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Abstract. The coupling of description logic reasoning systems with other rea-
soning formalisms (possibly over the Web) is becoming an important research
issue and calls for advanced methods and algorithms. Recently, several notions of
description logic programs have been introduced, combining rule-based seman-
tics with description logics. Among them are nonmonotonic description logic
programs (or dl-programs for short) which combine nonmonotonic logic pro-
grams with description logics under a generalized version of the answer-set and
the well-founded semantics, respectively, which are the predominant semantics
for nonmonotonic logic programs. In this paper, we consider some technical is-
sues regarding an efficient implementation for both semantics, which has been
realized in a working prototype exploiting the two state-of-art tools DLV and
RACER. A major issue in this respect is efficient interfacing between the two
reasoning systems at hand, for which we devised special methods. Such methods
may fruitfully be used for the implementation of systems of similar nature. Re-
ported experimentation activities with our prototype show that the methods we
have developed are effective and are a key for highly optimized nonmonotonic
dl-program engines.

1 Introduction

Description logics are well-known formalisms for describing ontological knowledge,
and play an important role for building the Semantic Web [3,4,9]. The latter is con-
ceived as a hierarchy of different layers, of which the Ontology Layer is currently the
highest layer of sufficient maturity, as evidenced by the W3C recommended Web On-
tology Language (OWL) [21,13]. OWL has three increasingly expressive sublanguages,
namely OWL Lite, OWL DL, and OWL Full. As shown in [12], the logical underpinnings
of the former two is provided by the description logics SHIF(D) and SHOIN (D),
respectively.

The further steps in the development of the Semantic Web are realizing the Rules,
Logic, and Proof Layers on top of the Ontology layer, which should offer sophisticated
representation and reasoning capabilities. This requests, in particular, the need to inte-
grate the Rules and the Ontology layer.
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and by the European Commission through the IST REWERSE Network of Excellence (IST-
506779) and the IST Working Group in Answer Set Programming (IST 2001-37004 WASP).



Towards this goal, several approaches for combining description logics with rule-
based languages have been proposed recently [5,16,17,1,6,7,22]. Among them are de-
scription logic programs, or dl-programs for short, presented in [6,7] as a novel method
to couple description logics with nonmonotonic logic programs. Roughly speaking, a
dl-program consists of a knowledge base L in a description logic and a finite set P of
generalized logic-program rules, called dl-rules. These are similar to usual rules in logic
programs with negation as failure, but they may also contain queries to L in their bod-
ies. Importantly, such queries also allow for specifying an input from P to L, and thus
for a bidirectional flow of information between P and L. Consequently, dl-programs al-
low for building rules on top of ontologies, but also, to some extent, building ontologies
on top of rules.

By virtue of their design, dl-programs fully support encapsulation and privacy of the
description logic knowledge base, in the sense that logic programming and description
logic inference are technically separated and only interfacing details need to be known.
The description-logic knowledge bases in dl-programs are theories in the description
logics SHIF(D) and SHOIN (D). However, the framework can be easily extended
to other description logics as well.

Two basic types of semantics have been defined for dl-programs: in [6], a gen-
eralization of the answer-set semantics [10] for ordinary logic programs is given, and
in [7], a generalization of the well-founded semantics [19,2]. In fact, two versions of the
answer-set semantics for dl-programs are introduced in [6], namely the weak answer-
set semantics and the strong answer-set semantics. Every strong answer set is also a
weak answer set, but not vice versa. The two notions differ in the way they deal with
nonmonotonic dl-queries. We recall that the answer-set semantics and the well-founded
semantics are the two predominant semantics for nonmonotonic logic programs.

In this paper, we consider technical issues regarding an efficient implementation of
the answer-set and the well-founded semantics for dl-programs, which has been real-
ized in a working prototype exploiting the two state-of-the-art solvers DLV [15] and
RACER [11]. A major issue in this respect is an efficient interfacing between the two
reasoning systems at hand, for which we devised special methods.

The main contributions of this paper can be summarized as follows:

– We give novel methods and algorithms for computing answer sets and the well-
founded semantics of dl-programs. Starting from a simple guess-and-check algo-
rithm for weak answer sets, we devise more efficient techniques which prune the
number of guesses and reduce the effort for dl-query evaluation.

– As a first improvement over the naive guess-and-check method, we discuss the case
of stratified dl-programs, which, as follows from one of our results, can be evalu-
ated without explicitly using or even knowing some stratification, at the ground or
non-ground level, with a standard answer-set solver.

– We devise special optimization techniques in order to avoid redundant computa-
tions. To wit, we discuss a method to avoid multiple ground program generation,
as well as special methods to reduce the number of calls to the description logic
engine. The latter techniques involve, on the one hand, an exploitation of function
calls to the description logic reasoner using non-ground queries, and, on the other
hand, special caching data structures tailored for fast access to previous query calls.
Also, hierarchic structures of the dependency graph can be taken into account for
evaluating unstratified dl-programs.
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– The well-founded semantics is computed through an iterative procedure in terms of
the greatest and the least fixpoint of a monotonic operator. Techniques devised for
the answer-set semantics can be fruitfully applied here as well for improving the
evaluation. Moreover, the computation of answer sets can be optimized with the
help of a prior computation of the well-founded semantics, by introducing suitable
constraints.

– We implemented the above algorithms and optimization techniques in a working
prototype, both for computing the answer-set semantics as well as the well-founded
semantics, and performed experiments on a suite of benchmark problems. Our ex-
perimental results show that the optimization techniques can drastically improve
the performance of dl-programs over incremental grades of optimization.

Note that most of our methods and results are at an abstract level, and thus may also
be exploited for implementing similar computational-logic systems based on coupling.

2 Background

In this section, we recall syntax and semantics of description logic programs, introduced
in [6,7]. In what follows, we assume a function-free first-order vocabulary, Φ, with
nonempty finite sets of constant and predicate symbols, and a set X of variables. As
usual, a classical literal (or literal), l, is an atom a or a negated atom ¬a.

2.1 SHIF(D) and SHOIN (D)

Intuitively, description logics allow for expressing knowledge about concepts, roles,
and individuals in a (possibly extended) first-order logic (with concepts and roles be-
ing unary and binary predicates C(a) and R(a, b), respectively) using a special syn-
tax. Since for the purpose of this paper we mainly interface description logics through
queries, we omit definitions of SHIF(D) and SHOIN (D) at this point and refer to
Appendix A (or, alternatively, to [12,6]) for more details.

A (SHIF(D) resp. SHOIN (D)) description logic knowledge base L is a finite
set of axioms in the respective description logic. We denote logical consequence of an
axiom α from L, which is defined as usual, by L |= α.

2.2 Description logic programs

Informally, a description logic program consists of a description logic knowledge base
L and a generalized normal program P which may contain queries to L. Roughly,
in such a query, it is asked whether a certain description logic axiom or its negation
logically follows from L or not. For details, we refer to [6,7].

Syntax. We first define dl-queries and dl-atoms, which are used to access the descrip-
tion logic knowledge base. A dl-query, Q(t), is either (a) a concept inclusion axiom
C v D or its negation ¬(C v D), or (b) of the form C(t) or ¬C(t), where C is a
concept and t is a term, or (c) of the form R(t1, t2) or ¬R(t1, t2), where R is a role
and t1, t2 are terms.1

1 Note that SHOIN (D) does not provide terminological role negation; we use the expression
¬(∃R.{b})(a) in order to add and query ¬R(a, b) for a specific pair of individuals.

3



A dl-atom has the form

DL[S1op1p1, . . . , Smopm pm;Q](t) , m≥ 0, (1)

where each Si is either a concept or a role, opi ∈{], −∪, −∩}, pi is a unary resp. binary
predicate symbol, and Q(t) is a dl-query. We call p1, . . . , pm its input predicate sym-
bols. Intuitively, opi =] (resp., opi = −∪) increases Si (resp., ¬Si) by the extension of
pi, while opi = −∩ constrains Si to pi.

Example 2.1 The dl-atom DL[buying ] buy cand , buying ] contract ;Discount ](V )
queries for all individuals of the concept Discount after adding the extensions of both
buy cand and contract to the role buying .

A dl-rule, r, is an expression of the form,

a← b1, . . . , bk,not bk+1, . . . ,not bm , m≥ k≥ 0 , (2)

where a is a literal and b1, . . . , bm are either literals or dl-atoms. The symbol “not”
stands for weak negation, also called negation as failure (NAF). We refer to a as the
head of r, denoted H(r), and to the part right of “←” as the body of r. Its positive part
is b1, . . . , bk, and its negative part is not bk+1, . . . ,not bm. Furthermore, we define
B(r) = B+(r) ∪B−(r), where B+(r)= {b1, . . . , bk} and B−(r)= {bk+1, . . . , bm}.

A dl-rule is ordinary, if it contains no dl-atom. An ordinary program is a finite set
of ordinary rules. A description logic program, or dl-program, KB = (L, P ), consists
of a description logic knowledge base L and a finite set of dl-rules P .

Semantics. We first recapitulate the strong and weak answer-set semantics for dl-pro-
grams [6], and then the well-founded semantics for dl-programs [7]. They generalize
the familiar answer-set semantics [10] and well-founded semantics [19] for ordinary
programs, respectively, which are the predominant semantics for nonmonotonic logic
programs.

We need some auxiliary notions. In what follows, let KB = (L, P ) be a dl-program.
The Herbrand base of P , denoted HBP , is the set of all ground literals with a stan-

dard predicate symbol that occurs in P and constant symbols in Φ, where Φ is assumed
to contain (a subset of) the constant symbols from L. An interpretation I relative to P is
a consistent subset of HBP . Such an I is a model of l∈HBP under L, denoted I |=L l,
iff l∈ I , and a model of a ground dl-atom a=DL[S1op1 p1, . . . , Smopmpm;Q](c)
under L, denoted I |=L a, iff L∪

⋃m

i=1
Ai(I) |= Q(c), where

– Ai(I)= {Si(e) | pi(e)∈ I}, for opi =],
– Ai(I)= {¬Si(e) | pi(e)∈ I}, for opi = −∪, and
– Ai(I)= {¬Si(e) | pi(e)∈ I does not hold}, for opi = −∩.

I is a model of a ground dl-rule r iff I |=L H(r) whenever both I |=L l for all
l∈B+(r) and I 6|=L l for all l∈B−(r). I is a model of a dl-program KB = (L,P ),
or I satisfies KB , denoted I |=KB , iff I |=L r for all r in the grounding, grd(P ), of P .
We say that KB is satisfiable if it has some model, otherwise KB is unsatisfiable.

A ground dl-atom a is monotonic relative to KB =(L,P ), providing I |=L a implies
I ′ |=L a, for I ⊆ I ′⊆HBP . A dl-program KB = (L,P ) is positive, if (i) P is not-free
and (ii) every ground dl-atom occurring in grd(P ) is monotonic relative to KB .
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Observe that while dl-atoms containing only ] and −∪ are always monotonic, a dl-
atom containing −∩may fail to be monotonic, since an increasing set of pi(e) in P results
in a reduction of ¬Si(e) in L.

We are now in the position to define the answer-set semantics for dl-programs.
For any dl-program KB = (L,P ), we denote by DLP the set of all ground dl-atoms
that occur in ground(P ). We assume in the following that KB has an associated set
DL+

P ⊆ DLP of ground dl-atoms which are known to be monotonic, and we denote
by DL?

P =DLP − DL+

P the set of all other dl-atoms. An input literal of a∈DLP is a
ground literal with an input predicate of a and constant symbols in Φ.

Strong answer sets. The strong dl-transform of P relative to L and an interpreta-
tion I ⊆ HBP , denoted sP I

L, is the set of all dl-rules obtained from its grounding
grd(P ) with respect to Φ by (i) deleting every dl-rule r such that either I 6|=L a for
some a∈B+(r)∩DL?

P , or I |=L l for some l∈B−(r), and (ii) deleting from each re-
maining dl-rule r all literals in B−(r)∪ (B+(r)∩DL?

P ).
Notice that (L, sP I

L) is a positive dl-program, which, as shown in [6], has a least
model if it is satisfiable. We call I ⊆HBP a strong answer set of KB iff it is the least
model of (L, sP I

L).

Weak answer sets. Weak answer sets are like strong answer sets if monotonicity of all
dl-atoms is unknown resp. ignored (i.e., technically, if DL?

P = DLP ). In the respective
weak dl-transform, wP I

L, of P relative to L and I ⊆HBP , all dl-atoms are removed
from grd(P ). A weak answer set of KB , then, is an interpretation I ⊆HBP such that
I is the least model of the ordinary positive program wP I

L. Note that strong answer sets
of KB are weak answer sets of KB , but not vice versa in general.

For any not-free dl-program P , both the strong reduct as well as the weak reduct
coincide with the usual Gelfond-Lifschitz reduct [10], and thus the strong and weak
answer sets of KB = (L, P ) coincide with the standard answer sets of P .

Well-founded Semantics (WFS). The WFS is defined in [7] for dl-programs KB with-
out classical negation and where all dl-atoms are monotonic. The former is no real
restriction but the latter a technical necessity. In practice, most dl-atoms are monotonic.

The WFS in [7] generalizes the classical WFS [19] by suitably generalizing the
notion of an unfounded set as in [19] to the setting of dl-atoms as follows. Let, for
any set S of literals, ¬.S be the set of the opposite literals of S. A set U ⊆HBP is
an unfounded set of KB =(L,P ) relative to a consistent set I of ground literals, if
for every a∈U and every r∈ grd(P ) with H(r)= a, either (i) ¬b∈ I ∪¬.U for some
ordinary atom b∈B+(r), or (ii) b∈ I for some ordinary atom b∈B−(r), or (iii) for
some dl-atom b∈B+(r), S+ 6|=Lb for every consistent set S of ground literals with
I ∪¬.U ⊆S, or (iv) I+|=Lb for some dl-atom b∈B−(r).

Compared to [19], Conditions (iii) and (iv) are novel. The WFS is then defined in [7]
like in [19] as the least fixpoint of a monotonic operator WKB (I) (this is feasible since
the greatest unfounded set of I always exists); for computation purposes, an alternative
characterization, discussed in Section 3.6, is more advantageous.

If P does not contain any dl-atoms, then the well-founded semantics for KB =
(L,P ) coincides with the well-founded semantics for P in the sense of [19].

5



Stratified Semantics. The notion of stratification for dl-programs [6] is similar as for or-
dinary programs. Roughly speaking, stratified dl-programs are composed of hierarchic
layers of positive dl-programs that are linked via default negation (for a formal defini-
tion, we refer the reader to [6]). As discussed in [7], if KB = (L,P ) is positive or strat-
ified, then it has a single strong answer set, which coincides with WFS (KB)∩HBP .

Example 2.2 A computer shop obtains its hardware from several vendors. It uses a
knowledge base L1 (see Appendix B), which contains information about the product
range that is provided by each vendor (property provides) and about possible rebate
conditions (concept Discount , depending on property buying ; here we assume that
buying two or more parts from the same seller causes a discount). To evaluate possible
combinations of purchases, the following program P1 is specified:

(1) vendor(s1); vendor(s5); vendor(s9);
(2) needed(cpu); needed(harddisk); needed(case);
(3) contract(s9, case);
(4) avoid(V )← vendor(V ),not rebate(V );
(5) rebate(V )← vendor(V ), DL[buying ] buy cand , buying ] contract ;Discount ](V );
(6) buy cand(V, P )← vendor(V ),not avoid(V ), DL[provides](V, P ), needed(P ),

not exclude(P )

(7) exclude(P )← buy cand(V1, P ), buy cand(V2, P ), V1 6= V2;
(8) exclude(P )← contract(V, P ),needed(P );
(9) supplied(V, P )←DL[buying ] buy cand , buying ] contract ; buying ](V, P ),

needed(P ).

Rules (1)–(3) state the considered vendors as well as the needed parts; for some parts,
a vendor may already be contracted as supplier. Rules (4)–(6) choose a possible vendor
(buy cand ) for each needed part, taking into account that the selection might affect
the rebate condition (by feeding the possible vendor back to L1, where the discount
is determined). Rules (7) and (8) assure that each hardware part is bought only once,
considering that for some parts a supplier might already be chosen. Rule (9) eventually
summarizes all purchasing results. Evaluating this program under the strong answer-set
semantics yields the following answer sets (quoting only the relevant atoms):

{supplied(s9 , case); supplied(s5 , cpu); supplied(s5 , harddisk); rebate(s5 ); . . .};
{supplied(s9 , case); supplied(s9 , harddisk); rebate(s9 ); . . .};
{supplied(s9 , case); . . .}.

For more details, discussion, and examples, see [6,7].

3 Implementing dl-Programs

In this section, we consider methods for computing dl-programs by using an answer-set
solver on the one hand and a description logic (DL) engine on the other. We start with
a simple method, and then present progressively methods to increase the efficiency.
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3.1 Naive computation of weak answer sets

The computation of the weak answer sets of a given dl-program KB = (L,P ) can
be encoded by ordinary logic programs under the answer-set semantics, following a
generate and test approach, as follows:

1. Let Pd be the ordinary logic program having each dl-atom a(t) occurring in P

replaced by the atom da(t) (we call this kind of atoms replacement atoms), where
da is a fresh predicate symbol.

2. Add to Pd from Step 1 for each replacement atom da(t) all rules

da(c)← not ¬da(c) and ¬da(c)← not da(c) (3)

such that a(c) is a ground instance of dl-atom a(t). Intuitively, the rules (3) “guess”
the truth values of the dl-atoms of P .2 Denote the resulting program by Pguess .

3. Compute the answer sets Ans = {M1, . . . , Mn} of Pguess .
4. For each answer set M ∈ Ans of Pguess , test whether the original “guess” of the

value of da(c) is compliant with L. That is, for each dl-atom a of form (1), check
whether da(c) ∈M iff M |=L a, i.e., L∪

⋃m

i=1
Ai(M) |= Q(c). If this condition

holds (and only if), then M ∩HBP is a weak answer set of P .

If only one answer set is desired, the algorithm may stop after the first one is found.
While simple and elegant, this method becomes quickly infeasible. If the number

of ground dl-atoms grows, the number of candidate answer sets generated may become
very large, and Ans may occupy a lot of space. It is more efficient to interleave Steps 3
and 4 and to test each candidate answer set Mi immediately upon its generation. Still,
a lot of effort may be spent for evaluating dl-atoms. Efficient implementations try to
prune the number of guesses, and to reduce the effort for dl-atom evaluation.

3.2 Stratified dl-programs

In case of a stratified dl-program KB = (L,P ), the guessing of the outcome of dl-atoms
can be avoided entirely. In the presence of monotonic dl-atoms only, a simple method
for computing the (unique) strong answer set of KB is given by a fixpoint iteration of
the operator ΛKB : 2HBP → 2HBP , defined by ΛKB (I) = M(Pd ∪DP (I)) ∩ HBP ,
where:

– Pd is as in Step 1 of the naive computation above;
– DP (I) is the set of all facts da(c)← such that I |=L a(c); and
– M(Pd ∪DP (I)) is the single answer set of Pd ∪DP (I); since Pd is stratified, this

answer set is guaranteed to exist and to be unique.

For the sequence of powers I0
KB = ∅, Ii+1

KB = Λi+1
KB (∅) = ΛKB (Ii

KB ), i ≥ 0, we
then have:

Lemma 3.1. For each stratified KB , the sequence I i
KB , i ≥ 0, converges, and its limit

I∞KB coincides with the strong answer set of KB .

2 Note that, when using the system DLV, rules (3) can equivalently be replaced by the disjunctive
facts da(c) ∨ ¬da(c)←.
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Notice that ΛKB is neither monotonic nor anti-monotonic, and that the sequence
Ii
KB , i ≥ 0, is not a chain. The proof of convergence is along a stratification.

In view of this lemma, we can evaluate a stratified dl-program very easily without
explicitly using or even knowing some stratification, at the ground or non-ground level,
with a standard answer-set solver (which is used to compute M(Pd ∪ DP (I)) and
multiple calls to a DL reasoner (for deciding I |=L a(c) when it is needed to add facts
da(c) to DP (I)), in a simple loop.

In fact, the above method is applicable beyond stratified dl-programs. Let us call
a program P dl-stratified, if in the usual dependency graph G of grd(Pd ∪ DLI (P )),
where DLI (P ) consists of all rules da(X)← pi(Y), i ∈ {1, . . . ,m}, for each dl-atom
a of form (1) occurring in P , no replacement atom da(c) is reachable from a cycle
having negative arcs.

The class of dl-stratified dl-programs is still rich in the sense that it features non-
determinism for problem solving, where ontologies can be accessed in portions of the
program that computes information in a stratified layer (possibly through positive re-
cursion, e.g., by taking transitive closure).

Let us call an answer-set solver deterministic, if it returns for any input program
P on each call always the same result; i.e., if multiple answer sets exist, a “canonical”
answer set can(P ) will be output. Then the following holds:

Proposition 3.1. Given a deterministic answer-set solver, for each dl-stratified KB , the
sequence Ii

KB , i ≥ 0, (where can(Pd(I)) replaces M(Pd(I)) in ΛKB ) converges, and
its limit I∞

KB is a strong answer set of KB .

Since in dl-stratified programs terminological knowledge is involved only in a strat-
ified portion of the program, it can be dealt with a quick preprocessing (cf. Section 3.5)
by easy means. We thus can solve a very relevant class of unstratified dl-programs
through the above technique.

Intuitively, assuming the given program has a stratification λ= {KB 0, . . . ,KBn}, a
disadvantage of this simple method is the effort spent for evaluating dl-atoms in higher
levels KB i of the stratification in the early stages of the fixpoint iteration, where the
input from lower levels has not converged yet. This effort can be saved by proceeding
along λ and computing ΛKB0

, . . . , ΛKBn
, for the associated strata KB0, . . .KBn, at

the cost of pre-computing λ. This may pay off in general, given that the entailment to
dl-atoms is costly.

Furthermore, it turns out that both the answer-set solver and the DL engine are
invoked repeatedly, so that it is very important to avoid redundant computations. Thus,
two more additional optimization techniques are fruitful, namely ground program re-
using, and dl-atom caching and intelligent evaluation, discussed next.

3.3 Avoiding multiple ground program generation

The above method relies on the evaluation of a collection of ordinary logic programs
Pd ∪D(Ij

KB ) starting from I0
KB = ∅. The programs of this sequence are very similar:

indeed, for any I
j
KB and I

j′

KB , the programs Pd ∪D(Ij
KB ) and Pd ∪D(Ij′

KB ) differ only
in the set of facts da(c) such that I

j
KB |=L a(c) is different from I

j′

KB |=L a(c), and so,
their ground versions are very similar.
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Indeed, it is possible to compute and store grd(Pd) only once, and then, for any
interpretation I , compute M(grd(Pd) ∪D(I)) whenever necessary.

This method can be enhanced by considering that answer-set programming systems,
like DLV, allow to obtain significantly smaller versions of ground programs, where only
meaningful rules are kept; in particular, such grounding systems compute only those
ground rules which can be grounded not with respect to the whole Herbrand base HBP

but with respect to a notion of “active” domain of the rules (for more technical details,
see [8]). Let ogrd(P ) denote the optimized ground version of a program P . For space
reasons, we cannot describe this operator in detail, but we observe that, in general, for a
given I , ogrd(Pd ∪D(I)) 6= ogrd(Pd)∪ ogrd(D(I)), whereas for the usual grounding
of Pd ∪D(I) with respect to Φ it holds that grd(Pd ∪D(I)) = grd(Pd) ∪ grd(D(I)).

This latter property prevents, in principle, to have any benefit in computing and
storing ogrd(Pd) instead of grd(Pd). Nonetheless, we can prove that there exists an op-
timized version ogrd∗(Pd) of grd(Pd), such that it holds that M(ogrd∗(Pd)∪D(I)) =
M(grd(Pd) ∪D(I)), for each I , and ogrd∗(Pd) ⊆ grd(Pd). Details of this optimiza-
tion technique are somehow intricate, so we give only an intuition on how it is carried
out for not-free programs.

Given a rule r ∈ Pd, we consider a replacement atom da(t) safe, if each variable
X ∈ t appears at least once in some non-replacement atom in the body of r. The
program ogrd∗(Pd) is obtained as follows:

1. Build a program P ′

d from Pd by removing from every rule r ∈ Pd each replacement
atom da(t). In case this atom is not safe, we add in the body of r a predicate
dom(X) for each variable X ∈ t witnessing unsafety. Furthermore, we add to P ′

d

a rule r′ with head da(t) and body consisting of the ordinary body atoms of r, plus
an atom dom(X) for each variable X ∈ t.

2. Add to P ′

d a fact dom(a)← for each a ∈ HBP .
3. Let D̄ be the set {da(c)← |da(c) ∈M(P ′

d)}.
3

4. Define ogrd∗(Pd) = ogrd(Pd ∪ D̄)− D̄.

Intuitively, in Step 1, we create an envelope for the least model of Pd ∪ D(I) on
the original predicates, which then allows to limit the set of ground dl-atoms a(c),
potentially relevant for evaluating P , to those such that da(c) is true in the least model
of P ′

d. For programs with not , we can proceed similarly discarding in Step 1 all not

literals.

3.4 Efficient dl-atom evaluation and caching

Since the calls to the DL reasoner are a bottleneck in the coupling of an ASP solver
with a DL engine, special methods need to be devised in order to save on the number of
calls to the DL engine. To this end, we use complementary techniques.

DL-function calls. One of the features of DL reasoners which may be fruitfully ex-
ploited for speed up are non-ground queries. RACER provides the possibility to retrieve
in a function call all instances of a concept C (resp., of a role R) that are provable in

3 In order to prevent DLV from optimized unfolding cancelling out significant rules, some other
specialized rules are added.
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the DL knowledge base. Given that the cost for accessing the DL reasoner is high, in
the case when several different ground instances a(c1), a(c2), . . . , a(ck) of the dl-atom
a(t) have be evaluated, it is a reasonable strategy to retrieve at once, using the apposite
function call feature from the DL reasoner, all instances of the concept C (resp., a role
R) in a(t) = DL[S1op1p1, . . . ;C](t). This allows to avoid issuing k separate calls for
the single ground atoms a(c1), . . . , a(ck).

If the retrieval set has presumably many more than k elements, we can filter it with
respect to c1, . . . , ck, by pushing these instances to a DL engine as follows. For the
query concept C, we add in L axioms to the effect that C ′′ = C uC ′, where C ′ and C ′′

are fresh concept names, and axioms C ′(c1), . . . , C ′(ck); then we ask for all instances
of C ′′. For roles, a similar yet more involved approximation method is introduced, given
that SHIF(D) and SHOIN (D) do not offer role intersection.

With the above techniques, the number of calls to the DL reasoner can be greatly
reduced. Another very useful technique to achieve this goal is caching.

DL-Caching. Whatever semantics is considered, a number of calls will be made to
the DL engine. Therefore, it is is very important to avoid an unnecessary flow of data
between the two engines, and to save time when a redundant DL query has to be made.
In order to achieve these objectives, it is important to introduce some special caching
data structures tailored for fast access to previous query calls. Such a caching system
needs to deal with the case of Boolean as well as non-Boolean DL-calls.

For any dl-atom DL[λ;Q](t), where λ is a list S1op1p1, . . . , Snopnpn, and inter-
pretation I , let us denote by Iλ the projection of I on p1, . . . , pn.

Boolean DL-calls. In this case, an external call must be issued in order to verify whether
a given ground dl-atom b fulfills I |=L b, where I is the current interpretation and L

is the DL knowledge base hosted by the DL engine. In this setting, the caching system
exploits properties of monotonic dl-atoms a = DL[λ;Q](c).

Given two interpretations I1 and I2 such that I1 ⊆ I2, monotonicity of a implies
that (i) if I1 |=L a then I2 |=L a, and (ii) if I2 6|=L a then I1 6|=L a. This property
allows to set up a caching machinery where only the outcome for ground dl-atoms with
minimal/maximal input is stored.

Roughly speaking, for each monotonic ground dl-atom a we store a set cache(a)
of pairs 〈Iλ, o〉, where o ∈ {true, undefined}. If 〈Iλ, true〉 ∈ cache(a), then we can
conclude that J |=L a for each J such that Iλ ⊆ Jλ. Dually, if 〈Iλ, undefined〉 ∈
cache(a), we can conclude that J 6|=L a for each J such that Iλ ⊇ Jλ.

We sketch the maintenance strategy for cache(a) in the following. The rationale is
to cache minimal (resp., maximal) input sets Iλ for which a is evaluated to true (resp.,
undefined ) in past external calls.

Suppose a ground dl-atom a = DL[λ;Q](c), an interpretation I , and a cache set
cache(a) are given. With a small abuse of notation, let I(a) be a function whose value is
true iff I |=L a and undefined otherwise. In order to check whether I |=L a, cache(a)
is consulted and updated as follows:

1. Check whether cache(a) contains some 〈J, o〉 such that J ⊆ Iλ if o = true, or
J ⊇ Iλ if o = undefined . If such J exists, conclude that I(a) = o.

2. If no such J exists, then decide I |=L a through the external DL engine. If I |=L a,
then add 〈Iλ, true〉 to cache(a), and remove from it each pair 〈J, true〉 such that
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Iλ ⊂ J . Otherwise (i.e., if I 6|=L a) add 〈Iλ, undefined〉 to cache(a) and remove
from it each pair 〈J, undefined〉 such that Iλ ⊃ J .

Some other implementational issues are worth mentioning. First of all, since the
subsumption test between sets of atoms is a critical task, some optimization is made in
order to improve cache look-up. For instance, an element count is stored for each atom
set, in order to prove early that I 6⊆ J whenever |I| > |J |. More intelligent strategies
could be envisaged in this respect. Furthermore, a standard least recently used (LRU)
algorithm has been introduced in order to keep a fixed cache size.

Non-Boolean DL-calls. In most cases, a single non-ground query for retrieving all
instances of a concept or role might be employed. Caching of such queries is also pos-
sible, but cache look-up cannot take advantage of monotonicity as in the Boolean case.
For each non-ground dl-atom a = DL[λ;Q](c), a set cache(a) of pairs 〈Iλ, a↓(Iλ)〉
is maintained, where a↓(I) is the set of all ground instances a′ of a such that I |=L a′.
Whenever for some interpretation I , a↓(I) is needed, then cache(a) is looked up for
some pair 〈J, a↓(J)〉 such that Iλ = J .

3.5 Unstratified dl-programs

When looking at the corresponding dependency graph, it often occurs in practice that
answer-set programs are structured in three separate and hierarchic layers:

– a first, stratified layer at the bottom which performs some preprocessing on the
input data;

– a second, strongly connected and unstratified layer, usually aimed at encoding some
nondeterministic choice, and, eventually,

– a third “checking” layer on top, where values computed through the other layers
are filtered with respect to some constraint criteria.

Following this common setting, we conceived an evaluation strategy where each
component is evaluated sequentially and results are fed from one layer to another. This
way, the bottom layer is computed exploiting techniques from Subsection 3.2. General
techniques are strictly limited to situations in which this cannot be avoided, as in non-
stratified layers.

3.6 Implementing the well-founded semantics

An implementation of WFS for KB by fixpoint iteration of the defining monotonic
operator WKB (I) as in [7] is not attractive, since a polynomial-time algorithm for com-
puting the greatest unfounded set of KB with respect to I , due to Condition (iii) of an
unfounded set, is not evident (even if deciding I |=L l is polynomial).

As shown in [7], the WFS for KB , denoted WFS (KB), is alternatively given by

WFS (KB) = lfp(γ2
KB ) ∪ {¬a | a ∈ HBP − gfp(γ2

KB )},

where the operator γKB (I) assigns each interpretation I ⊆ HBP the least model MKBI

of the strong reduct KB I =(L, sP I
L). Since γKB is anti-monotonic, γ2

KB is monotonic
and thus has a least and greatest fixpoint, lfp(γ2

KB ) and gfp(γ2
KB ), respectively.
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This way, WFS (KB) is computable through a fixpoint iteration which computes
and outputs the greatest and the least fixpoint of the γ2

KB operator, starting from ∅
resp. HBP (which may be represented by its complement). Since KB I is a positive
dl-program, machinery developed in Section 3.2 for computing MKBI is very helpful
in this respect. Caching also proves to be very fruitful.

3.7 Enhancing answer-set generation with well-founded semantics
Another interesting result from [7] allows to speed up the computation of the answer
sets of a given KB = (P,L) by means of a pre-evaluation of WFS (KB):

Theorem 3.1 Every strong answer set of a dl-program KB = (L,P ) includes lfp(γ2
KB )

and no atom a ∈ HBP − gfp(γ2
KB ).

For computing answer sets, we can exploit the possibility to introduce constraints
to a DLV program [15]. Constraints allow to filter out models which do not fulfill pre-
scribed requirements. An intermediate ordinary program P ′ obtained from P can be
then enriched with the constraint ← not a for any atom a such that a ∈ WFS (KB),
and with a constraint← a for any atom a such that ¬a ∈WFS (KB). Notice that such
constraints may also be added only for a subset of WFS (KB) (e.g., the one obtained
after some steps in the least resp. greatest fixpoint iteration of γ2

KB ). This technique
proves to be useful for helping the answer-set programming solver to converge to solu-
tions faster.

4 System Prototype

The architecture of our system prototype is depicted in Figure 1. The system comprises
six modules: the two external engines DLV and RACER, the latter embedded into a
caching module, a WFS module, an answer-set semantics module, as well as a pre-
processing and a postprocessing module. Each internal module is coded in the PHP
scripting language; the overhead is insignificant, provided that most of the computing
power is devoted to the execution of the two external reasoners.

Our prototypical implementation is capable of evaluating a dl-program in three dif-
ferent modes: (1) under answer-set semantics, (2) under WFS, and (3) under answer-set
semantics with preliminary computation of the WFS.

In Mode (1), the answer-set semantics is computed through a preprocessing step,
aimed at computing all those dl-atoms which do not depend from the program P itself.
Then, an ordinary program Pd is generated whose models M1, . . . ,Mn are checked and
filtered through several consistency checks performed by querying the RACER engine
in an interleaved fashion. The stratified bottom portion of Pd is evaluated iteratively as
in Subsection 3.2. Eventually, the system outputs a list of answer sets Mk1

, . . . ,Mkm
.

In Mode (2), we compute the well-founded semantics of a program P by generating
a corresponding ordinary program Pd which is grounded using the grounding module
of the DLV system. This instantiation grd(Pd) is fed back to the well-founded seman-
tics module, where an iterative algorithm, calling the RACER engine several times, is
carried out in order to compute the well-founded semantics of P .

In Mode (3), the answer-set semantics is computed by taking advantage of the WFS
which is combined with Pd in order to get a better constrained program, as described in
Section 3.7.
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Fig. 1. System architecture of the dl-program evaluation prototype

5 Experiments

As mentioned in the previous section, we decided to exploit the scripting language PHP.
Clearly, the speed and grade of optimization of PHP applications cannot be compared
to ones natively compiled in a high-level programming language; however, during the
development of our prototype, we realized that the major bottlenecks are the external
reasoning applications. Thus, our benchmarks already show significant results with re-
spect to different methods of integrating the external reasoners.

RACER’s restriction of not allowing reasoning with nominals in concept definitions
as well as its slow performance on large knowledge bases seriously limited the ability
of performing realistic assertional knowledge reasoning tests with existing ontologies
(e.g., the OWL wine ontology from [20]). For this reason, we decided to carry out the
benchmarks with abstract, but well-scalable graph examples in addition to the already
presented computer shop application.

The benchmarks were carried out on an AMD Athlon 1.2GHz CPU with 256MB
RAM. We used the official DLV version of May 23th, 2004, and RACER version 1.7.23.

Positive Programs. In order to assess our evaluation strategy for positive dl-programs,
we considered the computation of the transitive closure of a graph. We evaluated five
graphs (taken from [18]) of different size with two different dl-programs, KBLP =
(L2, P2) and KBONT = (L3, P3), where:

L2 = {arc(1, 2); arc(1, 4); . . .};
P2 = {tc(X, Y )← DL[arc ] tc; arc](X, Y ); tc(X, Y )← DL[arc](X, Z), tc(Z, Y )};

L3 = L2 ∪ Trans(arc);
P3 = {tc(X, Y )← DL[arc](X, Y )}.

Here, Trans(arc) denotes the DL transitivity axiom. Figure 2 shows the results
against a logarithmic time scale. We display total evaluation times for KBONT and
KBLP as well as the respective time needed for querying the DL engine. The loga-
rithmic scale shows very clearly that although KBONT scales as good as KBLP , it is
always two orders of magnitude slower than KBLP . In both cases, a significant per-
centage of the overall execution time is spent by RACER calls.

The reason of feeding the extension of tc back to the DL knowledge base in L2 is
not obvious here at first sight. However, we wanted to simulate a situation where the
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Fig. 2. Graph experiment benchmark results

terminological information enlarges the extension of the relation. We illustrate this with
the following dl-program KB = (L4, P4):

L4 = {∃R.{c} v ∃R−.{d}; R(a, b); R(b, c)};
P4 = {r(X, Y )← DL[R ] r; R](X, Y ); r(X, Y )← r(X, Z), r(Z, Y )}.

The task of this program is to compute the transitive closure of R. In contrast to the
graph example, here it is not possible to query the entire relation and compute the
closure solely by rules, since the given subsumption axiom creates new tuples from ex-
isting ones, which makes it necessary to feed the inferred facts back to the DL reasoner.
Unfortunately, we were not able to conduct experiments with such a scenario because
RACER is not able to handle individuals in concept expressions.

Unstratified dl-programs. Unstratified dl-programs have been assessed exploiting Ex-
ample 2.2. The data set at hand is constituted of about 20 individuals.

The computation of this example involves evaluating the least model of the stratified
part, then the answer-set validation of the entire program. Figure 3 shows the result for
three different evaluation scenarios.

In the first setting, we switched off the DL engine caching module: the number of
DL calls is in this case very high, and stems from the fact that (almost) each query is
preceded by calls that clone and extend the knowledge base at hand with facts coming
from the logic program. Since RACER does not provide other ad-hoc features, this tech-
nique proves to be effective in order to quickly augment and restore a given knowledge
base.

In the second case, we switched caching on, and this saved a lot of calls to RACER.
The remaining computation time, apart from DLV and RACER external calls, is con-
sumed mainly by a loop that examines answer sets for validity with respect to the DL
knowledge base and also by initializing RACER. These two experiments involved the
validation of 1280 answer sets, generated by the guessing mechanism for unstratified
dl-atoms.
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total time DLV time RACER time #cache hits #DL calls
cache off 23.83 0.82 13.65 0 11535
cache on 9.65 0.81 0.26 3786 179
cache on, WFS first 6.57 1.02 4.50 152 137
cache on, lfp(γ2

KB ) first 5.82 0.61 0.11 2283 131

Fig. 3. Shop example results (time expressed in seconds).

In the third setting, we did a pre-computation of the WFS of the program before the
answer-set generation. The pre-evaluation of this model limits the number of possible
answer sets to 24, which narrows the execution time mainly to DL-calls.

An interesting variation of this method is to calculate only the positive facts of
WFS (KB), i.e., lfp(γ2

KB ). When this method is applied on the current example, some
time-consuming calls to RACER that are involved in computing gfp(γ2

KB ) are avoided.
However, the overall time is only slightly less, since this subset of WFS (KB) reduces
the number of answer sets to be checked only to 768.

In this last experiment with the unstratified dl-program, we considered to compute
only a subset of the well-founded semantics prior to the answer-set generation. Al-
though this resulted in a reduced overall execution time, this might not apply to other
programs. As we pointed out, the advantage of having less calls to the DL reasoner by
omitting gfp(γ2

KB ) is compensated by an increase of the answer sets that have to be
checked for compliance with L. This tradeoff very much depends on the size of the
assertional facts in the DL knowledge base as well as on the number of answer sets, i.e.,
on the specific design of the program and its stratification.

6 Conclusion

We have presented methods and algorithms for implementing nonmonotonic descrip-
tion logic programs. The issue of efficient interfacing between a description logic rea-
soner and an answer-set solver has been solved by means of several methods which can
be fruitfully exploited for the implementation of systems of similar nature.

We assumed in most cases to deal with monotonic dl-atoms only. It is worth pointing
out that this confinement benefits of useful nonmonotonic features in this setting as well.
Our semantics provides a safe coupling between rule-based languages and description
logics, since decidability is preserved. Furthermore, extending our semantics for dealing
with many of the special features of answer-set programming systems (e.g., weak and
integrity constraints, or aggregates) is quite straightforward.

Experimental results proved that description logics systems would benefit from this
kind of coupling, since relieving a reasoner like RACER from some reasoning tasks,
which such kind of systems are not aimed at, proved to be effective, also from a perfor-
mance perspective. It turned out also that our system heavily relies on both reasoning
systems, and would benefit from any performance improvement on both sides.

Our experimental prototype implementation, using DLV [15] and RACER [11], is
available at

http://www.kr.tuwien.ac.at/staff/roman/semweblp/.
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A SHIF(D) and SHOIN (D) Syntax

We briefly recall the elements of the description logics SHIF(D) and SHOIN (D),
starting with the latter. We assume a set D of elementary datatypes. Every d∈D has a
set of data values, called the domain of d, denoted dom(d). We use dom(D) to denote⋃

d∈D
dom(d). A datatype is either an element of D or a subset of dom(D) (called

datatype oneOf). Let A, RA, RD, and I be nonempty finite and pairwise disjoint sets
of atomic concepts, abstract roles, datatype roles, and individuals, respectively. We use
R−

A to denote the set of all inverses R− of abstract roles R∈RA.
A role is an element of RA ∪R−

A ∪RD. Concepts are inductively defined as fol-
lows. Every C ∈A is a concept, and if o1, o2, . . . ∈ I, then {o1, o2, . . .} is a concept
(called oneOf). If C and D are concepts and R∈RA ∪R−

A, then (C u D), (C t D),
and ¬C are concepts (called conjunction, disjunction, and negation, respectively), as
well as ∃R.C, ∀R.C, ≥nR, and ≤nR (called exists, value, atleast, and atmost restric-
tion, respectively) for an integer n≥ 0. If d∈D and U ∈RD, then ∃U.d, ∀U.d, ≥nU ,
and ≤nU are concepts (called datatype exists, value, atleast, and atmost restriction, re-
spectively) for an integer n≥ 0. We write > and ⊥ to abbreviate C t ¬C and C u ¬C,
respectively, and we eliminate parentheses as usual.

An axiom is of one of the following forms: (1) C vD, where C and D are concepts
(concept inclusion); (2) RvS, where either R,S ∈RA or R,S ∈RD (role inclusion);
(3) Trans(R), where R∈RA (transitivity); (4) C(a), where C is a concept and a∈ I
(concept membership); (5) R(a, b) (resp., U(a, v)), where R∈RA (resp., U ∈RD) and
a, b∈ I (resp., a∈ I and v ∈ dom(D)) (role membership); and (6) a= b (resp., a 6= b),
where a, b∈ I (equality (resp., inequality)).

A knowledge base L is a finite set of axioms. (For decidability, number restrictions
in L are restricted to simple R∈RA [14]).
SHIF(D) is the restriction of SHOIN (D) which excludes the oneOf constructor

and limits the atleast and atmost constructors to 0 and 1.
For the semantics of SHIF(D) and SHOIN (D), we refer to [12] or [6].

B Example Ontology L1

≥ 1 buying v Shop; > v ∀buying .Part ; ≥ 2 buying v Discount ;
Part(graphiccard); Part(memory); Part(fan);
Part(harddisk); Part(cdrom); Part(dvdrom);
Part(soundcard); Part(cpu); Part(wlan); Part(case);
provides(s1, case); provides(s1, cpu);
provides(s2, dvdrom);
provides(s3, cpu); provides(s3, fan); provides(s3,wlan);
provides(s4, case); provides(s4, cdrom); provides(s4, harddisk);
provides(s5, cpu); provides(s5, harddisk);
provides(s6, graphiccard); provides(s6, soundcard); provides(s6, harddisk);
provides(s7, graphiccard); provides(s7,memory);
provides(s8,wlan);
provides(s9, case); provides(s9, harddisk).
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