that non-key attributes in different relations, are independent.
No probabilities can be assigned to outmost tuples.

Fuhr and Rolleke [7] consider a probabilistic version of NF2 relations, ex-
tending their approach for flat tuples [8], and define a relational algebra for this
model. Probabilities are assigned to tuples and to values of nested tuples (that is,
set-valued attributes), which are viewed as events that have an associated event
expression. The algebraic operators manipulate tuples by combining value and
event expressions appropriately. The probability of a derived tuple is computed
from the probabilities of initial tuples by taking into consideration its event
expression. The approach in [7] defines an intensional semantics in which proba-
bilities are defined through possible worlds. The evaluation method assumes that
in nondeterministic relations (that is, relations with uncertain tuples), joint oc-
currence of two different values is either always independent or impossible. Our
approach has no such severe restriction (we do not make any independence or
mutual exclusion assumptions). Furthermore, [7] does not use probability inter-
vals but a single probability value. On the other hand, the algebra in [7] provides
nest and unnest operators, which we have not done here.

We see as major drawbacks of the approach in [7] the above non-dependency
assumption on relations, which is rarely met in practice, and that the evaluation

of event expressions takes exponential time in general, owing to complicated
probability sums which need to be computed—this seems the price to pay for a
smooth intensional semantics, though.

The probabilistic database model of Dey and Sarkar [5] assigns each tuple
in a (flat) relational database a probability value in a special attribute. The
classical relational operations are defined adopting different assumptions on the
relationship between tuples; in particular, join assumes independence; union and
difference assume positive correlation; and compaction assumes disjointness or
positive correlation. Our model is more general, since it has complex values, in-
tervals, and allows different strategies (reflecting different relationships between
tuples) to be used in the algebraic operations. Based on [5], a probabilistic ex-
tension to SQL is developed in [6].

Zimanyi [19] presents an approach to querying probabilistic databases based
on probabilistic first-order logic. A probabilistic database is axiomatized as a
first-order probabilistic theory, which has a possible worlds semantics as in [10].
Tuples t in relations have a trace formula ¢ attached, which intuitively selects
the worlds in which ¢ is true. The classical relational algebra operations are
defined using formulas and manipulate trace formulas. A query is evaluated in
two steps: the first step yields a relation of tuples with trace formulas, which
are then evaluated using the assertions of the probabilistic theory to obtain a
probability for each tuple. Compared to our approach, [19] aims at flat databases
and considers no probability intervals (but mentions a possible extension). The
approach assumes complete independence of occurrences of distinct tuples in
the same or different relations. Furthermore, as with most other approaches, no
query equivalences are discussed.

8 Summary and Conclusion

In this paper, we generalized the annotated tuple approach in [12] to complex
value databases [1]. We presented a probabilistic data model for complex values
and defined an algebra on top of it. Moreover, we presented query equivalences
and briefly discussed their use for query optimization. It turned out that most
of the equivalences of classical relational algebra hold in this generalized model.
Hence, many classical query optimization techniques carry over to our model.
Several issues remain for further investigation. One such issue are other op-
erators besides those of classical relation algebra, such as NF2 nest and unnest
or the operators in [7,5,2,15]. Moreover, it would be very interesting to more
deeply investigate the relationship to purely extensional and purely intensional
approaches to probabilistic databases. Finally, an intriguing issue is to extend
our approach to object-oriented databases. To our knowledge, few approaches
to probabilistic object-oriented databases have been proposed so far (see [11]).

Acknowledgments

We are very grateful to V. S. Subrahmanian for fruitful discussions. We also
want to thank the referees for their useful comments.

This work has been partially supported by an NSF-DAAD grant and the

Austrian Science Fund Project N Z29-INF.

References

1.

2.

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
Reading, 1995.

D. Barbara, H. Garcia-Molina, and D. Porter. The management of probabilistic
data. IEEE Transactions on Knowledge and Data Engineering, 4(5):387-502, 1992.
R. Carnap. Logical Foundations of Probability. University of Chicago Press,
Chicago, 1950.

R. Cavallo and M. Pittarelli. The theory of probabilistic databases. In Proceed-
ings of the 18th International Conference on Very Large Databases, pages 71-81.
Morgan Kaufmann, 1987.

D. Dey and S. Sarkar. A probabilistic relational model and algebra. ACM Trans-
actions on Database Systems, 21(3):339-369, 1996.

D. Dey and S. Sarkar. PSQL: A query language for probabilistic relational data.
Data & Knowledge Engineering, 28:107-120, 1998.

N. Fuhr and T. Rélleke. A probabilistic NF2 relational algebra for integrated infor-
mation retrieval and database systems. In Proceedings of the 2nd World Conference
on Integrated Design and Process Technology, pages 17-30. Society for Design and
Process Science, 1996.

N. Fuhr and T. Rélleke. A probabilistic relational algebra for the integration of
information retrieval and database systems. ACM Transactions on Information
Systemns, 15(1):32-66, 1997.

H. Gaifman. Concerning measures in first order calculi. Israel Journal of Mathe-
matics, 2:1-18, 1964.

J. Y. Halpern. An analysis of first-order logics of probability. Artificial Intelligence,
46(3):311-350, 1990.

Y. Kornatzky and S. E. Shimony. A probabilistic object-oriented data model. Data
& Knowledge Engineering, 12:143-166, 1994.

L. V. S. Lakshmanan, N. Leone, R. Ross, and V. S. Subrahmanian. ProbView: A
flexible probabilistic database system. ACM Transactions on Database Systems,
22(3):419-469, 1997.

T. Lukasiewicz. Local probabilistic deduction from taxonomic and probabilistic
knowledge-bases over conjunctive events. International Journal of Approzimate
Reasoning, 21(1):23-61, 1999.

T. Lukasiewicz. Probabilistic deduction with conditional constraints over basic
events. Journal of Artificial Intelligence Research, 10:199-241, 1999.

M. Pittarelli. An algebra for probabilistic databases. IEEE Transactions on Knowl-
edge and Data Engineering, 6(2):293-303, 1994.

H.-J. Schek and P. Pistor. Data structures for an integrated data base manage-
ment and information retrieval system. In Proceedings of the 8th International
Conference on Very Large Data Bases, pages 197-207. Morgan Kaufmann, 1982.
D. Scott and P. Krauss. Assigning probabilities to logical formulas. In J. Hintikka
and P. Suppes, editors, Aspects of Inductive Logic, pages 219-264. North-Holland,
Amsterdam, 1966.

M. Walter. An extension of relational algebra to probabilistic complex values.
Master’s thesis, Universitit Gieflen, 1999.

E. Zimanyi. Query evaluation in probabilistic relational databases. Theoretical
Computer Science, 171(1-2):179-219, 1997.

