In: Proc. 7th International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR-7), I. Nieméland V. Lifschitz, editors, LNCS¢) 2004 Springer.

Towards Automated Integration of Guess and Check
Programs in Answer Set Programming*

Thomas Eiter and Axel Pollere%

L Institut fiir Informationssysteme, TU Wien, A-1040 Wien, Austria
eiter@kr.tuwien.ac.at
2 Institut fur Informatik, Universi&t Innsbruck, A-6020 Innsbruck, Austria
axel.polleres@uibk.ac.at

Abstract. Many NP-complete problems can be encoded in the answer set se-
mantics of logic programs in a very concise way, where the encoding reflects
the typical “guess and check” nature §P problems: The property is encoded

in a way such that polynomial size certificates for it correspond to stable mod-
els of a program. However, the problem-solving capacity of full disjunctive logic
programs (DLPs) is beyonNP at the second level of the polynomial hierar-
chy. While problems there also have a “guess and check” structure, an encod-
ing in a DLP is often non-obvious, in particular if the “check” itself is N&-
complete; usually, such problems are solved by interleaving separate “guess” and
“check” programs, where the check is expressed by inconsistency of the check
program. We present general transformations of head-cycle free (extended) logic
programs into stratified disjunctive logic programs which enable one to integrate
such “guess” and “check” programs automatically into a single disjunctive logic
program. Our results complement recent results on meta-interpretation in ASP,
and extend methods and techniques for a declarative “guess and check” problem
solving paradigm through ASP.

1 Introduction

Answer set programming (ASP) [19, 7] is widely proposed as a useful tool for express-
ing properties iNNP, where solutions and polynomial time proofs for such properties
correspond to answer sets of normal logic programs, which cover by well-known com-
plexity results the clas§P. An example for such a property is whether a given graph
has a legal 3-coloring, where any such coloring is itself a certificate for this property.
However, we also might encounter situations in which we want to express a problem
which is complementary to som&P problem, and thus belongs to the clas\d®: it is
widely believed that in general, not all such problems ar¥lhand hence not always
a polynomial-size certificate checkable in polynomial time exists. One such problem
is, e.g., the property that a graphnist 3-colorable. Such propertigscan analogously
be expressed by a normal logic program (equivalently, by a head-cycle free disjunctive
logic program [1])I1,, where the property holds ifff, has no answer set at all.
Checks in caNP typically occur as subproblems within more complex problems
which have complexity higher thasP, for instance:

Quantified Boolean Formulas (QBFs):Evaluating a QBF, where we have to check,
given a QBF of the formBXVY $(X,Y), and an assignment to the variablesX,

* The major part of this work has been conducted at TU Wien, supported by FWF (Austrian
Science Funds) projects P14781 and Z29-N04 and European Commission grants FET-2001-
37004 WASP and I1ST-2001-33570 INFOMIX.

whetheWY @(o(X),Y’) evaluates to true.
Strategic Companies:Checking whether a set of companies is strategic (cf. [11]).

Conformant Planning: Checking whether a given plan is conformant [8], provided
executability of actions is polynomially decidable (cf. [4, 22]).

Further examples can be found in [6, 5]. In general, the corresponding logic program
11, for this check can be easily formulated and the overall problem (evaluating the QBF,
finding a strategic companies set resp. a conformant plan) solved in a 2-step approach:

1. Generate a candidate solution by means of a logic progfgips..
2. Check the solution by another logic progréfgyccr (=11p).

However, it is often not clear how to combiig,,,.ss andl.p..x into asinglepro-
gramll.,. Which solves the overall problem. Simply taking the unidg,css Ul check
does not work, and rewriting is needed. Theoretical results [6] informally give strong ev-
idence that for problems with'l’-complexity, it is required thall .1, (given as a nor-
mal logic program or a head-cycle free disjunctive logic program) is rewritten into a dis-
junctive logic prograniI/, ... such that the answer sets & ;e = Hgyess U Ly oo
yield the solutions of the problem, whefg,, ., emulates the inconsistency check for
II!, ... as a minimal model check, which is &&P-complete for disjunctive programs.
This becomes even more complicated by the fact fiigt, ., must not crucially rely
on the use of negation, since it is essentially determined byithe.. part. These
difficulties can make rewriting .., to IT/, .., a formidable and challenging task.

In this paper, we present a generic method for rewritihg.., automatically by
using a meta-interpreter approach. In particular, we make the following contributions:

(1) We provide a polynomial-time transformatien(/) from propositional head-
cycle-free [1] (extended) disjunctive logic programs (HDLPE}o disjunctive logic
programs (DLPs), such that the following conditions hold:

T1 Each answer se$’ of ¢r(II) corresponds to an answer setof I7, such that
S = {l] inS(l) € S’} for some predicatens(-).

T2 If the original program has no answer sets, theiil) has exactly one designated

answer sef?, which is easily recognizable.

T3 The transformation is of the formr(I1) = F(II) U I etq, Where F(I1) is a

factual representation df and/l,,.., is a fixedmeta-interpreter

T4 tr(II) is modular(at the syntactic level), i.ety(II) = |, ; tr(r). Moreover, it

is a stratified DLP [20, 21] and uses negation only in its “deterministic” part.
We also describe optimizations and a transformation to positive DLPs, and show that in
a precise sense, modular transformations to such programs do not exist.

(2) We show how to user(-) for integrating separate guess and check programs
I gyess @NA I cpecr, respectively, into a single DLF 4, Such that the answer sets of
11,14 Yield the solutions of the overall problem.

(3) We demonstrate the method on the examples of QBFs and conformant plan-
ning [8] under fixed polynomial plan length (cf. [4, 22]), where our method proves to
loosen some restrictions of previous encodings.

Our work enlarges the range of techniques for expressing problems using ASP,
in a direction which to our knowledge has not been explored so far. It also comple-
ments recent results about meta-interpretation in ASP [16, 2, 3]. We fruitfully exploit

the construction ofr(-) to further elucidate the natural guess and check programming
paradigm for ASP, as discussed in [11] or in [14] (named “Generate/Define/Test” there),
and we fill a gap by providing an automated construction for integrating guess and check
programs. It is worth noticing that such an integration is non-trivial even for manual
construction in general. Apart from being pure ASP solutions, integrated encodings
may be straight subject to automated program optimization within ASP solvers, con-
sidering both the guess and check part as well as their interaction; this is not immediate
for separate programs.

For space constraints, most proofs and longer encodings are omitted here. All proofs
and further details (encodings, etc) are given in an extended version of this’paper.

2 Preliminaries

We assume that the reader is familiar with logic programming and answer set semantics
(see [7, 19]) and only briefly recall the necessary concepts.

A literal is an atormu(t4, . . ., t,,),0r its negation-a(ty, . . ., t,), where =" (alias,
“~") is the strong negation symbol, in a function-free first-order language with at least
one constant, which is customarily given by the programs considereld| By|—a| =
a we denote the atom of a literal. Extended disjunctive logic programs (EDLPs; or
simply programs) are finite sef$ of rulesr

hiv ... vhy :— by, ..., by, not by41, ... not by,. (2)

l,m,n > 0, where eacth; andb; is a literal andnot is weak negation (negation as
failure). By H(r) = {h1,..., b}, BY(r) = {b1,...,bm}, B~ (r) = {bms1,---,bn},
andB(r) = B*(r) U B~ (r) we denote the head and (pos., resp. neg.) body ofrrule
Rules with| H (r)|=1 and B(r)=0 arefactsand rules withH (r)=0 constraints A rule

7 is positive if “not” does not occur in it, andormal, if |H(r)| < 1. A programI] is
positive(resp.norma)) if all its rules are positive (resp., normal). We omit “extended”
in what follows and refer to EDLPs as DLPs etc.

Literals (resp. rules, programs) ageound if they are variable-free. Non-ground
rules (resp. programs) amount to thgiound instantiationi.e., all rules obtained by
substituting variables with constants from the (implicit) language.

A ground programiI is head-cycle freg¢l], if no literals! # I’ occurring in the
same rule head mutually depend on each other by positive recufsiisrstratified [20,
21], if no literall depends by recursion through negation on itself.

Recall that theanswer set semanti¢g] for DLPs is as follows. Denote bit(I7)
the set of all ground literals for a program. Then,S is ananswer sebf I7, if S'is a
minimal (underC) consisterftsetS C Lit(IT) satisfying all rules in the redudi®,
which contains all ruleg, v ... v h;:— by, ..., by, forall ground instances of rules
(1) in I such thatS N B~ (r) = 0.

3 Meta-Interpreter Transformation

As mentioned above, a rewriting of a given prografyy,..; to a programil’, .. for
integrating a guess and a check part into a single program is tricky in general. The

3 See http://www.kr.tuwien.ac.at/staff/axel/guessncheck/ (forthcoming).
4 For our concerns, we disregard a possible inconsistent answer set.

working of the answer set semantics is not easy to be emulatdd,in, , since essen-
tially we lack negation inf1/, . : Upon a “guess’S for an answer set ofl . =
Hyyess U Iy, 1, the reductll?), is not-free. Thus, contrary tél,..x, there is no
possibility to consider varying guesses for the value of negated atorfig,in), in
combination with one guess for the negated atomd ji. in the combined program
II010e- ON the other hand, if there is no disjunctionfify,, .., then 7. is Horn;
thus, its answer sets can be guessed and checRéH.in

This leads us to consider an approach in which the prodi@m.,. is constructed
by the use of meta-interpretation techniques [16, 2, 3]: the idea is that a prdgram
is represented by a set of facfS(I7), which is input to a fixed progranfl,,,.:., the
meta-interpreter, such that the answer setdf:, U F(IT) correspond to the answer
sets ofIl. Note that existing meta-interpreters are normal logic programs, and can not
be used for our purposes for the reasons explained above; we have to construct a novel
meta-interpreter which is essentiallyt-free and contains disjunction. To this end, we
exploit the following characterization of (consistent) answer sets for HDLPs:

Theorem 1 (cf. [1]). For any ground HDLPII, a consistent C Lit(IT) is an answer
set of[7 iff (1) S satisfiedT and (2) there is a functiot : Lit(IT) — {0,1,2,...} such
that for each literal €S, there is a rule-c IT with (@) B (r) C S, (b)) B~ (r)NS =0,

(¢ leH(r),(d) SNn(H(r)\{l}) =0,and €) ¢(I') < ¢(I) for eachl’e BT (r).

Theorem 1 will now serve as a basis for a transformation from a given HDUB a
DLP tr(IT) = F(II) U I, SUch thatr(I1) fulfills the propertiesT 1-T4:

Input representation F'(II) As inputfor the meta-interpretéf,,,.., below, we choose
the following representatiof’(17) of the propositional prograny.
We assume that each rutehas a unique name(r) as usual; for convenience, we

identify r with n(r). For any ruler € IT, we set up inF'(IT) the following facts:

lit(h,l, 7). atom(l,|l|). foreach literal € H(r),

1it(p,l,7). for each literal € B (r),

lit(nm,l,r). for each literal € B~ (r).
While the facts for predicateit obviously encode the rules éf, the facts for predicate
atom indicate whether a literal is classically positive or negative. We only need this
information for head literals; this will be further explained below.

Meta-Interpreter I1,,.:q We construct our meta-interpreter progrdfy, ..., which

in essence is a positive disjunctive program, in a sequence of several steps. They center
around checking whether a guess for an answef setLit (1), encoded by a predicate
inS(-), is an answer set off by testing the criteria of Theorem 1. The steps of the
transformation cast the conditions of the theorem into rules/gf,,, and provide
auxiliary machinery for this aim.

Step 1We add the following preprocessing rules:
1: rule(L,R):— 1lit(h,L,R), not 1it(p,L,R), not 1lit(n,L,R).
2: ruleBefore(L,R):— rule(L,R), rule(L,R1), R1 <R.
3: ruleAfter(L,R):— rule(L,R),rule(L,R1),R < R1.
4: ruleBetween(L,R1,R2) :— rule(L,R1), rule(L,R2), rule(L,R3),
R1 <R3, R3 < R2.

a

firstRule(L,R) :— rule(L,R), not ruleBefore(L,R).
lastRule(L,R) :— rule(L,R), not ruleAfter(L,R).

7: nextRule(L,R1,R2):— rule(L,R1), rule(L,R2), R1 < R2,
not ruleBetween(L,R1,R2).

8: before(HPN,L,R) :— 1it(HPN,L,R), 1it(HPN,L1,R), L1 < L.
9: after(HPN,L,R) :— 1it(HPN,L,R), 1it(HPN,L1,R), L < L1.
10: between(HPN,L,L2,R) :— 1it(HPN,L,R), 1it(HPN,L1,R),
1it(HPN,L2,R), L < L1, L1 < L2.
11: next(HPN,L,L1,R):— 1it(HPN,L,R), 1it(HPN,L1,R), L < L1,
not between(HPN,L,L1,R).
12: first(HPN,L,R) :— lit(HPN,L,R), not before(HPN,L,R).
13: last(HPN,L,R):— 1it(HPN,L,R), not after(HPN,L,R).

14: hlit(L):— rule(L,R).

@

Lines 1 to 7 fix an enumeration of the ruleslihfrom which a literall may be derived,
assuming a given ordet on rule names (e.g. iDLV [11], built-in lexicographic order;

< can also be easily generated using guessing rules). Note that under answer set seman-
tics, we need only to consider rules where the litéral prove does not occur in the

body. Next, lines 8 to 13 fix enumerations &f(r), B*(r) and B~ (r) for each rule.

The final line 14 collects all literals that can be derived from rule heads. Note that lines
1-14 plusF (IT) form a stratified program, which has a single answer set (cf. [20, 21]).

Step 2 We add rules which “guess” a candidate answerSse&t Lit(II) and a total
orderingphi on S corresponding with the functiopin Theorem 1.(2).

15: inS(L) vninS(L):—hlit(L).

16: ninS(L):—1it(pn,L,R),not hlit(L). for eachpn € {p,n}
17: notok:—inS(L), inS(NL),L!=NL,atom(L, A), atom(NL, A).

18: phi(L,L1) v phi(L1,L):—inS(L), inS(L1),L < L1.

19: phi(L,L2):—phi(L,L1), phi(L1,L12).

Line 15 focuses the guess Sfto literals occurring in some relevant rule head/in
other literals can not belong 1 (line 16). Line 17 then checks whethgiis consistent,
deriving a new distinct atomaotok otherwise. Line 18 guesses a strict total order
phi on inS where line 19 guarantees transitivity; note that minimality of answer sets
prevents thaphi is cyclic, i.e., thaphi(L,L) holds.

In the subsequent steps, we check whetbieand phi violate the conditions of
Theorem 1 by deriving the distinct atomrtok in case, indicating that' is not an
answer set ophi does not represent a proper functipn

Step 3Corresponding to conditiohin Theorem lnotok is derived whenever there is
an unsatisfied rule by the following program part:

20: allInSUpto(p,Min,R):—inS(Min), first(p,Min,R).

21: allInSUpto(p,L1,R):— inS(L1),allInSUpto(p,L,R),next(p,L,L1,R).

22: allInS(p,R):—allInSUpto(p,Max,R),last(p, Max,R).

23: allNinSUpto(hn,Min,R):—ninS(Min), first(hn,Min,R).

24: allNinSUpto(hn,L1,R):— ninS(L1),allNinSUpto(hn,L,R), | for each
next(hn,L,L1,R). hne{h,n}

25: allNinS(hn,R):—allNinSUpto(hn,Max,R), last(hn,Max,R).

5

26: hasHead(R):—1it(h,L,R).

27: hasPBody(R):—1lit(p,L,R).

28: hasNBody(R):—1lit(n,L,R).

29: allNinS(h,R):—1it(HPN,L,R),not hasHead(R).

30: allInS(p,R):—1it(HPN,L,R),not hasPBody(R).

31: allNinS(n,R):—1it(HPN,L,R),not hasNBody(R).

32: notok:—allNinS(h,R),allInS(p,R),allNinS(n,R), 1it(HPN,L,R).

These rules compute by iteration ou@r (r) (resp.H (r), B~ (r)) for each ruler,
whether for all positive body (resp. head and weakly negated body) literals im rule
inS holds (respninS holds) (lines 20 to 25). Here, empty heads (resp. bodies) are
interpreted as unsatisfied (resp. satisfied), cf. lines 26 to 31. The final rule 32 fires
exactly if one of the original rules frorfY is unsatisfied.

Step 4We derivenotok whenever there is a literaéle S which is not provable by any
ruler wrt. phi. This corresponds to checking conditidfrom Theorem 1.

33: failsToProve(L,R):—rule(L,R),1it(p,L1,R),ninS(L1).

34: failsToProve(L,R):—rule(L,R),1it(n,L1,R), inS(L1).

35: failsToProve(L,R):—rule(L,R),rule(L1,R),inS(L1),L1!=L, inS(L).

36: failsToProve(L,R):—rule(L,R),1it(p,L1,R),phi(L1,L).

37: allFailUpto(L,R):—failsToProve(L,R), firstRule(L,R).

38: allFailUpto(L,R1):— failsToProve(L,R1),allFailUpto(L,R),

nextRule(L,R,R1).

39: notok:—allFailUpto(L,R),lastRule(L,R), inS(L).

Lines 33 and 34 check whether conditidria) or (b) are violated, i.e. some rule
can only prove a literal if its body is satisfied. Conditiiid) is checked in line 35, i.e.
r fails to provel if there is somé’ # [such thai’ € H(r) N .S. Violations of condition
2.(e) are checked in line 36. Finally, lines 37 to 39 derive ok if all rules fail to prove
some literal € S by iterating over all rules with € H(r) using the order from Step 1.
Thus, conditior.(c) is implicitly checked.

Step 5Whenevenotok is derived, indicating a wrong guess, then we apply a saturation
technique as in [6, 12] to some other predicates, such that a canoni€atesstlts. This
setturns out to be an answer set iff no guessfand¢ works out, i.e. /T has no answer
set. In particular, we saturate the predicateS, ninS, andphi by the following rules:

40: phi(L,L1):—notok,hlit(L),hlit(L1).

41: inS(L):—notok,hlit(L).

42: ninS(L):—notok,hlit(L).

Intuitively, by these rules, any answer set containiregok is “blown up” to an
answer sef? containing all possible guesses fars, ninS, andphi.

3.1 Answer Set Correspondence

Lettr(I) = F(II) U Ietq, WhereF (IT) and I, .., are the input representation and
meta-interpreter as defined above. Cleanty/I) satisfies propertyr3, and as easily
checked¢r(I7) is modular. Moreover; does not occur ir(I7) andnot only strati-
fied. The latter is not applied to literals depending on disjunction; it thus occurs only in
the deterministic part ofr(I7), i.e. T4 holds.

To establisiT1 andT2, we define the literal sg? as follows:

Definition 1. LetII! ., be the set of rules ifi,,,., established in Stepe {1,...,5}.
For any programil, let Il = F(II) U U,cq1 3,45 I, ;o U {notok.}. Then,2 is

defined as the answer setif,.

The fact thatlly; is a stratified normal logic program withoutand constraints, which
as well-known has a single answer set, yields the following lemma.

Lemma 1. 2 is well-defined and uniquely determined iy

Theorem 2. For any given HDLPII the following holds fo¥r(I1):
1. tr(II) has some answer set, aSd C (2 for any answer se$’ of tr(IT).
2. Sis an answer set off if and only if there exists an answer s&tof ¢r(1I) such
thatS = {l | inS(!) € S’} andnotok ¢ 5’
3. IT has no answer set if and onlytif(1]) has the unique answer sgt

The following proposition is not difficult to establish.

Proposition 1. Given!l, the transformationr(II), as well as the ground instantiation
of tr(II), is computable i OGSPACE(thus in polynomial time).

Note thattr(II) is not polynomial faithful modular (PFM) in the sense of [9]: (i)
T1 does not claim a strict one-to-one correspondence between the answer Eets of
andtr(I7). Indeed¢r(IT) might have several answer sets corresponding to a particular
answer sef of 17, reflecting different possible guesses fo(ii) Faithfulness as in [9]
conflicts with propertyr2.

As noticed abovetr(IT) uses weak negation only stratified and in a deterministic
part of the program; we can easily eliminate it by computing in the transformation the
complement of each predicate accessed thrawghand providing it inF'(II) as facts;
we then obtain a positive program. (The built-in predicateend != can be eliminated
similarly if desired.) However, this modified transformation is not modular. As shown
next, this is not incidental.

Proposition 2. There is no modular transformatiam’(17) from HDLPs to DLPs sat-
isfyingT1, T2 and T3 such thattr/(I7) is a positive program.

Proof. Assuming that such a transformatiori(I7) exists, we derive a contradiction.
Let II; = {a:—notb.} andIl, = II; U {b.}. Then,tr'(II5) has some answer set
Sy. Sincetr’(-) is modular,tr’(I1,) C ¢r’/(II2) holds and thusS, satisfies each rule
in ¢tr'(II1). Hence,S; contains some answer s&t. By T1, inS(a) € S; must hold,
and henceinS(a) € S,. By T1 again, it follows thatlT, has an answer sétsuch that
a € S. But the single answer set éf; is {b}, a contradiction. O

We remark that Proposition 2 remains trud if is generalized such that the answer
set.S of IT corresponding ta5’ is given by S = {l | S’ = @(I)}, whered(x) is
a monotone query (e.g., computed by a normal positive program without constraints).
Moreover, if a successor predicatext(X,Y) and predicatesirst(X) andlast(X)
for the constants are available (on a finite universe, resp. the constafitamnd rule
names), then the negation of the non-input predicates accessed threuglan be
computed by a positive normal program, since such programs capture polynomial time
computability by well-known results on the expressive power of Datalog [18]; thus,
negation of input predicates iR (II) is sufficient in this case.

3.2 Optimizations

11,14 can be modified in several respects. We discuss here some modifications which,
though not necessarily shrinking size of the transformation, intuitively prune the search
of an answer set solver appliedtigqI7). The extended paper considers further ones.
(OPT1)Give up modularitylf we sacrifice modularity (i.e. that (1) = (J,c;; tr(r)),

and allow thatll,,., partly depends on the input, then we can circumvent the iterations
in Step 3 and part of Step 1 as follows: We substitute Step 3 by rules

notok :— ninS(h1),..., ninS(h;), inS(b1),..., inS(bm),ninS(bm+1), ... ninsS(by). (2)

for each ruler in IT of form (1). These rules can be efficiently generated in parallel to
F(IT). Lines 8 to 13 of Step 1 then can also be dropped.

We can even refine this further. For any normal nuke I7 with |H ()| = 1 which
has a satisfied body, we can force the guess @fe replace (2) by

inS(h) :— inS(b1), ..., inS(bm),ninS(bm+1), .. ninS(by,). 3

In this context, since constraints only serve to “discard” unwanted models but cannot
prove any literal, we can ignore them during input generafigf/); rule (2) is suffi-
cient. Note that dropping input representatidre (n, [, ¢). for literals only occurring in
the negative body of constraints but nowhere els# irequires some care. Sutlean
be removed by simple preprocessing, though.

(OPT2) Optimize guess of ordeYVe only need to guess and check the ordéor lit-
eralsL, L' if they allow for cyclic dependency, i.e., they appear in the heads of rules
within the same strongly connected component of the programSarfThese depen-
dencies wrtS are easily computed:

dep(L,L1):—1it(h,L,R), lit(p,L1,R), inS(L), inS(L1).

dep(L,L2):—1it(h,L,R),1it(p,L1,R),dep(L1,L2), inS(L).

cyclic:—dep(L,L1),dep(L1,L).

The guessing rules faf (line 18 and 19) are then be replaced by:

phi(L,L1) v phi(L,L1):—dep(L,L1),dep(L1,L),L < L1, cyclic.
phi(L,L2):—phi(L,L1),phi(L1,L2), cyclic.

Moreover, we add the new atotgclic also to the body of the rules whegri appears
(lines 36,40) to checkhi only if /I hasanycyclic dependencies wr§.

4 Integrating Guess and coNP Check Programs

A general method for solvinQlP problems using answer set programming is given

by the so called “guess and check” paradigm: First a (possibly disjunctive) program

is used to guess a set of candidate solutions, and then rules and constraints are added
which eliminate unwanted solutions. DLPs allow for the formulation of such problems

in a very intuitive way (e.g. solutions of 3-colorability, deterministic planning, etc.)

if checking is easy (often polynomial), such as checking whether no adjacent nodes
have the same color, a course of deterministic actions reaches a certain goal, etc. For
instance, given a graph as a set of facts of the fasde(z). andedge(x,y). we can

write a simple DLP which guesses and checks all possible 3-colorings as follows:

5 Similarly, in [1] ¢ : Lit(IT) — {1,...,r} is only defined for a range bound by the longest
acyclic path in any strongly connected component of the program.

col(red,X) v col(green,X) v col(blue,X):— node(X). } Guess
:—edge(X,Y), col(C,X), col(C,Y). } Check

However, encoding problems where the check is ifN@dbut not known to be poly-
nomial (or inNP) is not always obvious (e.g., for conformant planning [4], or minimal
update answer sets [5]). A simple, common workaround is to write two programs:

(i) anormal LP or HDLPII,,.,,, Wwhich guesses some solution;
(i) a HDLP (equivalently, normal LP}I ... Which encodes the ciP check,

and proceed as follows: First compute, one by one, the candidate solftip$is, . . .
as answer sets dfl ;,..s; then, pipe eacly; as input toll.p..x; finally, outputS; if
I peer. U S; has no answer set.

By the computational power of full disjunctive logic progranisi{ [6]), we know
that such problems can also be expressed by a single EDLR,.. In the following,
we show how our transformatian resp.tro,: from above can be used to automatically
combinell yess andl p..r, iNto a single program.

We assume that the sBtt(I1,,.s,) is a Splitting Set [13] of 1 ycss Ul check, i.€. NO
head literal fromlI .., occurs inll,,.ss. This can be easily achieved by introducing
new predicate names, e.g’,for a predicatep, and adding a rule’(¢):—p(¢) in case.
Each ruler in I, is of the form

hyv--- vhy :— bey, ..., bey, not bey41, ..., not be, @)

bg1, ..., bgp, not bgpi1, ..., not byg,.

where thebg; are the body literals defined il ,ess. We write Bgycss(r) for by, .. .,
bgp, not bg,+1, ... not bg,. We now define a new check program.

Program II/, . .. contains the following rules and constraints:

1. The factsF' (I p.cr) in @ conditional version: For eacte I1...x, Of form (4),

lit(h,l,r) :— Bguess(r). atom(l, |I]). for eachl € H(r);
lit(p,bci,7) :— Bguess(T). foreachi € {1,...,m};
lit(n, bej,) :— Bguess(r). foreachj € {m+1,...,n}.

2. each rule infl,,:, (Where for the optimized version, in (2) and B)uess(r) is
added to the bodies);

3. finally, a constraint— not notok. This will eliminate all answer setS such that
I peer. U S has an answer set.

The union of I1,,.ss and I1., .., then amounts to the desired integrated encoding
1010, Which is expressed by the following result.

Theorem 3. For I1ycss and Il pecr, the answer setS’ of I o1pe = Hgyess U 1L, .o
correspond 1-1 with the answer s&®f 11 ,cqs S.t. I opeer U S has no answer set.

Note that integrating guess and check progrdfys..s and Il.j..x, respectively,
to succeed ifffT.,..,. U S hassomeanswer set, is easy. After ensuring the Splitting Set
property (if needed), simply taklso1ne = I guess I check; its answer sets correspond
on the predicates if ., to the desired solutions.

9

5 Applications

We now exemplify the use of our transformation for twg -complete problems, which
thus involve caNP-complete solution checking: one is about Quantified Boolean for-
mulas (QBFs) with one quantifier alternation, which are well-studied in Answer Set
Programming, and the other about conformant planning [4, 22]. Further examples of
such problems can be found e.g. in [6, 5, 11] (and solved similarly). However, note that
our method is applicable tany checks encoded by inconsistency of some HDLP pro-
gram; coNP-hardness is not a prerequisite.

5.1 Quantified Boolean Formulas

Given a QBFF = 3z - - - 32, Vy1 - - - Yy, &, Wwhered = ¢, V- - -V ¢y, is a propositional

formula overzy, ..., T, y1,. ..,y in disjunctive normal form, i.e. each = ¢, 1 A
<N, andll; | € {z1,...,Tm, Y1 ..., Yn}, cOMpute the assignments to the variable
x1,..., Ty, Which witness thaf” evaluates to true.

Intuitively, this problem can be solved by “guessing and checking” as follows:

(QBF) Guess atruth assignment for the variables. . ., z,,.
(QBF,) Check whether this assignment satisfie®r all assignments ofy, . . . , Y.

Both parts can be encoded by very simple HDLPs:
QBF : QBF, :

gt ot
T1V—L1. «. Ty V—Tm. Y1V —Y1. . Yn V —Yn.

= €1,17-~~7€1,1L- = Ek,l,---agkﬁkl-

Obviously, for any answer sét of QBF , representing an assignmenttg, . .., z,,

the programlBF',U S has no answer set thanks to the constraints, iff every assignment
for y, ..., y, satisfies formula@ then. By the method sketched, we can now automat-
ically generate a single programBF ', ,,. integrating the guess and check programs
(cf. Footnote 3). Note that the customary (but tricky) saturation technique to solve this
problem (cf. [6, 11]) is fully transparent to the non-expert.

5.2 Conformant planning

Loosely speaking, planning is the problem to find a sequence of adtiensyy, as,. ..,

an, aplan, which takes a system from an initial statgto a states,, in which a goal
(often, given by an atom) holds, where a stateis described by values of fluents, i.e.,
predicates which might change over tin@onformant planning8] is concerned with
finding a planP which works under all contingencies that may arise from incomplete
information about the initial state and/or nondeterministic action effects, whicttig'in
under certain restrictions, cf. [4, 22]. Hence, the problem can be solved with a guess and
(co-NP) check strategy.

As an example, we consider a simplified version of the well-kno®&arfib in the
Toilet’ planning problem (cf. [4,17]): We have been alarmed that a possibly armed
bomb is in a lavatory which has a toilet bowl. Possible actions are dunking the bomb
into the bowl and flushing the toilet. After just dunking, the bomb may be disarmed or
not; only flushing the toilet guarantees that it is really disarmed.

Using the following guess and check prografemb, and Bomb,, respectively,
we can compute a plan for having the bomb disarmed by two actions:

10

Bomby : Bomb, :

% Timestamps: % Initial state:

time(0). time(1). armed(0) v -armed(0).

%Guess a plan: % Frame Axioms:

dunk(T) v -dunk(T):—time(T). armed(T1):—armed(T), time(T),
flush(T) v -flush(T):—time(T). not -armed(T1),T1 =T + 1.
% Forbid concurrent actions: dunked(T1):—dunked(T), T1 =T + 1.

:— flush(T), dunk(T). % Effect of dunking:

dunked(T1):—dunk(T),T1 =T + 1.
armed(T1) v -armed(T1):—dunk(T),

) armed(T),T1 =T+ 1.
% Effect of flushing:

-armed(T1):—flush(T), dunked(T),T1 = T + 1.
% Check goal in stage 2:
:— not armed(2).

Bomb, guesses all candidate plafs= «1, as, using time points for action execu-
tion, while Bomb. checks whether any such pldnis conformant for the goaj =
not armed(2). Here, absence afrmed(t) is viewed as armed(t), i.e. CWA is used,
which saves a negative frame axiom armed. The final constraint eliminates a plan
execution iff it reaches the goal; thuBpmb,. has no answer set iff the plah is con-
formant. Answer sef = {time(0), time(1), dunk(0),flush(1)} of Bomb, corre-
sponds to the (single) conformant pl&s dunk, flush for goalnot armed(2).

By our general method3omb, and Bomb, can be integrated automatically into a
single programBomby ., = Bomb, U Bomb,' (cf. Footnote 3). It has a single answer
set, corresponding to the single conformant plandunk, f1ush as desired.

Note that our rewriting method is more generally applicable than the encoding for
conformant planning proposed by Leosteal.[12] who require that state transitions are
specified by a positive constraint-free LP. Our method can still safely be used in pres-
ence of negation and constraints, provided action execution always leads to a consistent
successor state (cf. [4, 22] for a discussion).

6 Experiments

We have conducted some experiments to get an idea about the performance of our
automatically integrated encodings (even though this was not the major concern). To
this end, we made comparisons to hand-written integrated encodings (in particular, for
QBF evaluation using an ad hoc encoding from [11]) and to interleaved guess and check
programs (in particular, for conformant planning on variants of the Bomb in the Toilet
problem, executed on tha \V* planning system [4]). The results are shown in Table 1.
We have considered some random QBF instancesmatkistential anch universal
variables, denoted as QBF-For conformant planning, we have compared the inte-
grated encodings for some “Bomb in the Toilet” problems described in [4], where the
names BTC{), BTUC() are defined, against theLV* planning system [4], which
implements conformant planning by interleaved calls to separate guess and check pro-
grams. The columns in Table 1 report times for encodings using the basic approach
(meta), optimization®O PT'1, O PT2 and both O PT), respectively, compared with the
ad hoc encoding for QBFs and interleaved conformant plan computationisiftg a

11

adhoc [11]|meta|OPT1|OPT2| OPT DLV* [4][meta]OPT1[OPT2]|OPT
QBF-4 0.01s | 0.15s| 0.10s | 0.08s| 0.06s BTC(2) 0.01s |1.16s| 0.80s| 0.15s | 0.08s
QBF-6 0.01s |1.08s| 0.36s| 0.17s| 0.08s BTC(3) 0.11s |9.33s| 9.25s| 8.18s | 4.95s
QBF-8 0.01s |10.423 1.43s| 0.46s| 0.10s BTC(4) 4.68s |71.3s| 67.8s| 333s | 256s
QBF-10 0.01s [60.743 2.65s| 1.32s| 0.10s BTUC(2)] 0.01s |6.38s| 6.26s| 0.22s|0.17s!
QBF-12 0.01s - - 5.59s| 0.11s BTUC(3)] 1.78s - - 28.12s| 13.0s
QBF-1§ 0.08s - 0.50s BTUC(4)| 577s - - - | 23229

Average times for 10 randomly chosen instances per size.
Table 1. Experimental results for QBF (left) and Conformant Planning (right) for Bomb in Toilet

dash marks exceeding a time limit of 300s (QBFs), resp. 4000s (conformant planning).
We useddLV ® as a platform since other disjunctive ASP engines, in particubaf G

were significantly slower on all tested instances. More details and experiments are given
in the extended paper (cf. Footnote 3).

Clearly, the performance of the automatic integrated encodings was expected to
stay behind the other methods. Interestingly, for the QBF problem, the performance of
our optimized translation stays within reach of the ad hoc encoding in [11] for small
instances. For the planning problems, the integrated encodings tested still stay behind
the interleaved computation DLV .

The results obtained usimy.Vshow that the “guess and saturate” strategy in our ap-
proach benefits a lot from optimizations, but it might depend on the structurg ef
andIl...r, as well as on the heuristics used by, which modifications yield gains.

We strongly believe that there is room for further improvements both on the translation
and for the underlyinddLV engine. We emphasize that the strength of our approach
appears if an integrated ad hoc encoding is hon-obvious. Then, by our method such
an encoding can be generated automatically from separate guess and check programs,
which are often easy to formalize, while a manual integrated encoding may be difficult

to find (as in the case of conformant planning or minimal update answer sets [5]).

7 Conclusion

We presented a method for rewriting a head-cycle free (extended) disjunctive logic pro-
gram (HDLP)IT into a stratified disjunctive logic program without constraintd7),
such that their answer sets correspond and a designated answetrgél pindicates
inconsistency oflI. Moreover, we showed how to use this method for automatically
integrating a guess and separate check program forMRc@roperty (expressed by
inconsistency of an HDLP), into an equivalent single (extended) disjunctive logic pro-
gram. This reconciles pragmatic problem solving with the natural “guess and check”
resp. “Generate/Define/Test” approach in Answer Set Programming [11, 14], in case a
single program expressing the problem is difficult to write. In particular, it relieves the
ASP user from using tricky saturation techniques, as customary e.g. for QBF evaluation.
We consider our work as an initial step for further research on automatic integra-
tion of guess and check encodings which exploits the full expressive power of DLPs:
Integrated encodings like those considered are infeasible in less expressive frameworks
such as propositional SAT solving or normal logic programming. However, while ad
hoc encodings for specific problems are available, general methods in this direction
were still missing.

8 http://www.dlvsystem.com
7 http:/lwww.tcs.hut.fi/Software/gnt/

12

Several issues remain for further work. Our rewriting method currently applies to
propositional programs. Thus, before transformation, the program should be instanti-
ated. A more efficient extension of the method to non-ground programs is needed, as
well as further improvements to the current transformations. Experimental results sug-
gest that structural analysis of the guess and check programs might be valuable for this.

A further issue are alternative transformations, possibly tailored for certain classes
of programs. Ben-Eliyahu and Dechter’s work [1], on which we build, aimed at trans-
forming HDLPs to SAT problems. It might be interesting to investigate whether related
methods such as the one developed for ASSAT [15], which was recently generalized by
Lee and Lifschitz [10] to disjunctive programs, can be adapted for our approach.

References

1. R. Ben-Eliyahu and R. Dechter. Propositional semantics for disjunctive logic programs.
Annals of Mathematics and Artificial Intelligenck2:53-87, 1994.
2. J. Delgrande, T. Schaub, H. Tompits. plp: A generic compiler for ordered logic programs.
Proc. LPNMR’01 LNCS 2173, pp. 411-415. Springer, 2001.
3. T. Eiter, W. Faber, N. Leone, G. Pfeifer. Computing preferred answer sets by meta-inter-
pretation in answer set programminbheory & Practice of Logic Progr.3(4-5):463-498.
4. T. Eiter, W. Faber, N. Leone, G. Pfeifer, A. Polleres. A logic programming approach to
knowledge-state planning, IIl: The Dsystem Artif. Intell., 144(1-2):157-211, 2003.
5. T. Eiter, M. Fink, G. Sabbatini, H. Tompits. On properties of update sequences based on
causal rejectionTheory & Practice of Logic Prog2(6):721-777, 2002.
6. T. Eiter, G. Gottlob, H. Mannila. Disjunctive datalo§CM TODS 22(3):364—418, 1997.
7. M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive databases.
New Generation Computing:365-385, 1991.
8. R. Goldman and M. Boddy. Expressive planning and explicit knowledyec. 3rd Int'l
Conf. on Al Planning and Scheduling (AIPS-96). 110-117, 1996.
9. T. Janhunen. On the effect of default negation on the expressiveness of disjunctive rules.
LPNMR'01, LNCS 2173, pp. 93—-106. Springer, 2001.
10. J. Lee and V. Lifschitz. Loop formulas for disjunctive logic programsPioc. 19th Int'l
Conf. on Logic Programming (ICLP-03Pecember 2003. To appeatr.
11. N. Leone, G. Pfeifer, W. Fabet al. The DLV system for knowledge representation and
reasoning. Tech. Rep. INFSYS RR-1843-02-14, Information Sys. Institute, TU Wien, 2002.
12. N.Leone, R. Rosati, F. Scarcello. Enhancing answer set plarifiiog. IJCAI-01 Workshop
on Planning under Uncertainty & Incomplete Informatjgp. 33—-42, 2001.
13. V. Lifschitz and H. Turner. Splitting a logic prografroc. ICLP'94 pp. 23-37, 1994.
14. V. Lifschitz. Answer set programming and plan generatfnif. Intell., 138:39-54, 2002.
15. F. Lin and Y. Zhao. ASSAT: Computing answer sets of a logic program by SAT solvers.
Proc. 18th National Conf. on Atrtificial Intelligence (AAAI-2002D02.
16. V.W. Marek and J.B. Remmel. On the Expressibility of stable logic programnfingc.
LPNMR'01, LNCS 2173, pp. 107-120. Springer, 2001.
17. D. McDermott. A critique of pure reaso@omputational Intelligence3:151-237, 1987.
18. C. H. Papadimitriou. A note on the expressive power of ProBglletin of the EATCS
26:21-23, 1985.
19. A. Provetti and T.C. Son, editor®roc. AAAI 2001 Spring Symposium on Answer Set Pro-
gramming Stanford, CA, March 2001. Workshop Technical Report SS-01-01, AAAI Press.
20. T. Przymusinski. On the declarative and procedural semantics of logic proglaumnsal of
Automated Reasonin§(2):167—205, 1989.
21. T. Przymusinski. Stable semantics for disjunctive progravesv Gen. Comp9, 1991.
22. H. Turner. Polynomial-length planning spans the Polynomial Hierafiog. 8th European
Conf. on Atrtificial Intelligence (JELIA 20020 NCS 2424, pp. 111-124. Springer, 2002.

13

