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On the Indiscernibility of Individuals
in Logic Programming*
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Abstract

According to Leibniz’ principle, two individuals a and b are indiscernible, if they share the
same properties. Indiscernibility of objects provides a potential for optimization in deductive
systems, and has e.g. been exploited in the area of active database systems. In this paper,
we address the issue of indiscernibility in logic programs and outline possible benefits for
computation. After a formal definition of the notion of indiscernibility, we investigate some
basic properties. The main contribution is then an analysis of the computational cost of
checking indiscernibility of individuals (i.e. constants) in logic programs without function
symbols, which we pursue in detail for ground logic programs. For the concern of query
optimization, they show that online computation of indiscernibility is expensive, and thus
suggest to adopt an offline strategy, which may pay off for certain computational tasks.

1 Introduction

Logic programming, extended with negation and disjunction, is nowadays widely rec-
ognized as a powerful tool for knowledge representation and commonsense reasoning
[5].

After quite some efforts on identifying the most intuitive semantics [46, 19, 36, 47,
38, 39], as well as useful linguistic and epistemic extensions of logic programs [26, 25,
18, 20, 24, 11], the logic programming community is recently paying more attention
to discovering both semantical and computational properties of logic programs, cf.
[31, 32, 27, 43, 13, 9, 28, 7, 44], which may strengthen the theoretical foundations of
the field, provide a better understanding of the various semantics, and help in the
design of efficient algorithm for the computation.

This paper addresses the property of indiscernibility of individuals (constants) in
logic programs.

*This work was supported in part by FWF (Austrian Science Foundation) under project P11580-
MAT, and by the Istituto per la Sistemistica e ’Informatica, ISI-CNR.

TInstitut fiir Informatik, Universitit Gieien, D-35392 ArndtstraBe 2, Germany. Email:
eiter@informatik.uni-giessen.de

Christian Doppler Laboratory for Expert Systems, Information Systems Department, TU Vi-
enna, A-1040 Wien, Paniglgasse 16, Austria. Email: (gottlob|leone)@dbai.tuwien.ac.at



Intuitively, for semantics based on the “canonical model” approach, which give a
unique and always existing model M as the meaning of the logic program (like, e.g.,
the perfect [36] or the well-founded [47] semantics), two constants a and b are globally
indiscernible if replacing both a by b and b by a in M does leave the canonical model
M unchanged. In this case, global indiscernibility of a from b implies that an atom,
say p(a,t), is true in the canonical model M if and only if p(b,t) is true in M as well.

Indiscernibility can be also limited to a set ) of predicates (local indiscernibility).
In this case, we limit the a/b replacement to the atoms with predicate ). Thus, we
say that a and b are @-indiscernible if replacing both a by b and b by a in the atoms
with predicate @ of M does leave the canonical model M unchanged.

For instance, consider a positive logic program with predicates v, e and path,
where v and e specify the vertices and the edges of a directed graph G = (V, E),
respectively, and path defines the reflexive and transitive closure of e in the usual
manner. Then, two vertices a and b are {path}-indiscernible precisely if they belong
to the same strongly connected component of G. Moreover, an equivalence class of
all constants that is {path}-indiscernible from a vertex, say a, is a strongly connected
component of G. In particular, the graph G is strongly connected if and only if there
is a single such class, i.e., all vertices are {path}-indiscernible (see Example 10 in
Section 3).

For semantics based on “multiple models” (like, e.g., the stable model seman-
tics [19, 38, 20]), the notion of indiscernibility is slightly more involved, as the non-
determinism coming from the multiplicity of the (preferred) models must be taken
into account. For instance, consider indiscernibility under stable model semantics.
Then, a is Q-indiscernible from b if, for each stable model M of P, replacing both
a by b and b by a in the atoms with predicate ) of M generates an interpretation
which coincides with some stable model of P on the atoms from ). Global indiscerni-
bility is then defined in the obvious way. (We refer the reader to Section 3 for formal
definitions.)

Indiscernibility of constants in a logic program can be used for the following pur-
poses.

For example, it can be useful to know about indiscernibility if one is concerned
with finding a model of a program that contains a particular fact. Such a model
finding task arises e.g. in the in course of diagnosis, where one wants to find a model
that amounts to a diagnosis.

Suppose we want to find a model of a program P in which an observed fact p(a)
is true, and we know that a and b are globally-indiscernible.

If we succeed to find a model M of P in which p(b) is true, then we can obtain
the desired model by replacing b by a in M and vice versa.

Indiscernibility may also be useful in reasoning. If we know that a and b are {p}-
indiscernible, and we succeed to prove p(a) (under cautious or brave semantics), then
we can infer that also p(b) must be provable. For example, consider

P = {p(a) + —p(b); p(d) + —p(a)}

This program has the stable models M; = {p(a), -p(b)}, M2 = {—p(a),p(b)}; thus, a
and b are {p}-indiscernible. If we succeed to prove p(a) credulously (e.g., by generating
the stable model M), then we can infer that also p(b) is credulously provable. On the
other hand, if we want to infer p(a) under cautious semantics, and we generate My,



then we can immediately infer from indiscernibility that p(a) is not provable from P,
since p(b) is false in My, and hence there exists a model of P in which p(a) is false.

Since a and b are globally indiscernible in this program, the stable model M, can
be immediately generated from M; by replacing a by b and b by a.

Unfortunately, as will be clear from the next sections, local indiscernibility comes
at a high computational cost, and so it is not useful to determine indiscernibility
on-line; it may be useful, however, to determine it off-line and use it when reasoning
is done.

The contribution of this paper is mainly twofold. Firstly, we define precisely the
notion of indiscernibility in the framework of logic programming, demonstrate some
basic properties of indiscernibility and provide a number of examples which explain
the intuitive meaning of indiscernibility.

Secondly, we provide an in depth analysis of the complexity of both local and
global indiscernibility in ground logic programming. We pay also attention to the
impact of syntactical restrictions on the complexity of deciding indiscernibility. In
fact, we determine the complexity of deciding indiscernibility for normal positive,
normal stratified, normal general, disjunctive positive, and disjunctive general logic
programs.

The complexity analysis of ground logic programs highlights some important
points:

e Deciding whether two given constants a, b are indiscernible in a given ground
normal or disjunctive logic program P, is intractable and complete for a class
7 of the polynomial hierarchy, where 4 < 3. This applies to both global and
local indiscernibility (where the local predicates () are part of the input),! with
the exception of normal logic programs that use stratified negation.

e The complexity of global indiscernibility coincides with the complexity of cau-
tious reasoning under the stable model semantics, and is P-complete for strat-
ified normal logic programs, co-NP-complete for normal logic programs, and
1Y’ -complete for disjunctive logic programs.

e In case of intractability, local indiscernibility is always one level higher up in
the polynomial hierarchy than global indiscernibility.

e In case of disjunctive programs, hard cases of indiscernibility checking are al-
ready present with positive (i.e., negation-free) programs.

In case of nonground logic programs, the complexities increase by an exponential
(from P to EXPTIME, co-NP to co-NEXP, I1{ to co-NEXPNY and so on), and thus
indiscernibility checking has provably an exponential lower bound.

The complexity analysis carried out in this paper refers to indiscernibility under
total model semantics. It is worth noting that several interesting partial model and
disjunctive state semantics have been also defined for logic programs [6, 10, 16, 29,
38, 39, 40, 42, 47, 49]; we will discuss the complexity of deciding indiscernibility for
some partial model semantics in Section 5.

1 As follows immediately from the results we derive, the same complexity results hold if the local
predicates Q are fixed.



To our knowledge, no other notion of indiscernibility has been defined in the frame-
work of logic programming. Different notions of indiscernibility have been defined in
other contexts [1, 2, 8]. In particular, in [2] indiscernibility is used to optimize active
databases computations. In [1] indiscernibility is employed to determine some ex-
pressibility results. Finally, in [8] indiscernibility allows to identify the extensions of
a default theory which holds some nice properties and should therefore be preferred
over the others.

The remainder of the paper is organized as follows. Section 2 contains preliminaries
on both Logic Programming and Complexity Theory. Section 3 defines formally the
notion of indiscernibility. Section 4 is devoted to the analysis of the complexity of
indiscernibility on ground programs. Finally, we briefly consider nonground programs
and draw our conclusions in Section 5. The appendix overviews some problems on
abductive logic programming which are utilized to derive hardness results in the
complexity section.

2 Preliminaries

2.1 Logic Programming

This section recalls the basic concepts of logic programming. The syntax of logic
programs is given first; then, stable semantics [19, 47] is provided. Stratified programs
[3] and their properties are finally presented.

A term is either a constant or a variable?. An atom is a(ty,...,t,), where a is a
predicate of arity n and t1,...,t, are terms. A literal is either a positive literal p or
a negative literal —p, where p is an atom.

A (disjunctive) rule r is a clause of the form

arV---Vap by, -, by, bps1, -, b, n>1m>0

where ay,---,dy, b1, -, by are atoms. The disjunction a3 V --- V a, is the head of
r, while the conjunction by, ..., bg, =bg41, ..., by, is the body of r. If n = 1 (the head
is V-free), then r is normal; if m = 0 (the body is —-free), then r is positive. A
(disjunctive) program P is a finite set of rules. Program P is normal (resp., positive)
if all rules in P are normal (resp. positive).

A term, an atom, a literal, a rule or program is ground if no variable appears in
it. A ground program is also called propositional program.

Let P be a program. The Herbrand universe Up of P is the set of all constants
appearing in P. The Herbrand base Bp of P is the set of all possible ground atoms
constructible from the predicates appearing in the rules of P and the constants occur-
ring in Up (clearly, both Up and Bp are finite). Given a rule r occurring in a program
P, a ground instance of r is a rule obtained from r by replacing every variable X in
r by o(X), where o is a mapping from the variables occurring in r to the constants
in Up. We denote by ground(P) the (finite) set of the ground instances of the rules
occurring in P.

An (total) interpretation for P is a subset I of Bp. A ground positive literal A
is true (resp., false) w.r.t. I'if A € I (resp., A ¢ I). A ground negative literal —A is
true (resp., false) w.r.t. I'if A ¢ I (resp., A€ I).

?Note that function symbols are not considered in this paper.



Let r be a ground rule in ground(P). Rule r is satisfied (or true) w.r.t. I if its
head is true w.r.t. I (i.e., some head atom is true) or its body is false (i.e., some body
literal is false) w.r.t. I.

A model for P is an interpretation M for P such that every rule r € ground(P) is
true w.r.t. M. A model M for P is minimal if no proper subset of M is a model for
P. The set of all minimal models for P is denoted by MM(LP).

The first proposal for assigning a semantics to a disjunctive logic program is due
to Minker, who presented in [33] a model-theoretic semantics for positive programs.
According to [33], the semantics of a program LP is given by the set MM(P) of the
minimal models for P. Observe that every program admits at least one minimal
model, that is, for every program P, MM(P) # 0 holds.

Example 1 For the positive program P;:
aVb ¢+,

the (total) interpretations {a} and {b} are its minimal models (i.e., MM(P) = { {a}, {b} }).
As another example, for the program Ps:

aVbe,
b+ a,
a+b,

{a,b} is the only minimal model. O

As far as general programs (i.e., programs where negation may appear) are con-
cerned, a number of semantics has been recently proposed [9, 20, 33, 37, 38, 39, 40, 41]
(see [4, 12, 29] for comprehensive surveys).

A generally acknowledged proposal is the extension of the stable model semantics
[19] to take into account disjunction [20, 38].

Definition 2 [38] Let I be an interpretation for a program P. The Gelfond-Lifschitz
transformation (“GL transformation”, for short) of P with respect to I, denoted by
PT is the positive program defined as follows:

PIz{OIlV"'Van(—bl;"':bk|alv"'van(_bla"'7bk7_'bk+17"'7_'bm
is in ground(P) and b; ¢ I, for all k < i < m}.

I is a stable model for P if I € MM(PT) (that is I is a minimal model of the positive

program PT). The set of all stable models for P is denoted by ST M (P). O
Example 3 Let P be the following program:
aVb+c,
b+ -a, ¢,
aV c+ —b.

Consider T = {b}. Then, the program P is:

aVb+c,
b+.

It is easy to verify that I is a minimal model for P'; thus, I is a stable model for
P. O



Clearly, if P is positive then P! coincides with ground(P). It turns out that, for
a positive program, minimal and stable models coincide.

A normal positive program P has exactly one stable model which coincide with
the least model of P (i.e., it is the unique minimal model of P). When negation is
allowed, however, even a normal program can admit several stable models. In this
respect, an interesting class of normal programs is the following. A normal program
P is (locally) stratified if each atom p € Bp can be associated a positive integer I(p)
such that, for each rule r € ground(P) with head p and each ground atom ¢, the
following holds: (i) if —q occurs in the body of r, then I(p) > l(q); (ii) if ¢ occurs
in the body of r, then I(p) > I(g). In particular, if all ground atoms with the same
predicate have the same number associated, then P is globally stratified.

Every stratified normal program P has the nice property of admitting precisely
one stable model.

Proposition 4 Let P be a normal logic program. If P is stratified, then P has
precisely one stable model.

Concluding we recall the complexity of recognizing stable models, for both normal
and disjunctive programs.

Proposition 5 (cf. [31]) Given a normal propositional logic program P and an in-
terpretation M, deciding whether M is a stable model of P is possible in polynomial
time.

Proposition 6 (cf. [13]) Given a disjunctive propositional logic program P and an
interpretation M, deciding whether M is a stable model of P is co-NP-complete.
Hardness holds even if P is positive.

2.2 Complexity Theory

For NP-completeness and complexity theory, cf. [35]. The classes X7, IIF and A} of
the Polynomial Hierarchy (PH) (cf. [45]) are defined as follows:

AP =sP—TIP =P andforallk>1, AP =p¥-1 P =NP%-1, TIF = co-BF.

In particular, NP = % co-NP = 117, and A} = PNP. Here PC and NPY denote
the classes of problems that are solvable in polynomial time on a deterministic (resp.
nondeterministic) Turing machine with an oracle for any problem =« in the class C.
The oracle replies to a query in unit time, and thus, roughly speaking, models a call
to a subroutine for 7 that is evaluated in unit time. If C' has complete problems, then
instances of any problem 7' in C' can be solved in polynomial time using an oracle
for any C-complete problem =, by transforming them into instances of 7; we refer to
this by stating that an oracle for C' is used. Notice that all classes C considered here
have complete problems.
Observe that for all k > 1,

TF € APy € Zfh C PSPACE;

each inclusion is widely conjectured to be strict. Note that, by the rightmost inclusion,
all these classes contain only problems that are solvable in polynomial space. They



allow, however, a finer grained distinction between NP-hard problems that are in
PSPACE.

There is an exponential analog of PH, called the Weak EXP Hierarchy (WEXPH)
[22], whose classes ExpAk, ExpXf, and ExpIlf are defined like the classes AY, £
and IIf, with the only difference that Turing machines have an exponential bound
on the execution time rather than a polynomial. In particular, ExpAf = ExpP =
EXPTIME, ExpYf = ExpNP = NEXP (nondeterministic exponential time), ExpIl
= Expco-NP = co-NEXP, ExpIl{ = co-NEXP™F, and so on. Intuitively, the classes
of WEXPH comprise problems whose time complexity is within an exponential factor
to the analog classes in PH. Every problem which is complete for a class of WEXPH
has provably exponential worst case complexity, and is thus provably intractable; for
complete problems within PH, this is currently not known.

3 Indiscernibility

The semantics of a program P is a set Semp of models (e.g., the set MM(P) of
minimal models or the set ST M (P) of stable models). In this section we assume that
a program P and its semantics Semp is given.

Let @ be a set of predicates and I a set of ground literals. We denote by Iy the
restriction of I to the predicates from (Q, that is, the set of the literals of I whose
predicate is in (). Moreover, given two constants a,b € Up, we denote by I[a,b]
the set of literals obtained by replacing all occurrences of ¢ and b in I by b and a,
respectively.

Definition 7 Given a set ) of predicates of P. Two constants a,b € Up are Q-
indiscernible, denoted a =¢ b, if, for each model M € Semp, there exists a model
M'" € Semp such that Mgla,b] = M.

Constants a,b € Up are (globally) indiscernible, denoted a = b, if a =¢ b, where Q
is the set of all predicates of P. O

It is worth noting that in the literature the semantics of a logic program is not
always defined as a set of total models (that we consider here). There are proposals
where the semantics is a set of partial models (see, e.g., [6, 16, 38, 42, 47, 49]), and
other proposals where the semantics is not even represented by models (see, e.g.,
[10, 29, 39, 40]). Definition 7 of indiscernibility applies to partial model semantics
[6, 16, 38, 42, 47, 49] without any change. For semantics which are not based on
models, the extension of Definition 7 would be more involved.

Proposition 8 For any program P, the relations = and =g are equivalence relations
on its Herbrand universe Up.

Proof We have to check that = and =g satisfy reflexivity, symmetry, and transi-
tivity.

We consider here the case where ) contains all predicates, i.e., global indiscerni-
bility (=); the arguments for local indiscernibility are similar. Reflexivity holds, since
obviously for every interpretation I and constant a, I[a,a] = I. Also symmetry holds,
since I[a,b] = I[b,a] for every interpretation I and constants a,b. Finally, transitiv-
ity holds, since I[a, c] = I[a,b][b, c][a, b] for every interpretation I and constants a, b,



and ¢, and if a = b, b = ¢ and M is a model of program P, then each of M]a,b],
MTa, b][b, ], and M][a, b][b, c][a, b] is a model of P as well.

Given a constant a, we denote by [a]= and [a]=, the equivalence class of a under
= and =g, respectively (e.g., [a]=,, is the set of all constants @-indiscernible from a).
For convenience, we also write “p” for “{p}” in case @ is a singleton {p}.

For semantics based on the canonical model approach, which give a unique and
always existing model as the intended meaning of the program (e.g., well-founded
semantics [47] for normal programs, or the least model semantics for normal positive
programs), two constants a and b are indiscernible if and only if their substitution
is the identity on the canonical model. For instance, a is indiscernible from b on a
normal positive program P, if Mg[a,b] = Mg, where M is the least model of P.

Proposition 9 Let a and b be two constants in Up and @ be a set of predicates of
P. If |Semp| = 1, then

(a=q b) <= (Mgla,b] = Mg)
where {M} = Semp.
Proof Immediate from Definition 7.

Example 10 Consider a positive logic program with predicates v, e and path, where
v and e specify the vertices and the edges of a directed graph G = (V, E), respectively,
and path defines the reflexive and transitive closure of e. Then, two vertices a and b are
path-indiscernible precisely if they belong to the same strongly connected component
of G. The classes [a]=,,,, are the strongly connected components of G. In particular,
G is strongly connected if and only if there is a single such class, i.e., all vertices are
path-indiscernible.
For instance, given the program P:

representing the graph G of Figure 1.a, we have that all vertices are path-indiscernible,
that is, [a]=,,,, = {a,],¢c} (= [b]=,.n = [€]=,.s); DOtice that G is strongly connected.

For instance, a and b are path-indiscernible, since the least model (which is also
the unique stable model) of the program is

path(a,b), path(b,c), path(a,c) path(c,a), path(c,b), path(b,a)}

and
Mpatn = {path(a,a), path(b,b), path(c,c), path(a,b), path(b,c), path(a,c)
path(c,a), path(c,b), path(b,a)}
= Mpanla,b].
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Figure 1: Graphs G and G’

Observe that a and b are also {v}-indiscernible; but they are not {e}-indiscernible.
Thus, they are not globally indiscernible.

For program P’ = P — {e(c,a)}, no pair of vertices is path-indiscernible. Indeed,
the least model of the program is

M ={ wv(a), v(b), v(c), e(a,b), e(b,c), path(a,a), path(b,b), path(c,c), path(a,b),
path(b, c), path(a,c) }.

Thus,

Mpetn = { path(a,a), path(b,b), path(c,c), path(a,b), path(b,c), path(a,c) }
and it is different from
Mpatnla,b] = { path(a,a), path(b,b), path(c,c), path(b,a), path(a,c), path(b,c) }

P! describes the graph G’ of Figure 1.b, whose strongly connected components are
{a}, {b}, and {c}, respectively. O

It is worth noting that, for multiple model semantics (like, e.g., the minimal model
semantics), condition (Mgla,b] = Mg) is sufficient to guarantee that (a =q b), but,
it is not necessary.

Example 11 Let P be the program {g(a) V ¢(b)}. If we consider the minimal model
semantics, then we have Semp = {M,N}, where M = {q(a)} and M = {q(b)}.
Therefore, (a =, b), even if (M,[a,b] # M,) (and also (N,[a,b] # N,) holds). O

We next provide an example of indiscernibility for the case of multiple stable
models.

Example 12 Consider the following program P

(1) color(X,red) V color(X,blue)Veolor(X, green) + v(X),
(2) bad-coloring+ e(X,Y), color(X,C), color(Y, C),
(3) abs<« bad-coloring, —abs.

Program P represents the 3-colorability of a graph. Intuitively, rule (1) assigns a color
to each vertex of the graph. Rule (2) derives bad iff the coloring is not admissible (as



two connected vertices have the same color). Then, rule (3) acts as an integrity con-
straint and discards the models representing inadmissible colorings (i.e., the models
where bad-coloring is true).

Thus, given a set F of facts for predicates v and e (encoding the vertices and the
edges of a graph G, respectively), there is a one-to-one correspondence between the
stable model of P U F' and the good coloring of the graph G.

Now, suppose that the color of vertex a is fixed to red (by adding the fact
color(a,red) to the program). Then, [a]coor 1S the set of vertices which are col-
ored red in every admissible coloring of the graph where a is red. That is, a vertex b
is color-indiscernible from a, if and only if its color is red in every admissible coloring
where a is red. As a consequence, [a]coior cOntains all vertices that have always the
same color as a, in every admissible coloring of the graph. O

4 The Complexity of Indiscernibility

The main decisional problems arising in the context of indiscernibility are as follows.
Let a program P, two constants a and b in Up, and a set of predicates ) of P be
given.

e Is a Q-indiscernible from b ? (Local Indiscernibility)
e Is a globally indiscernible from b ? (Global Indiscernibility)

In this section we analyze the complexity of the above decisional problems on
indiscernibility for the case of ground (i.e., propositional) programs. In particular,
we shall study the complexity of both local and global indiscernibility under stable
model semantics for general disjunctive programs and syntactical subclasses of them.

4.1 Normal Logic Programming

Throughout this section we assume that the logic programs are normal (i.e., disjunction-
free).

We start by analyzing the complexity of deciding indiscernibility for the syntacti-
cally simplest classes of logic programs.

Theorem 13 If P is either a positive or a stratified program, then both global and
local indiscernibility are P-complete.

Proof From Proposition 4, P has precisely one stable model M. As a conse-
quence, by virtue of Proposition 9, a =¢ b iff Mg[a,b] = Mg. As a consequence,
Q-indiscernibility check for a,b can be done by first computing the unique stable
model M of P, and then checking if M[a,b] = M. Both these tasks are polynomial
(for positive or stratified normal programs) and, as a consequence, @-indiscernibility
can be recognized in polynomial time. This strategy is correct regardless whether )
is the set of all predicates of P or @ is a subset of it. Therefore, both local and global
indiscernibility are polynomial. P-completeness is an easy consequence of the fact
that inference of a ground atom A from a ground datalog program is P-time complete
[48] (add a fact p(b,a) and a rule p(a,b) + A, where p is a new predicate and a,b are
fresh constants, and ask whether a and b are indiscernible).

10



We next prove that global indiscernibility for normal logic programs with negation
is a co-NP-complete decisional problem. The proof of co-NP membership is based on
an alternative characterization of global indiscernibility, which is shown below.

Theorem 14 Let a and b be two constants in Up.
(a=b) <= (VM € Semp M]a,b] € Semp)

Proof Sufficiency is immediate from Definition 7. Concerning necessity, recall that
global indiscernibility is indiscernibility under the set of all predicates of P. Now, if
@ is the set of all predicates of the program, then, given a model M € Semp, either
M{a,b] € Semp or no model M’ € Semp can exist such that Mq[a,b] = Mj,.

Thus, two constants are globally indiscernible if and only if (-)[a, b] is an automor-
phism on the set Semp.

Theorem 15 Global indiscernibility is co-NP-complete.

Proof Membership in co-NP is an immediate consequence of Theorem 14. To show
hardness, we reduce the problem of deciding whether a ground logic program P has
no stable model, which is co-NP-complete [31, 32], to this problem. Let a and b be
fresh constants not occurring in P, and let p a new predicate. Then, consider the
program
P'=PU{p(a) +, p(b)«pb)}.

Clearly, a, and b are globally indiscernible in P’ if and only if P has no stable model.
This proves the result.

We now turn our attention to the complexity of local indiscernibility.

Theorem 16 Let P be a ground logic program and () be a set of predicates of P.
Deciding if two given constants a and b are Q-indiscernible is IT¥-complete. Hardness
holds even if P has only two monadic predicates.

Proof TII¥-Membership. To decide that a and b are not Q-indiscernible, we proceed
as follows. Guess M C Bpp, verify that: (i) M is a stable model of P, (ii) there
exists no stable model M’ of P such that Mg[a,b] = Mg. By Proposition 5, (i)
is done in polynomial time; while (ii) is done by a single call to a NP oracle (to
check the complement of (ii) we may guess M’ and polynomially verify the condition
Mgla,b] = M{,). The problem is therefore in ITJ.
1Y -Hardness. We give a transformation from abductive logic programming. In par-
ticular, we consider the necessity problem [14], which is as follows. An abduction
problem P = (Hyp, Man, LP) is a set of propositional atoms Hyp, a set of proposi-
tional literals Man, and a propositional logic program LP. An explanation of P is a
subset S C Hyp such that LP U S has a stable model and LP U S infers each literal
L € Man under cautious stable inference. Now, the problem is the following one.
Given P and h € Hyp, decide whether h is necessary for P, i.e., h belongs to every
explanation of P. As shown in [14], this problem is II{'-complete (see the appendix
for more details).

We reduce this problem to local indiscernibility as follows. Define a program P
which includes the following clauses.
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1. For each clause by < (=)b1,...(=)by, in LP, include the clause

(1) p(bo) + (=)p(b1),-- -, (=)p(bm)-

The propositional atoms in LP are viewed as constants, and p(c) tells that c is
a proposition.

2. For each h; € Hyp, include the rules

(2)  s(hi) < —p(h7)
(3)  p(h7) < —s(hi)
(4)  p(hi) < s(hi)

where h} is a new constant. Here s(h;) intuitively states that h; is included in
an explanation for P. The first two rules choose then a subset S of Hyp; the
third rule expresses that the chosen S is added to LP, by stating that the atoms
in S are true.

3. for each positive literal b; € Man, include the rule
(5) p(not_exp) < —p(b:)
and for each negative literal —b; € Man the rule
(6) p(notexp) « p(bi),

where not_exp is a new constant. Intuitively, p(not_exp) will be true in a stable
model of P if it witnesses that the choice of S made in this model is not an
explanation.

4. Finally, include the rules

(1) ple) « —p(d)

(8)  p(d) < —p(c)

9)  s(a) + p(c)

(10) s(b) < p(d), p(not_exp)
(11) s(b) + p(d), s(h)

where a, b, ¢ and d are new constants. The first two rules choose between p(c)
and p(d); the third rule generates a stable model containing s(a); upon every
choice for S in 2., there is always a possibility to apply this rule, and thus a
stable model containing s(a) exists. The last two rules alternatively generate
on the choice for S a stable model containing s(b), but only if either p(not_ezp)
or s(h) (i-e., the choice for S includes h) is true.

We note the following modularity lemma on the stable models of a logic program
[15, 28], which is useful to argue about P:

Lemma 17 Suppose P} and P5 are two ground disjunctive logic programs, such that
no atom in the head of a rule in P occurs in Pj". Let P* = P U P5. Then, If M is
a stable model of P*, then the restriction of M to the ground atoms of P} is a stable
model of P;*; on the other hand, if N is a stable model of Py, then every stable model
of Py UN is a stable model of P.
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In what follows, let P; be the clauses of groups 1. and 2. and let P, be the clauses
of groups 3. and 4.

We claim that a and b are s-indiscernible in P if and only if h is necessary for P.
(=) To prove the only if direction, it suffices to show that if h is not necessary for
P, then a #; b. To prove this, we show that assuming simultaneously that h is not
necessary for P and that a =, b raises a contradiction.

As by hypothesis h is not necessary for P, there exists an explanation S of P
such that h ¢ S. Take any stable model N of LP U S (a stable model must exist, by
definition of explanation), and define an interpretation M of programs P as follows:

M = {p®)|be N} U {s(hi) | hs € S} U {p(hj) [ hi € H\ S} U {p(c), s(a)}.

It is easy to see that M is a stable model of P (note that N |= Man). Since, by
hypothesis, a and b are s-indiscernible in P, there must exist a stable model M’ of
P such that M] = Mgla,b]. Notice that M! = (M, \ {s(a)}) U {s(b)}. Let in the
following N’ be the restriction of M’ to the set of all ground atoms of P;. Notice
that, by the above fact, N’ is a stable model of P;.

Since s(h) ¢ M' and s(b) € M', it follows from the clauses (10) and (11) defining
s(b), that p(d),p(not_exp) € M'. Since p(not_exp) is defined by clauses (5) and
(6) only, it follows that for some positive literal b; € Man (resp. negative literal
—b; € Man), we have p(b;) ¢ M' (resp. p(b;) € M'). Since the only rules with head
p(b;) are in program Py, we infer that p(b;) ¢ N' (resp. p(b;) € N') must hold.

The stable model N’ of P; trivially corresponds to a stable model

N" ={b| p(b) € N',b occurs in LP U S}

of LP U S. Since p(b;) ¢ N' (resp. p(b;) € N'), it follows b; ¢ N". Thus, N" is a
stable model of LP U S such that N"” & Man. Therefore, S is not an explanation of
P. This is a contradiction, however, as S was supposed to be an explanation. This
proves the only if-direction.

(<) We show that a #, b implies that h is not necessary for P, i.e., there exists an
explanation S such that h ¢ S.

Suppose that a #Z, b holds. Hence, there exists a stable model M of P such
that for every other stable model M’ of P, M} # M;[a,b]. We observe the following
properties of M:

(a) s(a) € M, s(b) ¢ M: Indeed, it is easy to see that either s(a) € M or s(b) € M
must hold thanks to modularity properties. Suppose p(b) € M would hold. Then,
p(d) € M, and the set M' = (M \ {p(d), s(b)}) U {p(c), s(a)} would be a stable model
of P. Since M! = M[a,b], a contradiction arises. Thus, s(a) € M, s(b) ¢ M must
hold.

(b) s(h) ¢ M, p(not_exp) ¢ M: Indeed, if s(h) € M or p(not_exp) € M would
hold, then thanks to rules (10) and (11), either s(b) € M, which contradicts (a), or
M' = (M\ {p(c),s(a)}) U{p(d), s(b)} is a stable model of P such that M, = M[a,b],
which is again a contradiction.

(c) p(b;) € M (resp. p(b;) ¢ M) for every positive literal b; € M (resp. negative
literal —b; € M). This is immediate from (b) and rules (5), (6).

Define now

Sz{h,€H|S(h,) EM}.
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We show that S is an explanation of P such that h ¢ S. Thus, we have to show that
(i) LP U S has a stable model, (ii) LPU S = Man, and (iii) h ¢ S.

For (i), let Ny be the restriction of M to the ground atoms of P;. From Lemma 17,
it follows that Ny is a stable model of P,. Consequently, the corresponding set of
atoms

N = {b]| p(b) € M,b occurs in LPU S}

is a stable model of the program LP U S.

For (ii), assume towards a contradiction that there exists a stable model N’ of
LP U S such that N £ Man. From N', it is straightforward to build a stable model
M of the program consisting of the clauses in 1.-3. in which p(not_exp) is true; from
Lemma 17, it follows that the set M’ = M{ U {p(d),s(b)} is then a stable model of
P. As easily checked, M = M;[a,b]. This is a contradiction. Consequently, an N' as
hypothesized does not exist. It follows that LP U S = Man.

For (iii), observe that (a) from above states that s(h) ¢ M; hence, by definition
of S,h¢S.

Consequently, S is an explanation of P such that h ¢ S. This proves the if
direction.

Since the program P is easily constructed from P, the result follows.

Observe that Theorem 16 grasps the simplest case where local indiscernibility
is IJ'-hard, namely, that there are two monadic predicates. Indeed, whenever the
program P contains only one predicate, local indiscernibility coincides with global
indiscernibility, which is in NP by virtue of Theorem 15.

4.2 Disjunctive Logic Programming

Theorem 18 Deciding global indiscernibility of two constants a and b for a dis-
junctive logic program P under stable models is IT -complete, and hard already for
positive programs.

Proof Membership is a consequence of Theorem 14. To prove that a and b are
not indiscernible, we can guess a stable model M of P such that M][a,b] is not a
stable model of P. Verifying whether an interpretation N is a stable model of a
ground disjunctive program P is in co-NP; thus, the guess for M can be verified in
polynomial time with an oracle for NP.

To prove hardness, we reduce the problem of cautious inference from a positive
ground disjunctive logic program P to our problem. As shown in [13], cautious
inference of a literal —w from a given propositional program P is IT1}-hard. Let p be
a new predicate and a and b be fresh constants, and define the program P’ by

P'=PU{pla)Vp(b)+; pla) +w}

Then, a and b are globally indiscernible in P’ if and only if —w is cautiously inferred
from P. Indeed, observe that the minimal models of P’ are the minimal models of
P U M, for all minimal model M of P, and each minimal model of P’, restricted to
the language of P, is a minimal model of P. (This follows from modularity properties
of disjunctive logic programs, see [15, 28].)
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Suppose —w is not inferred from the minimal models of P. Then, P has a minimal
model M in which w is contained. As a consequence, M U {p(a)} is a minimal model
of P', while M U {p(b)} is not. As a consequence, a and b are not indiscernible in P’.
On the other hand, if a and b are not indiscernible in P’, there is a minimal model
M of P’ such that MJa,b] is not a minimal model of P'. Since clearly exactly one of
p(a) and p(b) is in M, it follows that p(a) € M and w € M. Since M is, restricted to
the language of P, a minimal model of P, a minimal model of P exists which contains
w. Thus, —w is not inferred from the minimal models of P. This proves the result.

Theorem 19 Deciding local indiscernibility of constants a and b for a set of pred-
icates () in a ground disjunctive logic program P is IIY-complete. Hardness holds
even for positive logic programs with two monadic predicates.

Proof TIJ-Membership. The proof of membership is similar as in the case of normal
logic programs, with the only difference that an co-NP-oracle is used to check whether
an interpretation M is a stable model (for normal logic programs, that problem is
polynomial), which is by the Proposition 6 co-NP-complete.

1Y -Hardness. For the general case, I1'-hardness is shown using the same reduction as
in the proof of Theorem 16, but applied to a disjunctive logic programming abduction
problem (Hyp, Man, LP), i.e., the program LP is a disjunctive logic program. Indeed,
the necessity problem (deciding whether a given hypothesis h € H belongs to all
explanations) is II¥-complete [15] (see also appendix). The proof that the reduction
is correct is analogous.

In the rest of the proof, we show that II¥ -hardness holds under the restriction to
positive programs P. For that, we use the fact that the necessity problem remains
1Y -hard even if the disjunctive logic program LP in P is positive. Thus, all rules in
the group 1. of the reduction are positive. We show how the nonpositive rules in the
other groups 2.-4. can be be replaced by positive rules.

e The choice rules

s(hi) < —p(h7)
p(h) < —s(hi)

for each h; € H from 2. are replaced by the equivalent single disjunctive rule
s(hi) V p(h7)
Similarly, the choice

p(c) « —p(d)
p(d) + —p(c)

from 4. is implemented by the single disjunctive rule
p(c) V p(d) <
e for each rule from 3. that has a negative literal in the body, i.e., rule

p(not_exp) + —p(b;)
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introduce the following positive rules:

p(ci) V p(di)«
p(ci)« p(bi)
p(not_exp)<+ p(d;),

where ¢; and d; are fresh constants. The effect of these rules is as follows. By
the first rule, each stable model M of the program must contain either p(c;)
or p(d;). If M includes p(b;), it includes p(c;) (as it is a model), and hence,
by the minimality of a stable model, p(d;) is not contained in M. Therefore,
the last clause cannot be applied to include p(not_exp) in M. If p(b;) is not in
the model, then either p(c;) or p(d;) is in M, but not both; in the latter case,
p(not_exp) is included, and hence some stable model M containing p(not_exp)
exists.

It holds that in the obtained positive program P, the constants a and b are s-
indiscernible if and only if h is necessary for P. This shows that deciding local
indiscernibility is II¥’-hard, even if the program P is positive and and there are only
two monadic predicates. The result follows.

5 Discussion and Conclusion

The results on indiscernibility checking for normal and disjunctive ground logic pro-
grams are summarized in Table 1. They show that this problem is polynomial only
in case where the underlying program has no disjunction and negation is stratified. If
we allow either for disjunction or for arbitrary negation, then indiscernibility check-
ing becomes intractable, where local indiscernibility is always one level higher in the
polynomial hierarchy than global indiscernibility.

Deciding a =b | Deciding a=¢g b
normal positive P-complete P-complete
normal stratified P-complete P-complete
normal general co-NP-complete 17 -complete

disjunctive positive | II¥-complete 1L -complete
disjunctive general | II¥-complete £ -complete

Table 1: Complexity of indiscernibility for ground logic programming

It appears that global indiscernibility checking has the same complexity as cautious
inference of a literal from the stable models of a normal resp. disjunctive logic program,
which is co-NP-complete and 15 -complete, respectively; the same holds in case of a
positive disjunctive logic program.
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The results for the ground case suggest that in the nonground case, the complex-
ity of indiscernibility checking increases by an exponential, similar as for reasoning
problems [14]. Indeed, by first grounding a given program P and then applying the
algorithm for the ground case, we obtain that the exponential analog of the respec-
tive complexity class in Table 1 (EXPTIME for P and EXkaP for HkP , in particular
co-NEXP for co-NP) is an upper bound of the complexity of indiscernibility checking.
Moreover, by utilizing results through complexity upgrading techniques [15, 21], it
is possible to derive matching hardness results; we do not pursue this here. Notice
that by our reductions in the previous section, the EXPTIME-hardness results follow
immediately from the result that inference of a ground atom from a nonground dat-
alog program is EXPTIME-complete (cf. [48]), and the ExpII}-hardness results for
disjunctive programs from the result that brave inference of a ground literal from a
(positive) disjunctive datalog program is ExpX{’-complete [15].

As pointed out, indiscernibility may be useful in the process of model finding as
well as reasoning. From the computational side, it is not attractive (and in case
of local indiscernibility even disadvantageous) to determine indiscernibility online.
However, the indiscernibility relation can be determined off-line for later online use.
In particular, indiscernibility information can be quite useful for model finding; notice
that it is not viable to precompute all stable models of a logic program, since there
may be exponentially many and hence they occupy exponential space. On the other
hand, the indiscernibility relation occupies only linear space.

The results of this paper give a clear picture of the complexity of indiscernibility of
logic programs in case of no function symbols. In the case where function symbols are
present, global and local indiscernibility are clearly undecidable, since it is undecidable
whether a normal logic program has a stable model [30]. We leave the study of
indiscernibility on logic programs with function symbols for other research.

As mentioned in Section 3, the notion of indiscernibility can be extended naturally
to partial model semantics as well, viewing each partial model as a set of ground
literals. Let us briefly address some of the well-known proposals of such semantics
[47, 38, 49], and comment on the complexity of indiscernibility checking for them.

The well-founded semantics for normal logic programs [47] fosters a unique par-
tial model of a normal logic program, which can be computed in polynomial time.
Therefore, both local and global indiscernibility of constants a and b can be decided
in polynomial time; since the well-founded model coincides with the least model on
normal positive programs, both tasks are P-complete.

The partial stable model semantics has been proposed as a natural generalization
of the stable semantics from a two-valued to a three-valued framework [38]. However,
on positive and stratified programs, total stable models and partial stable models
coincide. On the other hand, the complexity of verifying partial stable models and
total stable models is the same for both normal and disjunctive logic programs [42,
13]. Therefore, all complexity results in Table 1 except for the hardness results in
the normal general case immediately carry over to partial stable models as well by
the proofs in this paper. The hardness results for the normal general case can be
established by different transformations. (Notice that the respective transformations
for total stable models do not work.)

The regular semantics has been proposed as an attempt to minimize undefinedness
in partial models [49]. Roughly, a regular model is a three-valued model of the pro-
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gram which is founded, i.e., the positive part regenerates itself, and which is maximal,
i.e., it is not properly contained in any other such model. Regular semantics is simi-
lar in spirit to the maximal stable semantics [43, 16], which selects the partial stable
models that are not contained properly in any other partial stable model. However,
while regular and maximal partial stable models coincide on normal logic programs
[50], the semantics are yet different on disjunctive general programs. On positive
and stratified programs, both semantics coincide with the stable semantics [16, 49].
Hence, the complexity results in Table 1 for normal positive, normal stratified, and
disjunctive positive programs apply to these semantics as well. Utilizing results on
the complexity of inference under these semantics [17], for both global indiscernibility
on normal and disjunctive general logic programs, respectively, can be easily shown
to be complete for I} and II¥, respectively, employing a reduction similar as in the
proof of Theorem 18. In case of local indiscernibility, the complexity can be shown
to be one level higher up in the polynomial hierarchy than global indiscernibility and
thus complete for II¥" and IIF, respectively.
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Appendix

Abductive logic programming deals with the problem of finding an explanation for
observations, based on a theory represented by a logic program [23]. Roughly, abduc-
tion is an inverse of modus ponens: Given the clause a + b and the observation a,
abduction concludes b as a possible explanation.

A number of variants of abductive logic programmings have been introduced so
far; the paper [14] presents a basic framework of abduction, discusses different modes
of abduction, and presents a detailed analysis of the complexity of the main abductive
reasoning tasks.

An propositional abductive logic programming problem (LPAP) is formally de-
scribed as a tuple P = (Hyp, Man, LP), where Hyp is a set of propositional atoms
(called hypotheses), Man is a set of propositional literals (called manifestations or
observations), and LP is a propositional logic program (with negation allowed). In
case LP is a disjunctive logic program, we have a disjunctive LPAP. An explanation
for P is a subset S C Hyp which satisfies the following properties:

1. The program LP U S has some stable model; and

2. LPUS | Man, i.e., each literal in Man is a cautious consequence of the stable
models of the program LP U S.

(In fact in [14] abduction based on different semantics and reasoning modalities are
considered.)

In general, an LPAP may have no, a single, or several explanations. In account of
the latter, necessity of a hypothesis has been identified as an important property. A
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hypothesis is necessary for an LPAP P, if it occurs in every explanation of P. The
problem of deciding whether a hypothesis is necessary is one of the main decisional
abductive reasoning tasks, since it is important for computing the core of abductive
explanations. Thus, the necessity problem of logic programming abduction is as
follows: Given a LPAP P = (Hyp, Man, LP) and a hypothesis h € H, decide whether
h is necessary for P.

Concerning the computational complexity of the necessity problem, the following
results have been established in [14]:

[14, Theorem 11] Deciding if a given hypothesis is necessary for a given LPAP P =
(Hyp, Man, LP) is TI¥-complete.

[14, Theorem 18,24] Deciding if a given hypothesis is necessary for a given dis-
junctive LPAP P = (Hyp, Man, LP) is TI¥ -complete; moreover, the problem is
1Y -hard already on instances where LP is positive, i.e., =-free.

For a formal proof of these results, we refer the reader to [14]; we here only describe
the intuition why the problems have this complexity.

In order to decide whether hypothesis h is necessary, all explanations of P must
be inspected (in the worst case) to see whether h this is the case; in order to show
that h is not necessary, we have to exhibit an explanation S for P in which h is
not contained. There is an exponential space of candidates S C Hyp, and in fact
there are cases where exponentially many explanations exist. An explanation S such
that h ¢ S might be nondeterministically guessed; we are left with proving then that
the guess is proper, i.e., is in fact an explanation. Deciding whether a given S is
an explanation turns out difficult; first, we must decide whether LP U S has some
stable model and second, whether LPUS |= Man. Both tests are inference problems
that are well-known NP- and co-NP-complete problems [32]. Thus, we can verify the
guess with an oracle for NP in polynomial time. Overall, we have a $¥ algorithm
for deciding whether h is not necessary; as a consequence, the necessity problem is in
g

Hardness is shown in [14] encoding the test of validity of quantified Boolean for-
mulas of form VXIY E, where X,Y are sets of propositional variables and E is a
Boolean formula whose atoms are from X UY.

For the case of disjunctive LPAPs, the situation is similar as for normal LPAPs. The
only difference is that the complexity of deciding whether LP U S has a (disjunctive)
stable model and LPU S |= Man is ¥ -complete and T17-complete, respectively [13].
Consequently, we need an oracle for >’ problems in order to decide whether a given
S is an explanation. Hardness for IT¥ is shown in [14] again by an encoding of validity
testing of quantified Boolean formulas, which in this case have form VX3IYVZE.

That deciding necessity is already II£-hard on positive disjunctive programs LP is
somewhat unexpected, but not really surprising. In fact, cautious inference of literals
from the minimal models of a positive disjunctive program is ITI}’-hard [13]. This
causes that the full power of the X¥-oracle is needed for checking whether a set S is
an explanation.
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