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Abstract. In previous work, towards the integration of rules and ontologies in the
Semantic Web, we have proposed a combination of logic programming under the
answer set semantics with the description logicsSHIF(D) andSHOIN (D),
which underly the Web ontology languages OWL Lite and OWL DL, respec-
tively. More precisely, we have introduceddescription logic programs(or dl-pro-
grams), which consist of a description logic knowledge baseL and a finite set
of description logic rulesP , and we have defined their answer set semantics. In
this paper, we continue this line of research. Here, as a central contribution, we
present the well-founded semantics for dl-programs, and we analyze its semantic
properties. In particular, we show that it generalizes the well-founded semantics
for ordinary normal programs. Furthermore, we show that in the general case,
the well-founded semantics of dl-programs is a partial model that approximates
the answer set semantics, whereas in the positive and the stratified case, it is a
total model that coincides with the answer set semantics. Finally, we also provide
complexity results for dl-programs under the well-founded semantics.

1 Introduction

TheSemantic Web[6,7,14] aims at extending the current World Wide Web by standards
and techniques that enable theautomated processingof Web content. Among other
issues, the main ideas to achieve this goal is to add a machine-readable meaning to Web
pages, to use ontologies for a precise definition of shared information terms, and to
make use of KR technology for automated reasoning from Web resources.

The Semantic Web is conceived in hierarchical layers, where theOntology layer,
in form of the OWL Web Ontology Language[35,21] (recommended by the W3C),
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is currently the highest layer of sufficient maturity. OWL consists of three increasingly
expressive sublanguages, namelyOWL Lite, OWL DL, andOWL Full. OWL Lite and
OWL DL are essentially very expressive description logics with an RDF syntax [21].
As shown in [19], ontology entailment in OWL Lite (resp., OWL DL) reduces to knowl-
edge base (un)satisfiability in the description logicSHIF(D) (resp.,SHOIN (D)).

On top of the Ontology layer, theRules, Logic, andProof layersof the Semantic
Web will be developed next, which should offer sophisticated representation and rea-
soning capabilities. As a first effort in this direction,RuleML(Rule Markup Language)
[8] is an XML-based markup language for rules and rule-based systems, while the OWL
Rules Language [20] is a first proposal for extending OWL by Horn clause rules.

A key requirement of the layered architecture of the Semantic Web is to integrate the
Rules and the Ontology layer. In particular, it is crucial to allow for building rules on top
of ontologies, that is, for rule-based systems that use vocabulary from ontology knowl-
edge bases. Another type of combination is to build ontologies on top of rules, which
means that ontological definitions are supplemented by rules or imported from rules.

Towards this goal, in [13], we have proposed a combination of logic programs un-
der the answer set semantics with description logics, introducingdescription logic pro-
grams(or dl-programs), which are of the formKB =(L,P ), whereL is a knowledge
base in a description logic andP is a finite set of description logic rules (ordl-rules).

Such dl-rules are similar to usual rules in logic programs with negation as failure,
but may also containqueries toL in their bodies which are given by special atoms (on
which possibly default negation may apply). For example, a rule

cand(X, P )← paperArea(P,A), DL[Referee](X), DL[expert ](X, A)

may express thatX is a candidate reviewer for a paperP , if the paper is in areaA,
andX is known to be a referee and an expert for areaA. Here, the latter two are queries
to the description logic knowledge baseL, which has a conceptRefereeand roleexpert
in its signature. For the evaluation, the precise definition ofRefereeandexpertwithin L
is fully transparent, and only the logical contents at the level of inference counts. Thus,
dl-programs fully support encapsulation and privacy ofL—this is needed if parts ofL
should not be accessible (for example, ifL contains an ontology about risk assessment
in credit assignment), and only extensional reasoning services are available.

Another important feature of dl-rules is that queries toL also allow for specifying
an input fromP , and thus for aflow of information fromP to L, besides the flow of
information fromL to P , given by any query toL. Hence, description logic programs
allow for building rules on top of ontologies, but also (to some extent) building ontolo-
gies on top of rules. This is achieved by dynamic update operators through which the
extensional part ofL can be modified for subjunctive querying. For example, the rule

paperArea(P,A)← DL[keyword ] kw ; inArea](P,A)

intuitively says that paperP is in areaA, if P is in A according to the description
logic knowledge baseL, where the extensional part of thekeywordrole in L (which
is known to influenceinArea) is augmented by the facts of a binary predicatekw from
the program. In this way, additional knowledge (gained in the program) can be supplied
to L before querying. Using this mechanism, also more involved relationships between
concepts and/or roles inL can be defined and exploited.



The semantics of dl-programs was defined in [13] as an extension of the answer
set semantics [15] for ordinary normal programs, which is one of the most widely used
semantics for nonmonotonic logic programs. More precisely, in [13], we defined the
notions ofweakandstrong answer setsof dl-programs, which coincide with usual an-
swer sets in the case of ordinary normal programs. The description logic knowledge
bases in dl-programs are specified in the well-known description logicsSHIF(D)
andSHOIN (D).

In this paper, we continue our work on description logic programs and extend the
well-founded semanticsto this class of programs. Introduced by Van Gelder, Ross, and
Schlipf [34], the well-founded semantics is another most widely used semantics for or-
dinary nonmonotonic logic programs. It is a skeptical approximation of the answer set
semantics in the sense that every well-founded consequence of a given ordinary nor-
mal programP is contained in every answer set ofP . While the answer set semantics
resolves conflicts by virtue of permitting multiple intended models as alternative sce-
narios, the well-founded semantics remains agnostic in the presence of conflicting in-
formation, assigning the truth valuefalseto a maximal set of atoms that cannot become
true during the evaluation of a given program. Furthermore, well-founded semantics
assigns a coherent meaning toall programs, while some programs are not consistent
under answer set semantics, i.e., lack an answer set.

Another important aspect of the well-founded semantics is that it is geared towards
efficientquery answeringand also plays a prominent role in deductive databases (see,
e.g., [26] for a proposal for object-oriented deductive databases, which is applied to the
Florid system implementing F-logic). As an important computational property, a query
to an ordinary normal program is evaluable under well-founded semantics in polyno-
mial time (under data complexity), while query answering under the answer set se-
mantics is intractable in general. Finally, efficient implementations of the well-founded
semantics exist, such as the XSB system [28] and Smodels [27].

The main contributions of this paper can be summarized as follows:

(1) We define the well-founded semantics for dl-programs by generalizing Van
Gelderet al.’s [34] fixpoint characterization of the well-founded semantics for ordi-
nary normal programs based ongreatest unfounded sets. We then prove some appeal-
ing semantic properties of the well-founded semantics for dl-programs. In particular,
it generalizes the well-founded semantics for ordinary normal programs. Furthermore,
for general dl-programs, the well-founded semantics is a partial model, and for positive
(resp., stratified) dl-programs, it is a total model and the canonical least (resp., itera-
tive least) model. Finally, the well-founded semantics also tolerates abbreviations for
dl-atoms.

(2) Generalizing a result by Baral and Subrahmanian [5], we then show that the
well-founded semantics for dl-programs can be characterized in terms of the least and
the greatest fixpoint of an operatorγ2

KB , which is defined using a generalized Gelfond-
Lifschitz transform of dl-programs relative to an interpretation.

(3) We also show that, similarly as for ordinary normal programs, the well-founded
semantics for dl-programs approximates the strong answer set semantics for dl-pro-
grams. That is, everywell-foundedground atom is true in every answer set, and every
unfoundedground atom is false in every answer set. Hence, every well-founded ground



atom and no unfounded ground atom is a cautious (resp., brave) consequence of a dl-
program under the strong answer set semantics. Furthermore, we prove that when the
well-founded semantics of a dl-program is total, then it is the only strong answer set.

(4) Finally, we give a precise characterization of the complexity of the well-founded
semantics for dl-programs, over bothSHIF(D) andSHOIN (D). Like for ordinary
normal programs, literal inference under the well-founded semantics has a lower com-
plexity than under the answer set semantics. More precisely, relative to program com-
plexity [11], literal inference under the well-founded semantics for dl-programs over
SHIF(D) (resp.,SHOIN (D)) is complete for EXP (resp., PNEXP), while cautious
literal inference under the strong answer set semantics for dl-programs overSHIF(D)
(resp.,SHOIN (D)) is complete for co-NEXP (resp., co-NPNEXP) [13].

2 Preliminaries

In this section, we recall normal programs under the answer set semantics and the well-
founded semantics, as well as the description logicsSHIF(D) andSHOIN (D).

Normal Programs. We assume a function-free first-order vocabularyΦ with nonempty
finite sets of constant and predicate symbols, and a setX of variables. Aclassical literal
(or literal) l is an atoma or a negated atom¬a. A negation-as-failure(NAF) literal is
an atoma or a default-negated atomnot a. A normal rule(or rule) r is of the form

a← b1, . . . , bk,not bk+1, . . . ,not bm , m≥ k≥ 0 , (1)

wherea, b1, . . . , bm are atoms. We refer toa as theheadof r, denotedH(r), while
the conjunctionb1, . . . , bk,not bk+1, . . . ,not bm is the body of r; its positive(resp.,
negative) part isb1, . . . , bk (resp.,not bk+1, . . . ,not bm). We defineB(r) = B+(r) ∪
B−(r), whereB+(r) = {b1, . . . , bk} andB−(r) = {bk+1, . . . , bm}. A normal program
(or program) P is a finite set of rules. We sayP is positiveiff no rule in P contains
default-negated atoms.

The well-founded semantics has many different equivalent definitions [34,5]. We
recall here the one based on unfounded sets.

Let P be a program.Ground terms, atoms, literals, etc., are defined as usual. We
denote byHBP theHerbrand baseof P , i.e., the set of all ground atoms with predicate
and constant symbols fromP (if P contains no constant, then choose an arbitrary one
from Φ), and byground(P ) the set of all ground instances of rules inP (w.r.t. HBP ).

For literalsl = a (resp.,l =¬a), we use¬.l to denote¬a (resp.,a), and for sets
of literals S, we define¬.S = {¬.l | l∈S} andS+ = {a∈S | a is an atom}. We use
LitP =HBP ∪¬.HBP to denote the set of all ground literals with predicate and con-
stant symbols fromP . A setS⊆LitP is consistentiff S ∩ ¬.S = ∅. A three-valued
interpretationrelative toP is any consistentI ⊆LitP .

A setU ⊆HBP is anunfounded setof P relative toI, if for everya∈U and every
r∈ ground(P ) with H(r) = a, either (i)¬b∈ I ∪¬.U for some atomb∈B+(r), or
(ii) b∈ I for some atomb∈B−(r). There exists the greatest unfounded set ofP relative
to I, denotedUP (I). Intuitively, if I is compatible withP , then all atoms inUP (I) can
be safely switched to false and the resulting interpretation is still compatible withP .

The operatorsTP andWP on consistentI ⊆LitP are then defined by:



• TP (I) = {H(r) | r∈ ground(P ), B+(r)∪¬.B−(r)⊆ I};
• WP (I)= TP (I)∪¬.UP (I).

The operatorWP is monotonic, and thus has a least fixpoint, denotedlfp(WP ), which is
thewell-founded semanticsof P , denotedWFS (P ). An atoma∈HBP is well-founded
(resp.,unfounded) w.r.t.P , if a (resp.,¬a) is in lfp(WP ). Intuitively, starting withI = ∅,
rules are applied to obtain new positive and negated facts (viaTP (I) and¬.UP (I),
respectively). This process is repeated until no longer possible.

Example 2.1 Consider the propositional programP = {p←not q; q← p; p←not r}.
ForI = ∅, we haveTP (I) = ∅ andUP (∅) = {r}: p cannot be unfounded because of the
first rule and Condition (ii), and henceq cannot be unfounded because of the second rule
and Condition (i). Thus,WP (∅)= {¬r}. SinceTP ({¬r}) = {p} andUP ({¬r}) = {r},
it follows WP ({¬r}) = {p,¬r}. SinceTP ({p,¬r})= {p, q} andUP ({p,¬r}) = {r},
it then followsWP ({p,¬r}) = {p, q,¬r}. Thus,lfp(WP ) = {p, q,¬r}. That is,r is un-
founded relative toP , and the other atoms are well-founded.

SHIF(D) and SHOIN (D). We first describeSHOIN (D). We assume a set
D of elementary datatypes. Everyd∈D has a set ofdata values, called thedomainof
d, denoteddom(d). We usedom(D) to denote

⋃
d∈D dom(d). A datatypeis either an

element ofD or a subset ofdom(D) (calleddatatype oneOf). LetA, RA, RD, andI be
nonempty finite and pairwise disjoint sets ofatomic concepts, abstract roles, datatype
roles, andindividuals, respectively. We useR−

A to denote the set of all inversesR− of
abstract rolesR∈RA.

A role is an element ofRA ∪R−
A ∪RD. Conceptsare inductively defined as fol-

lows. EveryC ∈A is a concept, and ifo1, o2, . . . ∈ I, then{o1, o2, . . .} is a concept
(calledoneOf). If C andD are concepts and ifR∈RA ∪R−

A, then(C uD), (C tD),
and¬C are concepts (calledconjunction, disjunction, andnegation, respectively), as
well as∃R.C, ∀R.C,≥nR, and≤nR (calledexists, value, atleast, andatmost restric-
tion, respectively) for an integern≥ 0. If d∈D andU ∈RD, then∃U.d, ∀U.d, ≥nU ,
and≤nU are concepts (calleddatatype exists, value, atleast, andatmost restriction, re-
spectively) for an integern≥ 0. We write> and⊥ to abbreviateC t ¬C andC u ¬C,
respectively, and we eliminate parentheses as usual.

An axiomis of one of the following forms: (1)C vD, whereC andD are concepts
(concept inclusion); (2) RvS, where eitherR,S ∈RA or R,S ∈RD (role inclusion);
(3) Trans(R), whereR∈RA (transitivity); (4) C(a), whereC is a concept anda∈ I
(concept membership); (5) R(a, b) (resp.,U(a, v)), whereR∈RA (resp.,U ∈RD) and
a, b∈ I (resp.,a∈ I andv ∈dom(D)) (role membership); and (6)a= b (resp.,a 6= b),
wherea, b∈ I (equality (resp.,inequality)). A knowledge baseL is a finite set of ax-
ioms. (For decidability, number restrictions inL are restricted to simpleR∈RA [22]).

The syntax ofSHIF(D) is as the above syntax ofSHOIN (D), but without the
oneOf constructor and with theatleastandatmostconstructors limited to0 and1.

For the semantics ofSHIF(D) andSHOIN (D), we refer the reader to [19].

Example 2.2 A small computer store obtains its hardware from several vendors. It uses
the following description logic knowledge baseL1, which contains information about



the product range that is provided by each vendor and about possible rebate conditions
(we assume here that choosing two or more parts from the same seller causes a dis-
count). For some parts, a shop may already be contracted as supplier.

≥ 1 supplier v Shop; > v ∀supplier .Part ; ≥ 2 supplier v Discount ;
Part(harddisk); Part(cpu); Part(case);
Shop(s1); Shop(s2); Shop(s3);
provides(s1, case); provides(s2, cpu); provides(s3, case);
provides(s1, cpu); provides(s2, harddisk); provides(s3, harddisk);
supplier(s3, case).

Here, the first two axioms determineShop andPart as domain and range of the prop-
erty supplier , respectively, while the third axiom constitutes the conceptDiscount by
putting a cardinality constraint onsupplier .

3 Description Logic Programs

In this section, we recalldescription logic programs(or simplydl-programs) from [13],
which combine description logics and normal programs. They consist of a knowledge
baseL in a description logic and a finite set of description logic rulesP . Such rules are
similar to usual rules in logic programs with negation as failure, but may also contain
queries toL, possibly default negated. In [13], we considered dl-programs that may
also contain classical negation and not necessarily monotonic queries toL. Here, we
consider only the case where classical negation is absent and all queries toL are mono-
tonic. The former is only for ease of presentation, since every dl-program with classical
negation can be translated into one without, like in the ordinary case. The latter, how-
ever, is a technical necessity for the well-founded semantics of dl-programs, but not a
severe restriction, since most queries toL are in fact monotonic (naturally, a dl-program
may still contain NAF-literals).

A dl-program consists of a description logic knowledge baseL and a generalized
normal programP , which may contain queries toL. Roughly, in such a query, it is
asked whether a certain description logic axiom or its negation logically follows fromL
or not. Formally, adl-queryQ(t) is either

(a) a concept inclusion axiomF or its negation¬F ; or
(b) of the formsC(t) or¬C(t), whereC is a concept andt is a term; or
(c) of the formsR(t1, t2) or¬R(t1, t2),3 whereR is a role andt1, t2 are terms.

A dl-atomhas the form

DL[S1op1p1, . . . , Smopm pm;Q](t) , m≥ 0, (2)

where eachSi is a concept or role,opi ∈{], −∪}, pi is a unary resp. binary predicate
symbol, andQ(t) is a dl-query. We callp1, . . . , pm its input predicate symbols. Intu-
itively, opi =] (resp.,opi = −∪) increasesSi (resp.,¬Si) by the extension ofpi. A dl-
rule r is of form (1), where anyb∈B(r) may be a dl-atom. Adl-programKB =(L, P )

3 Note thatSHOIN (D) does not provide terminological role negation; we use the expression
¬(∃R.{b})(a) in order to add and query¬R(a, b) for a specific pair of individuals.



consists of a description logic knowledge baseL and a finite set of dl-rulesP . We
sayKB =(L, P ) is positiveiff P is positive.

Example 3.1 Consider the dl-programKB1 =(L1, P1), with L1 as in Example 2.2
andP1 given as follows, choosing vendors for needed parts w.r.t. possible rebates:

(1) vendor(s2); vendor(s1); vendor(s3);
(2) needed(cpu); needed(harddisk); needed(case);
(3) avoid(V )← vendor(V ),not rebate(V );
(4) rebate(V )← vendor(V ), DL[supplier ] buy cand ;Discount ](V );
(5) buy cand(V, P )← vendor(V ),not avoid(V ), DL[provides](V, P ), needed(P ),

not exclude(P )

(6) exclude(P )← buy cand(V1, P ), buy cand(V2, P ), V1 6= V2;
(7) exclude(P )← DL[supplier ](V, P ),needed(P );
(8) supplied(V, P )← DL[supplier ] buy cand ; supplier ](V, P ),needed(P ).

Rules (3)–(5) choose a possible vendor (buy cand ) for each needed part, taking into
account that the selection might affect the rebate condition (by feeding the possible
vendor back toL1, where the discount is determined). Rules (6) and (7) assure that
each hardware part is bought only once, considering that for some parts a supplier might
already be chosen. Rule (8) eventually summarizes all purchasing results.

Answer Set Semantics.In the sequel, letKB=(L, P ) be a dl-program. TheHerbrand
baseof P , denotedHBP , is the set of all ground atoms with a standard predicate symbol
that occurs inP and constant symbols inΦ. An interpretationI relative toP is any
subset ofHBP . We say thatI is amodelof a∈HBP underL, denotedI |=L a, iff a∈ I.
We say thatI is amodelof a ground dl-atoma=DL[S1op1 p1, . . . , Smopmpm;Q](c)
underL, denotedI |=L a, iff L∪

⋃m
i=1 Ai(I) |= Q(c), where

– Ai(I) = {Si(e) | pi(e)∈ I}, for opi =]; and
– Ai(I) = {¬Si(e) | pi(e)∈ I}, for opi = −∪.

We sayI is amodelof a ground dl-ruler iff I |=L H(r) wheneverI |=L B(r), that is,
I |=L a for all a∈B+(r) andI 6|=L a for all a∈B−(r). We sayI is a modelof a dl-
programKB =(L,P ), denotedI |=KB , iff I |=L r for all r∈ ground(P ). We sayKB
is satisfiable(resp.,unsatisfiable) iff it has some (resp., no) model.

A ground dl-atoma is monotonicrelative toKB =(L,P ) iff I ⊆ I ′⊆HBP implies
that if I |=L a then I ′ |=L a. In this paper, we consider only ground dl-atoms which
are monotonic relative to a dl-program, but one can also define dl-atoms that are not
monotonic; see [13].

Like ordinary positive programs, every positive dl-programKB is satisfiable and
has a unique least model, denotedMKB , which naturally characterizes its semantics.

The strong answer set semanticsof general dl-programs is then defined by a re-
duction to the least model semantics of positive ones as follows, using a generalized
transformation that removes all default-negated atoms in dl-rules.

For dl-programsKB =(L,P ), thestrong dl-transformof P w.r.t. L and an inter-
pretationI ⊆HBP , denotedsP I

L, is the set of all dl-rules obtained fromground(P ) by



(i) deleting every dl-ruler such thatI |=L a for somea∈B−(r), and (ii) deleting from
each remaining dl-ruler the negative body. Notice thatsP I

L generalizes the Gelfond-
Lifschitz reductP I [15].

Let KBI denote the dl-program(L, sP I
L). SinceKBI is positive, it has the least

model MKBI . A strong answer set(or simply answer set) of KB is an interpreta-
tion I ⊆HBP such thatI = MKBI .

Example 3.2 The dl-programKB1 =(L1, P1) of Example 3.1 has the following three
strong answer sets (only relevant atoms are shown):

{supplied(s3 , case); supplied(s2 , cpu); supplied(s2 , harddisk); rebate(s2 ); . . .};
{supplied(s3 , case); supplied(s3 , harddisk); rebate(s3 ); . . .};
{supplied(s3 , case); . . .}.

Since the suppliers3 was already fixed for the partcase, two possibilities for a discount
remain (rebate(s2 ) or rebate(s3 ); s1 is not offering the needed partharddisk , and the
shop will not give a discount only for the partcpu).

The strong answer set semantics of dl-programsKB =(L,P ) without dl-atoms co-
incides with the ordinary answer set semantics ofP [15]. Furthermore, strong answer
sets of a general dl-programKB are also minimal models ofKB . Finally, positive and
stratified dl-programs have exactly one strong answer set, which coincides with their
canonical minimal model. Note thatstratified dl-programsare composed of hierarchic
layers of positive dl-programs that are linked via default negation [13].

4 Well-Founded Semantics

In this section, we define the well-founded semantics for dl-programs. We do this by
generalizing the well-founded semantics for ordinary normal programs. More specifi-
cally, we generalize the definition based on unfounded sets as given in Section 2.

In the sequel, letKB =(L,P ) be a dl-program. We first define the notion of an
unfounded set for dl-programs. LetI ⊆LitP be consistent. A setU ⊆HBP is anun-
founded setof KB relative toI iff the following holds:

(∗) for everya∈U and everyr∈ground(P ) with H(r) = a, either (i)¬b∈ I ∪¬.U for
some ordinary atomb∈B+(r), or (ii) b∈ I for some ordinary atomb∈B−(r), or
(iii) for some dl-atomb∈B+(r), it holds thatS+ 6|=Lb for every consistentS ⊆
LitP with I ∪¬.U ⊆S, or (iv) I+|=Lb for some dl-atomb∈B−(r).

What is new here are Conditions (iii) and (iv). Intuitively, (iv) says thatnot b is for
sure false, regardless of howI is further expanded, while (iii) says thatb will never
become true, if we expandI in a way such that all unfounded atoms are false. The
following examples illustrate the concept of an unfounded set for dl-programs.

Example 4.1 ConsiderKB2 =(L2, P2), whereL2 = {SvC} andP2 is as follows:

p(a)← DL[S ] q;C](a); q(a)← p(a); r(a)← not q(a), not s(a).



Here,S1 = {p(a), q(a)} is an unfounded set ofKB2 relative toI = ∅, sincep(a) is un-
founded due to (iii), whileq(a) is unfounded due to (i). The setS2 = {s(a)} is trivially
an unfounded set ofKB2 relative toI, since no rule definings(a) exists.

Relative toJ = {q(a)}, S1 is not an unfounded set ofKB2 (for p(a), the condition
fails) butS2 is. The setS3 = {r(a)} is another unfounded set ofKB2 relative toJ .

Example 4.2 Consider the dl-programKB3 =(L2, P3) whereP3 results by negating
the dl-literal inP2. ThenS1 = {p(a), q(a)} is not an unfounded set ofKB3 relative
to I = ∅ (Condition (iv) fails for p(a)), but S2 = {s(a)} is. Relative toJ = {q(a)},
however, bothS1 andS2 as well asS3 = {r(a)} are unfounded sets ofKB3.

Example 4.3 The unfounded set ofKB1 =(L1, P1) in Example 3.1 relative toI0 = ∅
containsbuy cand(s1, harddisk), buy cand(s2, case), andbuy cand(s3, cpu) due to
(iii), since the dl-atom in Rule (5) ofP1 will never evaluate to true for these pairs. It
reflects the intuition that the conceptprovides narrows the choice for buying candidates.

The following lemma implies thatKB has a greatest unfounded set relative toI.

Lemma 4.4 Let KB =(L, P ) be a dl-program, and letI ⊆LitP be consistent. Then,
the set of unfounded sets ofKB relative toI is closed under union.

We now generalize the operatorsTP , UP , andWP to dl-programs as follows. We
define the operatorsTKB , UKB , andWKB on all consistentI⊆LitP by:

– a∈TKB (I) iff a∈HBP and somer∈ ground(P ) exists such that (a)H(r) = a,
(b) I+ |=L b for all b∈B+(r), (c) ¬b∈ I for all ordinary atomsb∈B−(r), and
(d) S+ 6|=L b for each consistentS⊆LitP with I ⊆S, for all dl-atomsb∈B−(r);

– UKB (I) is the greatest unfounded set ofKB relative toI; and
– WKB (I) =TKB (I)∪¬.UKB (I).

The following result shows that the three operators are all monotonic.

Lemma 4.5 LetKB be a dl-program. Then,TKB , UKB , andWKB are monotonic.

Thus, in particular,WKB has a least fixpoint, denotedlfp(WKB ). The well-founded
semantics of dl-programs can thus be defined as follows.

Definition 4.6 Let KB =(L, P ) be a dl-program. Thewell-founded semanticsof KB ,
denotedWFS (KB), is defined aslfp(WKB ). An atoma∈HBP is well-founded(resp.,
unfounded) relative toKB iff a (resp.,¬a) belongs toWFS (KB).

The following examples illustrate the well-founded semantics of dl-programs.

Example 4.7 ConsiderKB2 of Example 4.1. ForI0 = ∅, we haveTKB2(I0) = ∅ and
UKB2(I0)= {p(a), q(a), s(a)}. Hence,WKB2(I0) = {¬p(a),¬q(a),¬s(a)} (=I1). In
the next iteration,TKB2(I1) = {r(a)} andUKB2 = {p(a), q(a), s(a)}. Thus,WKB2(I1)
= {¬p(a), ¬q(a), r(a),¬s(a)} (=I2). SinceI2 is total andWKB2 is monotonic, it fol-
lows WKB2(I2) = I2 and henceWFS (KB2) = {¬p(a),¬q(a), r(a),¬s(a)}. Accord-
ingly, r(a) is well-founded and all other atoms are unfounded relative toKB2. Note
thatKB2 has the unique answer setI = {r(a)}.



Example 4.8 Now considerKB3 of Example 4.2. ForI0 = ∅, we haveTKB3(I0) = ∅
andUKB3(I0) = {s(a)}. Hence,WKB3(I0) = {¬s(a)} (=I1). In the next iteration, we
haveTKB3(I1)= ∅ andUKB3(I1) = {s(a)}. Then,WKB3(I1) = I1 andWFS (KB3)=
{¬s(a)}; atoms(a) is unfounded relative toKB3. Note thatKB3 has no answer set.

Example 4.9 Consider againUKB1(I0 = ∅) of Example 4.3.WKB1(I0) consists of
¬UKB1(I0) and all facts ofP1. This input to the first iteration along with (iii) applied
to Rule (8) adds thosesupplied atoms toUKB1(I1) that correspond to the (negated)
buy cand atoms ofUKB1(I0). Then,TKB1(I1) containsexclude(case) which forces
additionalbuy cand atoms intoUKB1(I2), regarding (i) and Rule (5). The same un-
founded set thereby includesrebate(s1 ), stemming from Rule (4). As a consequence,
avoid(s1 ) is in TKB1(I3). Eventually, the finalWFS (KB1) is not able to make any
positive assumption about choosing a new vendor (buy cand ), but it is clear abouts1

being definitely not able to contribute to a discount situation, since a supplier forcase
is already chosen inL1, ands1 offers only a single further part.

5 Semantic Properties

In this section, we describe some semantic properties of the well-founded semantics
for dl-programs. An immediate result is that it conservatively extends the well-founded
semantics for ordinary normal programs.

Theorem 5.1 LetKB =(L,P ) be a dl-program without dl-atoms. Then, the well-foun-
ded semantics ofKB coincides with the well-founded semantics ofP .

The next result shows that the well-founded semantics of a dl-programKB =(L,P )
is a partial model ofKB . Here, a consistentI ⊆LitP is apartial modelof KB iff some
consistentJ ⊆LitP exists such that (i)I ⊆ J , (ii) J+ is a model ofKB , and (iii) J
is total, i.e.,J+ ∪ (¬.J)+ =HBP . Intuitively, the three-valuedI can be extended to a
(two-valued) modelI ′⊆HBP of KB .

Theorem 5.2 LetKB be a dl-program. Then,WFS (KB) is a partial model ofKB .

Like in the case of ordinary normal programs, the well-founded semantics for pos-
itive and stratified dl-programs is total and coincides with their least model semantics
and iterative least model semantics, respectively. This result can be elegantly proved
using a characterization of the well-founded semantics given in the next section.

Theorem 5.3 Let KB =(L,P ) be a dl-program. IfKB is positive(resp., stratified),
then (a) every ground atoma∈HBP is either well-founded or unfounded relative
to KB , and(b) WFS (KB)∩HBP is the least model(resp., the iterative least model)
of KB , which coincides with the unique strong answer set ofKB .

Example 5.4 The dl-programKB2 in Example 4.1 is stratified (intuitively, the recur-
sion through negation is acyclic) whileKB3 in Example 4.2 is not. The result computed
in Example 4.7 verifies the conditions of Theorem 5.3.



The following result shows that we can limit ourselves to dl-programs indl-query
form, where dl-atoms equate designated predicates. Formally, a dl-programKB =
(L,P ) is in dl-query form, if eachr∈P involving a dl-atom is of the forma← b, where
b is a dl-atom. Any dl-programKB =(L,P ) can be transformed into a dl-program
KBdl =(L,P dl) in dl-query form. Here,P dl is obtained fromP by replacing every dl-
atoma(t) = DL[S1op1p1, . . . , Smopm pm;Q](t) by pa(t), and by adding the dl-rule
pa(X)← a(X) to P , wherepa is a new predicate symbol andX is a list of variables
corresponding tot. Informally, pa is an abbreviation fora. The following result now
shows thatKBdl andKB are equivalent under the well-founded semantics. Intuitively,
the well-founded semantics tolerates abbreviations in the sense that they do not change
the semantics of a dl-program.

Theorem 5.5 Let KB =(L,P ) be a dl-program. Then,WFS (KB) =WFS (KBdl) ∩
LitP .

6 Relationship to Strong Answer Set Semantics

In this section, we show that the well-founded semantics for dl-programs can be char-
acterized in terms of the least and greatest fixpoint of a monotone operatorγ2

KB similar
as the well-founded semantics for ordinary normal programs [5]. We then use this char-
acterization to derive further properties of the well-founded semantics for dl-programs.

For a dl-programKB=(L, P ), define the operatorγKB on interpretationsI⊆HBP

by
γKB (I) =MKBI ,

i.e., as the least model of the positive dl-programKBI =(L, sP I
L). The next result

shows thatγKB is anti-monotonic, like its counterpart for ordinary normal programs [5].
Note that this result holds only if all dl-atoms inP are monotonic.

Proposition 6.1 LetKB =(L,P ) be a dl-program. Then,γKB is anti-monotonic.

Hence, the operatorγ2
KB (I) = γKB (γKB (I)), for all I ⊆HBP , is monotonic and

thus has a least and a greatest fixpoint, denotedlfp(γ2
KB ) andgfp(γ2

KB ), respectively.
We can use these fixpoints to characterize the well-founded semantics ofKB .

Theorem 6.2 Let KB =(L,P ) be a dl-program. Then, an atoma∈HBP is well-
founded(resp., unfounded) relative toKB iff a∈ lfp(γ2

KB ) (resp.,a 6∈ gfp(γ2
KB )).

Example 6.3 Consider the dl-programKB1 from Example 3.1. The setlfp(γ2
KB1

) con-
tains the atomsavoid(s1) andsupplied(s3, case), while gfp(γ2

KB1
) does not contain

rebate(s1). Thus,WFS (KB1) contains the literalsavoid(s1), supplied(s3, case), and
¬rebate(s1), corresponding to the result of Example 4.9 (and, moreover, to the inter-
section of all answer sets ofKB1).

The next theorem shows that the well-founded semantics for dl-programs approx-
imates their strong answer set semantics. That is, every well-founded ground atom is
true in every answer set, and every unfounded ground atom is false in every answer set.



Theorem 6.4 LetKB =(L,P ) be a dl-program. Then, every strong answer set ofKB
includes all atomsa∈HBP that are well-founded relative toKB and no atoma∈HBP

that is unfounded relative toKB .

A ground atoma is acautious(resp.,brave) consequence under the strong answer
set semanticsof a dl-programKB iff a is true in every (resp., some) strong answer
set ofKB . Hence, under the strong answer set semantics, every well-founded and no
unfounded ground atom is a cautious (resp., brave) consequence ofKB .

Corollary 6.5 Let KB =(L,P ) be a dl-program. Then, under the strong answer set
semantics, every well-founded atoma∈HBP relative toKB is a cautious(resp., brave)
consequence ofKB , and no unfounded atoma∈HBP relative toKB is a cautious
(resp., brave) consequence of a satisfiableKB .

If the well-founded semantics of a dl-programKB=(L,P ) is total, i.e., contains
eithera or¬a for everya∈HBP , then it specifies the only strong answer set ofKB .

Theorem 6.6 LetKB =(L,P ) be a dl-program. If every atoma∈HBP is either well-
founded or unfounded relative toKB , then the set of all well-founded atomsa∈HBP

relative toKB is the only strong answer set ofKB .

7 Computation and Complexity

For any positive dl-programKB =(L,P ), its least modelMKB is the least fixpoint of
TKB (I) [13]. Thus,γKB (I) =MKBI (with KBI =(L, sP I

L)) can be computed as

lfp(TKBI ) =
⋃

i≥0 T i
KBI (∅) (=

⋃|HBP |
i=0 T i

KBI (∅)).

The least and greatest fixpoint ofγ2
KB can be constructed as the limits

U∞ =
⋃

i≥0 Ui, whereU0 = ∅, andUi+1 = γ2
KB (Ui), for i ≥ 0, and

O∞ =
⋂

i≥0 Oi, whereO0 = HBP , andOi+1 = γ2
KB (Oi), for i ≥ 0,

respectively, which are both reached within|HBP |many steps.
We recall that for a given ordinary normal program, computing the well-founded

model needs exponential time in general (measured in the program size [11]), and also
reasoning from the well-founded model has exponential time complexity.

Furthermore, evaluating a ground dl-atoma for KB =(L,P ) of the form (2) given
an interpretationIp of its input predicatesp = p1, . . . , pm (i.e., decidingI |=L a for
eachI that coincides onp with Ip) is complete for EXP (resp., co-NEXP) forL from
SHIF(D) (resp.,SHOIN (D)) [13], where EXP (resp., NEXP) denotes exponential
(resp., nondeterministic exponential) time; this is inherited from the complexity of the
satisfiability problem forSHIF(D) (resp.,SHOIN (D)) [31,19].

The following result implies that the complexity of the well-founded semantics for
dl-programs overSHIF(D) does not increase over the one of ordinary logic programs.



Theorem 7.1 GivenΦ and a dl-programKB=(L,P ) withL in SHIF(D), computing
WFS (KB) is feasible in exponential time. Furthermore, deciding whether for a given
literal l it holds thatl ∈WFS (KB) is EXP-complete.

For dl-programs overSHOIN (D), the computation ofWFS (KB) and reasoning
from it is expected to be more complex than forSHIF(D) knowledge bases, since
already evaluating a single dl-atom is co-NEXP-hard. ComputingWFS can be done,
in a similar manner as in the case ofSHIF(D), in exponential time using an oracle
for evaluating dl-atoms; to this end, an NP oracle is sufficient. As for the reasoning
problem, this means that decidingl∈WFS (KB) is in EXPNP.

A more precise account reveals the following strict characterization of the complex-
ity, which is believed to be lower.

Theorem 7.2 GivenΦ, a dl-programKB =(L,P ) with L in SHOIN (D), and a lit-
eral l, decidingl∈WFS (KB) is PNEXP-complete.

The results in Theorems 7.1 and 7.2 also show that, like for ordinary normal pro-
grams, inference under the well-founded semantics is computationally less complex
than under the answer set semantics, since cautious reasoning from the strong answer
sets of a dl-programs using aSHIF(D) (resp.,SHOIN (D)) description logic knowl-
edge base is complete for co-NEXP (resp., co-NPNEXP) [13].

We leave an account of the data complexity of dl-programsKB =(L,P ) (i.e., L
and the rules ofP are fixed, while facts inP may vary) for further work. However, we
note that whenever the evaluation of dl-atoms is polynomial (i.e., in description logic
terminology, A-Box reasoning is polynomial), then also the computation of the well-
founded semantics for dl-programs is polynomial. Most recent results in [23] suggest
that forSHIF(D), the problem is solvable in polynomial time with an NP oracle (and,
presumably, complete for that complexity).

8 Related Work

Related work can be divided into (a) hybrid approaches using description logics as in-
put to logic programs, (b) approaches reducing description logics to logic programs,
(c) combinations of description logics with default and defeasible logic, and (d) ap-
proaches to rule-based well-founded reasoning in the Semantic Web. Below we discuss
some representatives for (a)–(d). Further works are discussed in [13].

The works by Doniniet al. [12], Levy and Rousset [24], and Rosati [29] are rep-
resentatives of hybrid approaches using description logics as input. Doniniet al. [12]
introduce a combination of (disjunction-, negation-, and function-free) datalog with the
description logicALC. An integrated knowledge base consists of a structural com-
ponent inALC and a relational component in datalog, where the integration of both
components lies in using concepts from the structural component as constraints in rule
bodies of the relational component.

The closely related work by Levy and Rousset [24] presents a combination of Horn
rules with the description logicALCNR. In contrast to Doniniet al. [12], Levy and
Rousset also allow for roles as constraints in rule bodies, and do not require the safety



condition that variables in constraints in the body of a ruler must also appear in ordinary
atoms in the body ofr. Finally, Rosati [29] presents a combination of disjunctive datalog
(with classical and default negation, but without function symbols) withALC, which is
based on a generalized answer set semantics.

Some approaches reducing description logic reasoning to logic programming are
the works by Van Belleghemet al. [32], Alsaç and Baral [1], Swift [30], Grosofet
al. [17], and Hufstadtet al. [23]. In detail, Van Belleghemet al. [32] analyze the close
relationship between description logics and open logic programs, and present a map-
ping of description logic knowledge bases inALCN to open logic programs. Alsaç
and Baral [1] and Swift [30] reduce inference in the description logicALCQI to query
answering from normal logic programs (with default negation, but without disjunctions
and classical negations) under the answer set semantics. Grosofet al. [17] show how
inference in a subset of the description logicSHOIQ can be reduced to inference in
a subset of function-free Horn programs (where negations and disjunctions are disal-
lowed), and vice versa. The type of inference follows traditional minimal model seman-
tics, thus not allowing for nonmonotonic reasoning. In contrast to a mapping between
description logics and logic programs, we presented a full-fledged coupling under the
well-founded semantics. Hufstadtet al. [23] show howSHIQ(D) can be reduced to
disjunctive datalog and exploit this for efficient query answering. As a byproduct of
their reduction, they obtain a decidable extension ofSHIQ(D) with positive rules in
which variables are bound to objects occurring in the extensional part of the descrip-
tion logic knowledge base. These rules, however, have classical first-order semantics;
this can be easily emulated within the strong answer set semantics of [13]. Handling
negation is not addressed in [23].

Early work on dealing with default information in description logics is the approach
due to Baader and Hollunder [4], where Reiter’s default logic is adapted to terminologi-
cal knowledge bases, differing significantly from our approach. Antoniou [2] combines
defeasible reasoning with description logics for the Semantic Web. In [3], Antoniou and
Wagner summarize defeasible and strict reasoning in a single rule formalism, building
on the idea of using rules as a uniform basis for the Ontology, Logic, and Proof lay-
ers. Like in other work above, the considered description logics serve only as an input
for the nonmonotonic reasoning mechanism running on top of it. Note that defeasible
logic is in general different from well-founded semantics, the latter being able to draw
more conclusions in certain situations [9]. Maher and Governatori [25] present a well-
founded defeasible logic, based on the definition of unfounded sets by Van Gelderet
al. [34], which reconstructs the well-founded semantics.

An important approach to rule-based reasoning under the well-founded semantics
for the Semantic Web is due to Damásio [10]. He aims at developing Prolog tools for
implementing different semantics for RuleML [8]. So far, an XML parser library as well
as a RuleML compiler have been developed, providing routines to convert RuleML rule
bases to Prolog and vice versa. Currently, the compiler supports paraconsistent well-
founded semantics with explicit negation; it is planned to be extended to use XSB.
However, as a crucial difference to our work, the approach of [10] does not address
interfacing to ontologies and ontology reasoning, and thus provides no direct support
for integrating rule-based and ontology reasoning, which we have done in this paper.



9 Summary and Outlook

We have presented the well-founded semantics for dl-programs, which generalizes the
well-founded semantics for ordinary normal programs [34]. We have given a definition
via greatest unfounded sets for dl-programs as well as an equivalent characterization
using a generalized Gelfond-Lifschitz transform. We have then analyzed the semantic
properties of the well-founded semantics for dl-programs. In particular, we have shown
that it generalizes the well-founded semantics for ordinary normal programs. Moreover,
in the general case, the well-founded semantics for dl-programs is a partial model that
approximates the answer set semantics, while in the positive and stratified case, it is a
total model that coincides with the answer set semantics. Finally, we have also provided
detailed complexity results for dl-programs under the well-founded semantics.

An experimental prototype implementation using a datalog engine and RACER [18]
is available athttp://www.kr.tuwien.ac.at/staff/roman/dlwfs/ . An
interesting topic for further work is to extend the presented well-founded semantics
to more general dl-programs, which may, for example, allow for disjunctions, NAF-
literals, and dl-atoms in the heads of dl-rules. Furthermore, employing RuleML as a
versatile and expressive syntax for our formalism could provide a standardized and
well-accepted interface to other applications. Finally, to further enrich description logic
programs, we plan to examine the possibility of resolution mechanisms for conflicting
rules, like priority relations as in courteous logic programs [16] and defeasible logic [3].
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