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Abstract. In previous work, towards the integration of rules and ontologies in the
Semantic Web, we have proposed a combination of logic programming under the
answer set semantics with the description logiésZ 7 (D) andSHOZN (D),

which underly the Web ontology languages OWL Lite and OWL DL, respec-
tively. More precisely, we have introducddscription logic programéor dl-pro-
gramg, which consist of a description logic knowledge bdsand a finite set

of description logic rules?, and we have defined their answer set semantics. In
this paper, we continue this line of research. Here, as a central contribution, we
present the well-founded semantics for dI-programs, and we analyze its semantic
properties. In particular, we show that it generalizes the well-founded semantics
for ordinary normal programs. Furthermore, we show that in the general case,
the well-founded semantics of dI-programs is a partial model that approximates
the answer set semantics, whereas in the positive and the stratified case, it is a
total model that coincides with the answer set semantics. Finally, we also provide
complexity results for dI-programs under the well-founded semantics.

1 Introduction

The Semantic We[$,7,14] aims at extending the current World Wide Web by standards

and techniques that enable thatomated processingf Web content. Among other

issues, the main ideas to achieve this goal is to add a machine-readable meaning to Web
pages, to use ontologies for a precise definition of shared information terms, and to

make use of KR technology for automated reasoning from Web resources.
The Semantic Web is conceived in hierarchical layers, wher®titelogy layer
in form of the OWL Web Ontology Languad85,21] (recommended by the W3C),
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is currently the highest layer of sufficient maturity. OWL consists of three increasingly
expressive sublanguages, nam@WvL Lite OWL DL, andOWL Full. OWL Lite and
OWL DL are essentially very expressive description logics with an RDF syntax [21].
As shown in [19], ontology entailment in OWL Lite (resp., OWL DL) reduces to knowl-
edge base (un)satisfiability in the description la§iZF (D) (resp..SHOZN (D)).

On top of the Ontology layer, thRules Logic, andProof layersof the Semantic
Web will be developed next, which should offer sophisticated representation and rea-
soning capabilities. As a first effort in this directidRuleML(Rule Markup Language)
[8]is an XML-based markup language for rules and rule-based systems, while the OWL
Rules Language [20] is a first proposal for extending OWL by Horn clause rules.

A key requirement of the layered architecture of the Semantic Web is to integrate the
Rules and the Ontology layer. In particular, it is crucial to allow for building rules on top
of ontologies, that is, for rule-based systems that use vocabulary from ontology knowl-
edge bases. Another type of combination is to build ontologies on top of rules, which
means that ontological definitions are supplemented by rules or imported from rules.

Towards this goal, in [13], we have proposed a combination of logic programs un-
der the answer set semantics with description logics, introdwi#sgription logic pro-
grams(or dl-programg, which are of the fornkB = (L, P), whereL is a knowledge
base in a description logic arfédlis a finite set of description logic rules (dkrules).

Such dl-rules are similar to usual rules in logic programs with negation as failure,
but may also contaiqueries toL in their bodies which are given by special atoms (on
which possibly default negation may apply). For example, a rule

cand(X, P) « paperArea(P, A), DL[Referee](X), DL]expert](X, A)

may express thak is a candidate reviewer for a papgt if the paper is in area,
andX is known to be a referee and an expert for afe&lere, the latter two are queries
to the description logic knowledge basewhich has a concefrefereeand roleexpert
in its signature. For the evaluation, the precise definitioR@fereeandexpertwithin L
is fully transparent, and only the logical contents at the level of inference counts. Thus,
dl-programs fully support encapsulation and privacy efthis is needed if parts aof
should not be accessible (for examplel.i€ontains an ontology about risk assessment
in credit assignment), and only extensional reasoning services are available.

Another important feature of dl-rules is that queriedtalso allow for specifying
an input fromP, and thus for dlow of information fromP to L, besides the flow of
information fromL to P, given by any query td.. Hence, description logic programs
allow for building rules on top of ontologies, but also (to some extent) building ontolo-
gies on top of rules. This is achieved by dynamic update operators through which the
extensional part of. can be modified for subjunctive querying. For example, the rule

paperArea(P, A) « D L[keyword W kw; inArea](P, A)

intuitively says that papeP is in areaA, if P is in A according to the description
logic knowledge basé., where the extensional part of tlkeywordrole in L (which

is known to influencénArea) is augmented by the facts of a binary predidatefrom

the program. In this way, additional knowledge (gained in the program) can be supplied
to L before querying. Using this mechanism, also more involved relationships between
concepts and/or roles ib can be defined and exploited.



The semantics of dl-programs was defined in [13] as an extension of the answer
set semantics [15] for ordinary normal programs, which is one of the most widely used
semantics for nonmonotonic logic programs. More precisely, in [13], we defined the
notions ofweakandstrong answer setsf dl-programs, which coincide with usual an-
swer sets in the case of ordinary normal programs. The description logic knowledge
bases in dl-programs are specified in the well-known description |ag¢g.F (D)
andSHOZN (D).

In this paper, we continue our work on description logic programs and extend the
well-founded semantids this class of programs. Introduced by Van Gelder, Ross, and
Schlipf [34], the well-founded semantics is another most widely used semantics for or-
dinary nonmonotonic logic programs. It is a skeptical approximation of the answer set
semantics in the sense that every well-founded consequence of a given ordinary nor-
mal programP is contained in every answer setBf While the answer set semantics
resolves conflicts by virtue of permitting multiple intended models as alternative sce-
narios, the well-founded semantics remains agnostic in the presence of conflicting in-
formation, assigning the truth vald@seto a maximal set of atoms that cannot become
true during the evaluation of a given program. Furthermore, well-founded semantics
assigns a coherent meaningatib programs, while some programs are not consistent
under answer set semantics, i.e., lack an answer set.

Another important aspect of the well-founded semantics is that it is geared towards
efficientquery answeringnd also plays a prominent role in deductive databases (see,
e.g., [26] for a proposal for object-oriented deductive databases, which is applied to the
Florid system implementing F-logic). As an important computational property, a query
to an ordinary normal program is evaluable under well-founded semantics in polyno-
mial time (under data complexity), while query answering under the answer set se-
mantics is intractable in general. Finally, efficient implementations of the well-founded
semantics exist, such as the XSB system [28] and Smodels [27].

The main contributions of this paper can be summarized as follows:

(1) We define the well-founded semantics for dl-programs by generalizing Van
Gelderet als [34] fixpoint characterization of the well-founded semantics for ordi-
nary normal programs based greatest unfounded setd/e then prove some appeal-
ing semantic properties of the well-founded semantics for dl-programs. In particular,
it generalizes the well-founded semantics for ordinary normal programs. Furthermore,
for general di-programs, the well-founded semantics is a partial model, and for positive
(resp., stratified) dl-programs, it is a total model and the canonical least (resp., itera-
tive least) model. Finally, the well-founded semantics also tolerates abbreviations for
dl-atoms.

(2) Generalizing a result by Baral and Subrahmanian [5], we then show that the
well-founded semantics for dl-programs can be characterized in terms of the least and
the greatest fixpoint of an operatgf., which is defined using a generalized Gelfond-
Lifschitz transform of dl-programs relative to an interpretation.

(3) We also show that, similarly as for ordinary normal programs, the well-founded
semantics for dl-programs approximates the strong answer set semantics for dlI-pro-
grams. That is, everyell-foundedground atom is true in every answer set, and every
unfoundedyround atom is false in every answer set. Hence, every well-founded ground



atom and no unfounded ground atom is a cautious (resp., brave) consequence of a dl-
program under the strong answer set semantics. Furthermore, we prove that when the
well-founded semantics of a dl-program is total, then it is the only strong answer set.

(4) Finally, we give a precise characterization of the complexity of the well-founded
semantics for dl-programs, over baftHZF (D) andSHOZN (D). Like for ordinary
normal programs, literal inference under the well-founded semantics has a lower com-
plexity than under the answer set semantics. More precisely, relative to program com-
plexity [11], literal inference under the well-founded semantics for dl-programs over
SHIF(D) (resp.SHOIN (D)) is complete for EXP (resp.,"¥*XF), while cautious
literal inference under the strong answer set semantics for dl-programSH#zEf (D)
(resp..SHOZN (D)) is complete for co-NEXP (resp., co-NPXF) [13].

2 Preliminaries

In this section, we recall normal programs under the answer set semantics and the well-
founded semantics, as well as the description lo§i&Z F (D) andSHOZN (D).

Normal Programs. We assume a function-free first-order vocabularyith nonempty
finite sets of constant and predicate symbols, and & sétvariables. Aclassical literal
(or literal) [ is an atomu or a negated atoma. A negation-as-failurdNAF) literal is

an atormu or a default-negated atonvt a. A normal rule(or rule) r is of the form

a<«—bi,...,bg,notbgy1,...,n0tby,, m>k>0, Q)
wherea, by, ..., b, are atoms. We refer to as theheadof r, denotedH (r), while
the conjunctionby, . .., by, not bgy1, ..., not b, is the body of r; its positive (resp.,

negative part isby, . .., by (resp.,not b1 1, ..., not by,). We defineB(r) = BT (r) U

B~ (r), whereB*(r)={b1,...,b;} andB~ (r) = {bk+1, - - ., b }. A nOrmal program
(or progran) P is a finite set of rules. We sa¥ is positiveiff no rule in P contains
default-negated atoms.

The well-founded semantics has many different equivalent definitions [34,5]. We
recall here the one based on unfounded sets.

Let P be a programGround termsatoms literals, etc., are defined as usual. We
denote byHB p theHerbrand basef P, i.e., the set of all ground atoms with predicate
and constant symbols fro (if P contains no constant, then choose an arbitrary one
from @), and byground(P) the set of all ground instances of rulesin(w.r.t. HB p).

For literalsl =a (resp.,l =—a), we use—.l to denote—a (resp.,a), and for sets
of literals S, we define-.S={-.l|l€ S} and St ={a € S|a is an aton}. We use
Litp = HBp U—.HBp to denote the set of all ground literals with predicate and con-
stant symbols fromP. A set S C Litp is consisteniff S N —.5=(. A three-valued
interpretationrelative toP is any consistent C Litp.

A setU C HBp is anunfounded setf P relative tol, if for everya € U and every
r € ground(P) with H(r)=a, either (i)—be I U-.U for some atomb e BT (r), or
(i) b € I for some atond € B~ (r). There exists the greatest unfounded set oélative
to I, denoted/p(I). Intuitively, if I is compatible withP, then all atoms if/p(I) can
be safely switched to false and the resulting interpretation is still compatibleRvith

The operator§’s andWp on consistenf C Lit p are then defined by:



e Tp(I)={H(r) |re ground(P), BT (r)U—.B~(r)CI};
° WP(I):TP(I)UﬁUP(I)

The operatofVp is monotonic, and thus has a least fixpoint, dendfed? ), which is
thewell-founded semanticd P, denotedWFS(P). An atoma € HB p is well-founded
(resp.unfoundeflw.r.t. P, if a (resp.,~a) is in ifp(Wp). Intuitively, starting withl = (),
rules are applied to obtain new positive and negated factsT{vid) and —.Up(I),
respectively). This process is repeated until no longer possible.

Example 2.1 Consider the propositional prografh= {p <— not q; ¢ — p; p < not r}.
ForI =0, we havel'r(I) =0 andUp(0) ={r}: p cannot be unfounded because of the
first rule and Condition (ii), and hengecannot be unfounded because of the second rule
and Condition (i). ThusiWp () = {-r}. SinceTr ({-r}) = {p} andUp ({-r}) = {r},

it follows Wp({—-r}) ={p, ~r}. SinceTp({p, -r})={p, ¢} andUp({p, -r}) ={r},

it then followsWp ({p, —r}) = {p, ¢, —r}. Thus,ifp(Wp) = {p, ¢, —~r}. Thatis,r is un-
founded relative ta”, and the other atoms are well-founded.

SHZIF(D) and SHOIN (D). We first describeSHOZIN (D). We assume a set
D of elementary datatype&veryd € D has a set oflata valuescalled thedomainof
d, denotedlom(d). We usedom(D) to denote J,., dom(d). A datatypeis either an
element oD or a subset oflom (D) (calleddatatype oneQfLet A, R4, Rp, andI be
nonempty finite and pairwise disjoint setsaibmic conceptsabstract rolesdatatype
roles, andindividuals respectively. We usR , to denote the set of all inversés™ of
abstractrolef € R 4.

A role is an element oR 4 UR; UR p. Conceptsare inductively defined as fol-
lows. EveryC € A is a concept, and if1, 0o, ... €I, then{oy,02,...} is @ concept
(calledoneOj. If C andD are concepts and R €« R4 UR 7, then(C'M D), (Cu D),
and—-C' are concepts (calledonjunction disjunction andnegation respectively), as
well as3R.C, VR.C', >nR, and<nR (calledexists value atleast andatmost restric-
tion, respectively) for an integer > 0. If d€ D andU € Rp, then3U.d, VU.d, >nU,
and<nU are concepts (calledatatype existsralug atleast andatmost restrictionre-
spectively) for an integet > 0. We write T and_L to abbreviate” LI -C' andC 1 —=C,
respectively, and we eliminate parentheses as usual.

An axiomis of one of the following forms: (1§" = D, whereC andD are concepts
(concept inclusiop) (2) RC S, where eithe?, S € R4 or R, S € Rp (role inclusion;
(3) Trans(R), whereR € R 4 (transitivity); (4) C(a), whereC'is a concept and € I
(concept membership(5) R(a, b) (resp.U(a,v)), whereR € R4 (resp..U € Rp) and
a,bel (resp.,a €I andv € dom(D)) (role membership and (6)a ="b (resp.,a # b),
wherea, b € I (equality (resp.,inequality)). A knowledge basé. is a finite set of ax-
ioms. (For decidability, number restrictions inare restricted to simpl& € R 4 [22]).

The syntax ofSHZF (D) is as the above syntax SfHOZN (D), but without the
oneOf constructor and with thetleastandatmostconstructors limited t6 and1.

For the semantics §HZF (D) andSHOZN (D), we refer the reader to [19].

Example 2.2 A small computer store obtains its hardware from several vendors. It uses
the following description logic knowledge bage, which contains information about



the product range that is provided by each vendor and about possible rebate conditions
(we assume here that choosing two or more parts from the same seller causes a dis-
count). For some parts, a shop may already be contracted as supplier.

> 1 supplier C Shop; T C Vsupplier.Part; > 2 supplier C Discount;
Part(harddisk); Part(cpu); Part(case);

Shop(s1); Shop(sz2); Shop(ss);

provides(s1, case); provides(sz, cpu); provides(ss, case);
provides(s1, cpu); provides(sa, harddisk); provides(ss, harddisk);
supplier(ss, case).

Here, the first two axioms determirt#op and Part as domain and range of the prop-
erty supplier, respectively, while the third axiom constitutes the condetount by
putting a cardinality constraint asupplier.

3 Description Logic Programs

In this section, we recatlescription logic programgor simplydI-programg from [13],

which combine description logics and normal programs. They consist of a knowledge
baseL in a description logic and a finite set of description logic rukesSuch rules are
similar to usual rules in logic programs with negation as failure, but may also contain
queries toL, possibly default negated. In [13], we considered dl-programs that may
also contain classical negation and not necessarily monotonic queriesHere, we
consider only the case where classical negation is absent and all quetiasganono-
tonic. The former is only for ease of presentation, since every dl-program with classical
negation can be translated into one without, like in the ordinary case. The latter, how-
ever, is a technical necessity for the well-founded semantics of dl-programs, but not a
severe restriction, since most queried.tare in fact monotonic (naturally, a dl-program
may still contain NAF-literals).

A dl-program consists of a description logic knowledge basend a generalized
normal programP, which may contain queries tb. Roughly, in such a query, it is
asked whether a certain description logic axiom or its negation logically follows from
or not. Formally, al-queryQ(t) is either

(a) a concept inclusion axiotf or its negation~F'; or
(b) of the formsC(t) or =C(t), whereC'is a concept andis a term; or
(c) of the formsR(t,,t5) or =R(t1,t2),® whereR is a role and, t, are terms.

A dl-atomhas the form

DL[Sy0pp1,- .. Smop,, Pm; Q(t), m >0, 2)

where eacts; is a concept or rolegp, € {¥,J}, p; is a unary resp. binary predicate
symbol, and)(t) is a dl-query. We calpy, . .., p,, its input predicate symboldntu-
itively, op, =W (resp.,op, =) increasesS; (resp.,—.S;) by the extension op;. A dI-
rule r is of form (1), where any € B(r) may be a dl-atom. All-programKB = (L, P)

% Note thatSHOZN (D) does not provide terminological role negation; we use the expression
—(3R.{b})(a) in order to add and queryR(a, b) for a specific pair of individuals.



consists of a description logic knowledge bdsand a finite set of dl-rule®. We
sayKB = (L, P) is positiveiff P is positive.

Example 3.1 Consider the dl-progrank B, = (L1, P;), with L; as in Example 2.2
and P, given as follows, choosing vendors for needed parts w.r.t. possible rebates:

(1) wendor(s2); vendor(si); wvendor(ss);

(2) needed(cpu); needed(harddisk); needed(case);

(3) avoid(V) «— vendor(V), not rebate(V);

(4) rebate(V) «— vendor(V'), DL[supplier & buy_cand; Discount](V);

(5) buy-cand(V, P) «— vendor(V'), not avoid(V'), D L[provides](V, P), needed(P),
not exclude(P)

(6) exclude(P) «— buy_cand(Vi, P), buy_cand(Va, P), Vi # Va;

(7) exclude(P) «— DL[supplier](V, P), needed(P);

(8) supplied(V, P) «— DL[supplier & buy_cand; supplier|(V, P), needed(P).

Rules (3)—(5) choose a possible vendbiy_cand) for each needed part, taking into
account that the selection might affect the rebate condition (by feeding the possible
vendor back talL, where the discount is determined). Rules (6) and (7) assure that
each hardware part is bought only once, considering that for some parts a supplier might
already be chosen. Rule (8) eventually summarizes all purchasing results.

Answer Set Semantics.In the sequel, leKB=(L, P) be a dI-program. Thelerbrand
baseof P, denotedd B p, is the set of all ground atoms with a standard predicate symbol
that occurs inP and constant symbols i&. An interpretation/ relative to P is any
subset ofi B p. We say thaf is amodelof « € HB p underL, denoted =1, , iff a € 1.

We say thaf is amodelof a ground dl-atona = DL[S10py p1, . - ., Sm 0D, Dm; Q(C)
underL, denoted’ =, a, iff LU |J;~, A;(I) = Q(c), where

— A;(I)={S;(e) | pi(e) € I'}, for op, =; and
— A;(I)={=Si(e) | pi(e) e I}, for op, =U.

We sayI is amodelof a ground dl-rule- iff T =7 H(r) wheneverl |=;, B(r), thatis,
I'=paforallae BY(r) andI (£ a for all a € B~ (r). We say! is amodelof a dI-
programKB = (L, P), denotedl = KB, iff I =y, r for all € ground (P). We sayKB
is satisfiable(resp.,unsatisfiabliff it has some (resp., no) model.

A ground dl-atonmu is monotoniaelative toKB = (L, P) iff I CI' C HBp implies
that if I =1 a thenI’ =1, a. In this paper, we consider only ground dl-atoms which
are monotonic relative to a dl-program, but one can also define dl-atoms that are not
monotonic; see [13].

Like ordinary positive programs, every positive dl-progr&f® is satisfiable and
has a unique least model, denofeg 5, which naturally characterizes its semantics.

The strong answer set semantio$ general dl-programs is then defined by a re-
duction to the least model semantics of positive ones as follows, using a generalized
transformation that removes all default-negated atoms in dl-rules.

For dl-programskB = (L, P), the strong dl-transformof P w.r.t. L and an inter-
pretation C HBp, denoteds P}, is the set of all dl-rules obtained froground (P) by



(i) deleting every dl-rule- such thatl =1, a for somea € B~ (), and (ii) deleting from
each remaining dl-rule the negative body. Notice tha?} generalizes the Gelfond-
Lifschitz reductP?! [15].

Let KB' denote the dl-progrartL, sPl). Since KB is positive, it has the least
model Myp5r. A strong answer sefor simply answer sétof KB is an interpreta-
tion I C HBp such thatl = Myp:.

Example 3.2 The dl-programkKB; = (L1, P;) of Example 3.1 has the following three
strong answer sets (only relevant atoms are shown):

{supplied(ss, case); supplied(sz, cpu); supplied(sz, harddisk); rebate(sz); ...},
{supplied(ss, case); supplied(ss, harddisk); rebate(ss); ...};
{supplied(ss, case); ...}.

Since the supplies; was already fixed for the pattise, two possibilities for a discount
remain (ebate(sg) or rebate(ss); s; is not offering the needed pditirddisk, and the
shop will not give a discount only for the paniu).

The strong answer set semantics of dl-progra@ds= (L, P) without dl-atoms co-
incides with the ordinary answer set semanticg>dfl5]. Furthermore, strong answer
sets of a general dl-prograkiB are also minimal models df B. Finally, positive and
stratified dl-programs have exactly one strong answer set, which coincides with their
canonical minimal model. Note thatratified dl-programsre composed of hierarchic
layers of positive dl-programs that are linked via default negation [13].

4 Well-Founded Semantics

In this section, we define the well-founded semantics for dl-programs. We do this by
generalizing the well-founded semantics for ordinary normal programs. More specifi-
cally, we generalize the definition based on unfounded sets as given in Section 2.

In the sequel, letkB = (L, P) be a dl-program. We first define the notion of an
unfounded set for dl-programs. LELC Litp be consistent. A sdf C HBp is anun-
founded sebf KB relative to! iff the following holds:

(x) foreverya € U and every-€ground(P) with H(r) = a, either (i)-~b e I U-.U for
some ordinary atorhe B (r), or (ii) b € I for some ordinary atorhe B~ (r), or
(iii) for some dl-atomb € B*(r), it holds thatS™* £ b for every consistens C
Litp with TU .U C S, or (iv) IT =1 for some dl-atonb € B~ (7).

What is new here are Conditions (iii) and (iv). Intuitively, (iv) says that b is for
sure false, regardless of halvis further expanded, while (iii) says thatwill never
become true, if we expand in a way such that all unfounded atoms are false. The
following examples illustrate the concept of an unfounded set for dl-programs.

Example 4.1 ConsiderKBy = (Lo, P»), whereLs, = {S C C'} and P, is as follows:

p(a) < DL[SWq; C](a); q(a) < p(a); r(a) « notq(a), not s(a).



Here,S; = {p(a), ¢(a)} is an unfounded set df B, relative tol =), sincep(a) is un-
founded due to (jii), whiley(a) is unfounded due to (i). The st = {s(a)} is trivially
an unfounded set oK B, relative tol, since no rule defining(a) exists.

Relative toJ = {¢(a)}, S; is not an unfounded set &B, (for p(a), the condition
fails) butS; is. The setS; = {r(a)} is another unfounded set &fB- relative to.].

Example 4.2 Consider the dl-progranKB; = (Lo, P3) where P3 results by negating
the dl-literal in P,. ThenS; = {p(a),q(a)} is not an unfounded set dfB; relative
to I =0 (Condition (iv) fails for p(a)), but S2 ={s(a)} is. Relative toJ ={q(a)},
however, boths; andS; as well asS; = {r(a)} are unfounded sets &B.

Example 4.3 The unfounded set KB, = (L, P;) in Example 3.1 relative td, =0
containsbuy_cand(s1, harddisk), buy_cand(sz2, case), andbuy_cand(ss3, cpu) due to
(iii), since the dl-atom in Rule (5) oP; will never evaluate to true for these pairs. It
reflects the intuition that the conceptvides narrows the choice for buying candidates.

The following lemma implies thak'B has a greatest unfounded set relativé.to

Lemma 4.4 Let KB = (L, P) be a dl-program, and lef C Litp be consistent. Then,
the set of unfounded sets &B relative to! is closed under union.

We now generalize the operatdfs, Up, andWp to dl-programs as follows. We
define the operatofBg, Uxg, andWxp on all consistenf C Litp by:

— a€Tkp(I) iff a € HBp and somer € ground(P) exists such that (a}f (r) =
(b) It =1 b for all be BT (r), (c) ~be I for all ordinary atoms)e B~ (r), a
(d) ST}~ b for each consisteriC Lit p with I C S, for all dl-atomsh € B~ (r)

— Ukg(I) is the greatest unfounded set/&B relative tol; and

- WKB(I) :TKB(I) U—\.UKB(I).

The following result shows that the three operators are all monotonic.

a

nd

Lemma 4.5 Let KB be a dl-program. Theril'xp, Uxp, andW kg are monotonic.

Thus, in particulariV g has a least fixpoint, denotéth (W ). The well-founded
semantics of dI-programs can thus be defined as follows.

Definition 4.6 Let KB = (L, P) be a dl-program. Thevell-founded semantiasf KB,
denotedWFS(KB), is defined agfp(Wkp). An atoma € HB p is well-foundedresp.,
unfoundeglrelative toKB iff a (resp.,—a) belongs toWFS(KB).

The following examples illustrate the well-founded semantics of dl-programs.

Example 4.7 ConsiderKB, of Example 4.1. Foi, =, we haveTkg,(Iy) =0 and
Uxs, (I) = {p(a), q(a), s(a)}. Hence Wi, (Io) = {~p(a), ~q(a), ~s(a)} (=I1). In
the nextiteration] kg, (I1) = {r(a)} andUkp, = {p(a), ¢(a), s(a)}. Thus, Wkp, (1)
= {-p(a), ~q(a),r(a),ns(a)} (=I2). Sincel; is total andiV kg, is monotonic, it fol-
lows Wkpg, (I2) = I, and henceWFS(KBs) ={-p(a), ~q(a),r(a), ~s(a)}. Accord-
ingly, r(a) is well-founded and all other atoms are unfounded relativ& By. Note
that KB, has the unique answer set {r(a)}.



Example 4.8 Now considerK B3 of Example 4.2. Foiy =0, we havelkg, (1) =0
andUxkg, (In) ={s(a)}. Hence Wgkp,(Iy) = {—s(a)} (=I1). In the next iteration, we
haveTxp, (I1) =0 andUkp,(I1) ={s(a)}. ThenWgp, (I1) =1, and WFS(KB3) =
{—s(a)}; atoms(a) is unfounded relative t&B3. Note thatK B3 has no answer set.

Example 4.9 Consider agailUxg, (I =0) of Example 4.3.Wgg, (Iy) consists of
-Ukg, (Ip) and all facts ofP;. This input to the first iteration along with (iii) applied
to Rule (8) adds thoseupplied atoms toUgpg, (I1) that correspond to the (negated)
buy_cand atoms ofUkg, (Ip). Then, Tkp, (I1) containsezclude(case) which forces
additional buy _cand atoms intoUgg, (I2), regarding (i) and Rule (5). The same un-
founded set thereby includesbate(s; ), stemming from Rule (4). As a consequence,
avoid(sy) is in Tkp, (I3). Eventually, the finalWFS(KB;) is not able to make any
positive assumption about choosing a new venday (cand), but it is clear abous,
being definitely not able to contribute to a discount situation, since a suppliet.fer

is already chosen ifi;, ands; offers only a single further part.

5 Semantic Properties

In this section, we describe some semantic properties of the well-founded semantics
for dI-programs. An immediate result is that it conservatively extends the well-founded
semantics for ordinary normal programs.

Theorem 5.1 Let KB = (L, P) be a dl-program without dl-atoms. Then, the well-foun-
ded semantics kB coincides with the well-founded semanticdof

The next result shows that the well-founded semantics of a dl-progi@m (L, P)
is a partial model oiKB. Here, a consisterdtC Lit p is apartial modelof KB iff some
consistent/ C Litp exists such that (iy C J, (i) J* is a model ofKB, and (iii) J
is total, i.e., J* U (=.J)" = HBp. Intuitively, the three-valued can be extended to a
(two-valued) model’ C HBp of KB.

Theorem 5.2 Let KB be a dI-program. ThenWFS(KB) is a partial model ofKB.

Like in the case of ordinary normal programs, the well-founded semantics for pos-
itive and stratified dl-programs is total and coincides with their least model semantics
and iterative least model semantics, respectively. This result can be elegantly proved
using a characterization of the well-founded semantics given in the next section.

Theorem 5.3 Let KB = (L, P) be a dl-program. IfKB is positive(resp., stratifiegl
then (a) every ground atomz € HBp is either well-founded or unfounded relative
to KB, and(b) WFS(KB)N HBp is the least moddresp., the iterative least model
of KB, which coincides with the unique strong answer sek 6f.

Example 5.4 The dl-programKB- in Example 4.1 is stratified (intuitively, the recur-
sion through negation is acyclic) whil€B3 in Example 4.2 is not. The result computed
in Example 4.7 verifies the conditions of Theorem 5.3.



The following result shows that we can limit ourselves to dI-prograndi-guery
form, where dl-atoms equate designated predicates. Formally, a dI-profiam=
(L, P)isindl-query formif eachr € P involving a dl-atom is of the form «— b, where
b is a dl-atom. Any dl-progran¥B = (L, P) can be transformed into a dl-program
KB = (L, P%) in dl-query form. HereP% is obtained fromP by replacing every dI-
atoma(t) = DL[S10p1p1,- -, Smop,, Pm; Q](t) by p,(t), and by adding the dl-rule
pa(X) +—a(X) to P, wherep, is a new predicate symbol ai is a list of variables
corresponding ta. Informally, p, is an abbreviation for. The following result now
shows that B% and KB are equivalent under the well-founded semantics. Intuitively,
the well-founded semantics tolerates abbreviations in the sense that they do not change
the semantics of a dl-program.

Theorem 5.5 Let KB = (L, P) be a dl-program. Then/FS(KB) = WFS(KB%) n
Litp .

6 Relationship to Strong Answer Set Semantics

In this section, we show that the well-founded semantics for dl-programs can be char-
acterized in terms of the least and greatest fixpoint of a monotone opefat@imilar
as the well-founded semantics for ordinary normal programs [5]. We then use this char-
acterization to derive further properties of the well-founded semantics for dl-programs.

For a dl-progranikB=(L, P), define the operatoyxp on interpretation§ C HB p
by

YeB(I) = Mgp1,

i.e., as the least model of the positive dl-progr&B’ = (L,sP}). The next result
shows thaty kg is anti-monotonic, like its counterpart for ordinary normal programs [5].
Note that this result holds only if all dl-atoms # are monotonic.

Proposition 6.1 Let KB = (L, P) be a dI-program. Thenyxp is anti-monotonic.

Hence, the operatoy (1) =~vxp(vks(I)), for all I C HBp, is monotonic and
thus has a least and a greatest fixpoint, dentigd?5) and gfp(7%5), respectively.
We can use these fixpoints to characterize the well-founded semanfi@s.of

Theorem 6.2 Let KB = (L, P) be a dl-program. Then, an atome HBp is well-
founded(resp., unfoundedelative to KB iff a € Ifp(v%5) (resp.,a € gfp(Yxg))-

Example 6.3 Consider the dl-programi B, from Example 3.1. The sé;ﬁv(ﬁ(Bl) con-
tains the atomswoid(s;) and supplied(ss, case), while gfp(ﬁ(Bl) does not contain
rebate(s1). Thus, WEFS(KB,) contains the literalgvoid(s1), supplied(ss, case), and
—rebate(s1), corresponding to the result of Example 4.9 (and, moreover, to the inter-
section of all answer sets éfB,).

The next theorem shows that the well-founded semantics for dl-programs approx-
imates their strong answer set semantics. That is, every well-founded ground atom is
true in every answer set, and every unfounded ground atom is false in every answer set.



Theorem 6.4 Let KB = (L, P) be a dl-program. Then, every strong answer sek6f
includes all atoma € HB p that are well-founded relative t& B and no atonw € HB p
that is unfounded relative t&B.

A ground atomm is acautious(resp.,brave consequence under the strong answer
set semanticef a dl-programKB iff a is true in every (resp., some) strong answer
set of KB. Hence, under the strong answer set semantics, every well-founded and no
unfounded ground atom is a cautious (resp., brave) consequeid®. of

Corollary 6.5 Let KB = (L, P) be a dl-program. Then, under the strong answer set
semantics, every well-founded atara HB p relative toK B is a cautiougresp., bravg
consequence ok B, and no unfounded atome HBp relative to KB is a cautious
(resp., bravg consequence of a satisfiablé3.

If the well-founded semantics of a dl-prograkB=(L, P) is total, i.e., contains
eithera or —a for everya € HB p, then it specifies the only strong answer seKaf.

Theorem 6.6 Let KB = (L, P) be a dl-program. If every atome HBp is either well-
founded or unfounded relative #8B, then the set of all well-founded atoms HBp
relative to KB is the only strong answer set &fB.

7 Computation and Complexity

For any positive dI-progrankB = (L, P), its least modelM/ g is the least fixpoint of
Trp(I) [13]. Thus,yxs(I) = Mgpr (with KB' = (L, sPL)) can be computed as

o(Tipr) = Uiso Tiepr (1) (= U2 Tieps 0)).
The least and greatest fixpointgf; can be constructed as the limits

Uso = U;»0 Ui, WherelUp = 0, andU; 41 = ~vip(U;), fori > 0, and
Oco = ;>0 Oi, WhereOy = HBp, andO; 41 = 755(0;), fori > 0,

respectively, which are both reached withifiB p| many steps.

We recall that for a given ordinary normal program, computing the well-founded
model needs exponential time in general (measured in the program size [11]), and also
reasoning from the well-founded model has exponential time complexity.

Furthermore, evaluating a ground dl-aterfor KB = (L, P) of the form (2) given
an interpretatiorf,, of its input predicatep = p1,...,p., (i.e., decidingl =, « for
each/ that coincides omp with 1,,) is complete for EXP (resp., co-NEXP) fdr from
SHIF(D) (resp.SHOZN (D)) [13], where EXP (resp., NEXP) denotes exponential
(resp., nondeterministic exponential) time; this is inherited from the complexity of the
satisfiability problem foSHZF (D) (resp.SHOZN (D)) [31,19].

The following result implies that the complexity of the well-founded semantics for
dl-programs ove§ HZ F (D) does not increase over the one of ordinary logic programs.



Theorem 7.1 Givend and a dl-programKB=(L, P) with L in SHZF (D), computing
WFS(KB) is feasible in exponential time. Furthermore, deciding whether for a given
literal [ it holds thatl € WFS(KB) is EXP-complete.

For dl-programs oveS HOZIN (D), the computation of/¥F'S(KB) and reasoning
from it is expected to be more complex than &HZF (D) knowledge bases, since
already evaluating a single dl-atom is co-NEXP-hard. CompulinigS can be done,
in a similar manner as in the case®HZF (D), in exponential time using an oracle
for evaluating dl-atoms; to this end, an NP oracle is sufficient. As for the reasoning
problem, this means that decidihg WFS(KB) is in EXP'F.

A more precise account reveals the following strict characterization of the complex-
ity, which is believed to be lower.

Theorem 7.2 Givend, a dl-programKB = (L, P) with L in SHOZN (D), and a lit-
eral [, decidingl € WFS(KB) is PNEXP-complete.

The results in Theorems 7.1 and 7.2 also show that, like for ordinary normal pro-
grams, inference under the well-founded semantics is computationally less complex
than under the answer set semantics, since cautious reasoning from the strong answer
sets of a dl-programs usings{Z F (D) (resp. SHOZIN (D)) description logic knowl-
edge base is complete for co-NEXP (resp., cd*R¥’) [13].

We leave an account of the data complexity of dI-progrdtis= (L, P) (i.e., L
and the rules oP are fixed, while facts il® may vary) for further work. However, we
note that whenever the evaluation of dl-atoms is polynomial (i.e., in description logic
terminology, A-Box reasoning is polynomial), then also the computation of the well-
founded semantics for dl-programs is polynomial. Most recent results in [23] suggest
that forSHZF (D), the problem is solvable in polynomial time with an NP oracle (and,
presumably, complete for that complexity).

8 Related Work

Related work can be divided into (a) hybrid approaches using description logics as in-
put to logic programs, (b) approaches reducing description logics to logic programs,
(c) combinations of description logics with default and defeasible logic, and (d) ap-
proaches to rule-based well-founded reasoning in the Semantic Web. Below we discuss
some representatives for (a)—(d). Further works are discussed in [13].

The works by Doninket al. [12], Levy and Rousset [24], and Rosati [29] are rep-
resentatives of hybrid approaches using description logics as input. Dairahi[12]
introduce a combination of (disjunction-, negation-, and function-free) datalog with the
description logicALC. An integrated knowledge base consists of a structural com-
ponent inALC and a relational component in datalog, where the integration of both
components lies in using concepts from the structural component as constraints in rule
bodies of the relational component.

The closely related work by Levy and Rousset [24] presents a combination of Horn
rules with the description logi2l LCAR. In contrast to Doninet al. [12], Levy and
Rousset also allow for roles as constraints in rule bodies, and do not require the safety



condition that variables in constraints in the body of a ruteust also appear in ordinary
atoms in the body af. Finally, Rosati [29] presents a combination of disjunctive datalog
(with classical and default negation, but without function symbols) witlC, which is
based on a generalized answer set semantics.

Some approaches reducing description logic reasoning to logic programming are
the works by Van Bellegherat al. [32], Alsac and Baral [1], Swift [30], Grosoét
al. [17], and Hufstadet al. [23]. In detail, Van Belleghenat al. [32] analyze the close
relationship between description logics and open logic programs, and present a map-
ping of description logic knowledge bases #CCA to open logic programs. Alsag
and Baral [1] and Swift [30] reduce inference in the description lofii® Q7 to query
answering from normal logic programs (with default negation, but without disjunctions
and classical negations) under the answer set semantics. @tcsof17] show how
inference in a subset of the description logie{(OZ Q can be reduced to inference in
a subset of function-free Horn programs (where negations and disjunctions are disal-
lowed), and vice versa. The type of inference follows traditional minimal model seman-
tics, thus not allowing for nonmonotonic reasoning. In contrast to a mapping between
description logics and logic programs, we presented a full-fledged coupling under the
well-founded semantics. Hufstaet al. [23] show howSHZ Q(D) can be reduced to
disjunctive datalog and exploit this for efficient query answering. As a byproduct of
their reduction, they obtain a decidable extensio®fZ Q(D) with positive rules in
which variables are bound to objects occurring in the extensional part of the descrip-
tion logic knowledge base. These rules, however, have classical first-order semantics;
this can be easily emulated within the strong answer set semantics of [13]. Handling
negation is not addressed in [23].

Early work on dealing with default information in description logics is the approach
due to Baader and Hollunder [4], where Reiter’s default logic is adapted to terminologi-
cal knowledge bases, differing significantly from our approach. Antoniou [2] combines
defeasible reasoning with description logics for the Semantic Web. In [3], Antoniou and
Wagner summarize defeasible and strict reasoning in a single rule formalism, building
on the idea of using rules as a uniform basis for the Ontology, Logic, and Proof lay-
ers. Like in other work above, the considered description logics serve only as an input
for the nonmonotonic reasoning mechanism running on top of it. Note that defeasible
logic is in general different from well-founded semantics, the latter being able to draw
more conclusions in certain situations [9]. Maher and Governatori [25] present a well-
founded defeasible logic, based on the definition of unfounded sets by Van @elder
al. [34], which reconstructs the well-founded semantics.

An important approach to rule-based reasoning under the well-founded semantics
for the Semantic Web is due to Dasio [10]. He aims at developing Prolog tools for
implementing different semantics for RuleML [8]. So far, an XML parser library as well
as a RuleML compiler have been developed, providing routines to convert RuleML rule
bases to Prolog and vice versa. Currently, the compiler supports paraconsistent well-
founded semantics with explicit negation; it is planned to be extended to use XSB.
However, as a crucial difference to our work, the approach of [10] does not address
interfacing to ontologies and ontology reasoning, and thus provides no direct support
for integrating rule-based and ontology reasoning, which we have done in this paper.



9 Summary and Outlook

We have presented the well-founded semantics for dl-programs, which generalizes the
well-founded semantics for ordinary normal programs [34]. We have given a definition
via greatest unfounded sets for dI-programs as well as an equivalent characterization
using a generalized Gelfond-Lifschitz transform. We have then analyzed the semantic
properties of the well-founded semantics for dl-programs. In particular, we have shown
that it generalizes the well-founded semantics for ordinary normal programs. Moreover,
in the general case, the well-founded semantics for dI-programs is a partial model that
approximates the answer set semantics, while in the positive and stratified case, it is a
total model that coincides with the answer set semantics. Finally, we have also provided
detailed complexity results for dl-programs under the well-founded semantics.

An experimental prototype implementation using a datalog engine and RACER [18]
is available ahttp://www.kr.tuwien.ac.at/staff/froman/dlwfs/ . An
interesting topic for further work is to extend the presented well-founded semantics
to more general dl-programs, which may, for example, allow for disjunctions, NAF-
literals, and dl-atoms in the heads of dl-rules. Furthermore, employing RuleML as a
versatile and expressive syntax for our formalism could provide a standardized and
well-accepted interface to other applications. Finally, to further enrich description logic
programs, we plan to examine the possibility of resolution mechanisms for conflicting
rules, like priority relations as in courteous logic programs [16] and defeasible logic [3].
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