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2 � T. Eiter et al.resentation Formalisms and MethodsGeneral Terms: Algorithms, Languages, Performan
e, TheoryAdditional Key Words and Phrases: Consisten
y, obje
t-oriented database, probabilisti
 obje
talgebra, probabilisti
 obje
t base, probability, query language, query optimization1. INTRODUCTIONThe 
on
ept of an obje
t base is gaining numerous adherents be
ause it allows datato be organized in an appli
ation spe
i�
 manner for s
alability, while still sup-porting a 
ommon query language. However, there are many appli
ations whereprobabilisti
 data needs to be stored. For instan
e, image interpretation programsare un
ertain in their identi�
ation of features in images and su
h image databasesare typi
ally stored using obje
t databases [Grosky et al. 1997℄. Similarly, an ap-pli
ation tra
king a set of mobile obje
ts using an obje
t database may only knowthat an obje
t is at one of a given set of points right now, but the pre
ise lo
ationmay be unknown. Likewise, an appli
ation that fore
asts sto
k movements or theweather needs to represent un
ertainty in the fore
ast. When the appli
ation data(sto
ks, weather) is in an obje
t repository, methods to represent un
ertain aspe
tsof these obje
ts need to be developed. In short, the ability to represent probabilisti
information in an obje
t base, and to manipulate su
h \probabilisti
 obje
t bases"(POBs for short) eÆ
iently is important for a variety of appli
ations.To date, there has been only one signi�
ant attempt in the database 
ommunityto merge probability models with obje
t bases, namely that by Kornatzky andShimony [1994℄, who proposed a probabilisti
 obje
t 
al
ulus. Building upon theirin
uential work, we make the following 
ontributions:(1) First and foremost, we propose a notion of a probabilisti
 s
hema and formallyde�ne a logi
al model theory for it. We de�ne what 
onsistent s
hemas are andprove that 
onsisten
y 
he
king is NP-
omplete. We identify spe
ial 
lasses ofs
hemas for whi
h 
onsisten
y may be polynomially 
he
ked. Previous work onprobabilisti
 obje
t bases had no asso
iated 
on
ept of 
onsisten
y.(2) We then propose an algebra for probabilisti
 obje
t bases in whi
h the 
lassi-
al relational algebra operators are extended to apply to probabilisti
 obje
tbases. It is well known [Lakshmanan et al. 1997℄ that the probabilities of 
on-jun
tive and disjun
tive events are 
omputed in di�erent ways depending uponthe dependen
ies between the events involved. Our algebrai
 operators are pa-rameterized by the user's knowledge (or la
k thereof) of su
h dependen
ies |hen
e, the user 
an ask queries of the form \Find the join of : : : under igno-ran
e", whi
h des
ribes a join assuming no knowledge about the dependen
iesbetween the events involved. Previous work on probabilisti
 obje
t bases as-sumed that all events involved were independent. To our knowledge, this is the�rst (extension of the) relational algebra for POBs(3) We then prove a host of equivalen
e results in our algebra. These equivalen
eresults may be used as the set of rewrite rules that a database query optimizeruses for query rewriting.(4) We have implemented a distributed POB system in C++ on top of Obje
tStore.This implementation allowed us to 
ondu
t experiments a
ross the network to



Probabilisti
 Obje
t Bases � 3evaluate the performan
e of our system and also to see how to rewrite queries.This paper is stru
tured as follows. In the next se
tion, we 
onsider a motivatingdatabase appli
ation. Se
tion 3 des
ribes the ar
hite
ture of a POB system. Aftersome basi
 de�nitions of probability 
on
epts in Se
tion 4, we develop our POBmodel in Se
tions 5 and 6. A query algebra is then presented in Se
tion 7, andequivalen
e results in this algebra are derived in Se
tion 8. We report on an imple-mentation of POBs in Se
tion 9, and dis
uss related work in Se
tion 10. Detailedproofs of all results may be found in [Eiter et al. 1999℄.2. A MOTIVATING EXAMPLEConsider the task of building an extensive database des
ribing the types of veg-etation found in the Amazon rainforest. The 
reation of su
h a database is aformidable task. Individuals need to exhaustively examine the vegetables, herbs,and other kinds of plants growing in these forests, and provide information des
rib-ing soil 
onditions, 
lima
ti
 
onditions, et
.When des
ribing the plants growing in su
h rainforests, there are several possible
auses of un
ertainty. First and foremost, some plant spe
ies may not be uniquelyidenti�able by the surveyor in the �eld. He may 
lassify a parti
ular herb as eitherbeing Silver Thyme or Fren
h Thyme (two di�erent spe
ies of thyme), withoutbeing able to spe
ify exa
tly whi
h spe
ies the plant in question belongs to. Bythe same token, if he were slightly more expert, he might be able to say that heis not sure whether the herb is Silver Thyme or Fren
h Thyme, but he rates theprobability that it is Silver Thyme twi
e as high as that it is Fren
h Thyme.Figure 1 shows a very simple 
lass hierar
hy that des
ribes plants as either beingperennials or annuals, and either being vegetables, herbs, or 
owers. Clearly, the
lasses perennials and annuals are disjoint (i.e., a plant 
annot be both an annualand a perennial), as are the 
lasses vegetables, herbs, and 
owers. Mutually disjoint
lasses are 
onne
ted by a \d" in Figure 1. Note that we 
an 
ertainly have plantsthat are annuals and herbs (e.g., Basil). For now, the numbers labeling edges inFigure 1 may be ignored. They will be revisited later.In the rest of this paper, we repeatedly use this example to illustrate our de�ni-tions. By the end of this paper, we would have des
ribed how to build and querya POB that 
aptures the Plant Database of this example as a spe
ial 
ase.3. ARCHITECTURE OF A PROBABILISTIC OBJECT BASEIn this se
tion, we des
ribe the overall ar
hite
ture of a probabilisti
 obje
t base(POB) system. Figure 2 presents an ar
hite
ture for query pro
essing in proba-bilisti
 obje
t bases. The ar
hite
ture 
onsists of the following 
omponents:(1) The user expresses queries through a graphi
al user interfa
e whi
h generatesas output a query in a de
larative probabilisti
 obje
t 
al
ulus (POB-
al
ulus).Note that queries in this 
al
ulus are de
larative queries. A pioneering attemptat su
h a 
al
ulus is that of Kornatzky and Shimony [1994℄.(2) The 
al
ulus query generated will be fed into a Converter whi
h 
onverts POB-
al
ulus queries into queries in a probabilisti
 obje
t algebra (POB-algebra).(3) The algebrai
 query generated by the 
onverter will be fed into a Query Man-ager, whi
h will take as input a set of rewrite rules (re
e
ting equivalen
es be-
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0.30.8 0.30.4 Fig. 1. Plant identi�
ation exampletween di�erent queries in the POB-algebra) and a set of 
ost models to performa query optimization. Given a set of rewrite rules and a set of 
ost models, thetask of �nding a rewriting of a query that has minimal expe
ted 
ost (a

ordingto the 
ost models) is well-studied, and good 
ommer
ial implementations ofsu
h 
ode exist (e.g., Graefe's CASCADES system [Graefe 1995℄ is presentlybeing used by Mi
rosoft).(4) The \optimized" algebra query thus produ
ed will be physi
ally exe
uted onthe probabilisti
 obje
t base.(5) All the 
omponents above use libraries 
onsisting of: (i) A set of probabilisti

onjun
tion, disjun
tion and di�eren
e strategies that allow the user to expressher knowledge of the dependen
ies between events | this is used in queryformulation, query optimization, 
ost evaluation and query exe
ution. (ii) Aset of distribution fun
tions that allow a user to spe
ify how probabilities aredistributed over a spa
e of possible values for an unknown attribute.Giving a detailed des
ription of all these 
omponents is 
learly beyond the s
opeof a single paper. In previous work, Kornatzky and Shimony [1994℄ developeda probabilisti
 obje
t 
al
ulus. In this paper, we will expand the 
on
ept of aprobabilisti
 obje
t base used by them and formally de�ne a POB-algebra and provea host of query equivalen
e results. We will report on a prototype implementationof the POB-algebra and des
ribe experimental results | given a query equivalen
eq1 = q2, these experimental results will identify when a query of the form q1 shouldbe rewritten to a query of the form q2 and vi
e versa. To our knowledge, this paperis the �rst to propose a probabilisti
 obje
t algebra, the �rst to present results onquery equivalen
es in su
h an algebra, and the �rst to implement su
h an algebraon top of a 
ommer
ial obje
t database system.4. BASIC PROBABILITY DEFINITIONSIn this se
tion, we present some basi
 de�nitions used to set up a probabilisti
extension of obje
t bases. The probabilisti
 
on
epts are divided into two parts |
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hite
ture of POB system(i) probabilisti
 
ombination strategies and (ii) distribution fun
tions.4.1 Probabilisti
 Combination StrategiesSuppose we know the probabilities of events e1 and e2. For example, e1 may bethe event \The photographed plant p1 (in image I) is Fren
h Thyme." Similarly,e2 may be the event \The photographed plant p2 (in image I) is Mint." Assumenow that we are interested in the probability of the 
omplex event (e1 ^ e2). Theprobability of (e1 ^ e2) is 
omputed in di�erent ways based upon our knowledge ofthe dependen
ies between e1 and e2.|e1 and e2 are independent. This may o

ur if we know that the plants p1 and p2are growing in the area independently of ea
h other. In this 
ase, P(e1 ^ e2) =P(e1) �P(e2) (i.e., the probability of (e1 ^ e2) is the produ
t of the probabilitiesof e1 and e2).|e1 and e2 are mutually ex
lusive. Suppose, for example, we know that p1 and p2are the same plant. Sin
e the events e1 and e2 are mutually ex
lusive, we 
animmediately say that P(e1 ^ e2) = 0.|We are ignorant of the relationship between e1 and e2. This 
ase o

urs whenwe do not know anything about the relationship between the plants p1 and p2growing in the same area. As shown by Boole [1854℄, the best we 
an say in this
ase about the probability of (e1 ^ e2) is that it lies in the interval [max(0;P(e1)+P(e2)� 1);min(P(e1);P(e2))℄.Thus, the probability of (e1 ^ e2) depends not only on the probabilities of e1 ande2, but also on the relationship between the events e1 and e2. A similar situationapplies when we 
onsider 
omplex events su
h as (e1 _ e2). The above are onlythree examples of di�erent ways of evaluating probabilities of 
omplex events. Ingeneral, depending on exa
tly what is known about the dependen
ies between theevents involved, there is a whole plethora of su
h probability 
omputations.In our framework, we use probability intervals instead of point probabilities fortwo reasons: (i) In many appli
ations, the probability of an event is often notpre
isely given; (ii) as already shown by Boole [1854℄, when we do not know thedependen
ies between two events, all that we 
an say about the probability of the
onjun
tion /disjun
tion of two events is that it belongs to an interval.



6 � T. Eiter et al.De�nition 4.1 (
onsistent probabilisti
 intervals for two events) Supposee1 and e2 have probabilities in the intervals I1 = [L1; U1℄ and I2 = [L2; U2℄, respe
-tively. Su
h an assignment of probabilisti
 intervals is 
alled 
onsistent i� L1 � U1,L2 � U2, and the following 
onditions hold:|If (e1 ^ e2) is 
ontradi
tory1, then L1 + L2 � 1.|If (e1 ^ :e2) is 
ontradi
tory, then L1 � U2.|If (:e1 ^ e2) is 
ontradi
tory, then L2 � U1.|If (:e1 ^ :e2) is 
ontradi
tory, then U1 + U2 � 1.In the sequel, all assignments of probabilisti
 intervals are impli
itly assumed tobe 
onsistent unless stated otherwise. Suppose I1 = [L1; U1℄ and I2 = [L2; U2℄. Weuse I1 � I2 as an abbreviation for L1 � L2 and U1 � U2, and I1 � I2 to denotethat I1 is 
ontained in I2, i.e., L2 � L1 and U1 � U2.As many dependen
ies between events 
annot be automati
ally inferred, it is im-perative that the user be able to spe
ify, in his query, what knowledge he has aboutsu
h relationships. To fa
ilitate this, Lakshmanan et al. [1997℄ have introdu
edgeneri
 probabilisti
 
onjun
tion and disjun
tion strategies. Any fun
tion that sat-is�es the axioms listed in Table I is 
alled a probabilisti
 
onjun
tion or disjun
tionstrategy, respe
tively. (Given two events e1 and e2 with probabilities in the inter-vals I1 = [L1; U1℄ and I2 = [L2; U2℄, respe
tively, the notations \I = I1 
 I2" and\I = I1� I2" are shorthand for \(e1^e2; I) = (e1; I1)
 (e2; I2)" and \(e1_e2; I) =(e1; I1)� (e2; I2)", respe
tively.)Table I. Axioms for 
onjun
tion and disjun
tion strategiesAxiom Name Conjun
tion StrategyBottomline (I1
I2) � [min(L1; L2);min(U1; U2)℄Ignoran
e (I1
I2) � [max(0; L1 + L2 � 1);min(U1; U2)℄Identity2 (I1
 [1; 1℄) = I1Commutativity (I1
I2) = (I2
I1)Asso
iativity ((I1
I2)
I3) = (I1
(I2
I3))Monotoni
ity (I1
I2) � (I2
I3) if I2 � I3Axiom Name Disjun
tion StrategyBottomline (I1�I2) � [max(L1; L2);max(U1; U2)℄Ignoran
e (I1�I2) � [max(L1; L2);min(1; U1 + U2)℄Identity2 (I1� [0; 0℄) = I1Commutativity (I1�I2) = (I2�I1)Asso
iativity ((I1�I2)�I3) = (I1�(I2�I3))Monotoni
ity (I1�I2) � (I1�I3) if I2 � I3While the notion of 
onjun
tion and disjun
tion strategies are re
apitulated fromLakshmanan et al. [1997℄, the 
on
ept of di�eren
e strategies below is new.1Contradi
tory here merely means \in
onsistent in 
lassi
al propositional logi
."2The Identity-axioms for probabilisti
 
onjun
tion (resp., disjun
tion) strategies assume thate1 ^ e2 and :e1 ^ e2 (resp., :e1 ^:e2 and e1 ^:e2) are not 
ontradi
tory.
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t Bases � 7De�nition 4.2 (probabilisti
 di�eren
e strategy) Suppose e1 and e2 haveprobabilities in the intervals I1= [L1; U1℄ and I2=[L2; U2℄, respe
tively. A proba-bilisti
 di�eren
e strategy is a binary operation 	 that uses this information to
ompute a probabilisti
 interval I = [L;U ℄ for the event (e1^:e2). When the eventsinvolved are 
lear from 
ontext, we use \I = I1	 I2" to denote \(e1 ^:e2; I) =(e1; I1)	 (e2; I2)". Di�eren
e strategies satisfy the following postulates:Bottomline: (I1 	 I2) � [min(L1; 1� U2);min(U1; 1� L2)℄.Ignoran
e: (I1 	 I2) � [max(0; L1 � U2);min(U1; 1� L2)℄.Identity: If (:e1 ^:e2) and (e1 ^:e2) are not 
ontradi
tory3, then (I1	 [0; 0℄)= I1.Examples of probabilisti
 
onjun
tion, disjun
tion, and di�eren
e strategies aregiven in Table II. Note that we do not assume any postulates that relate probabilis-ti
 
onjun
tion, disjun
tion, and di�eren
e strategies to ea
h other (for example,postulates that express the distributivity of 
onjun
tion and disjun
tion strategies).Readers may make su
h assumptions if they wish | however, the results of thispaper stand even if these assumptions are not made.Table II. Examples of probabilisti
 
ombination strategiesStrategy OperatorsIgnoran
e ([L1; U1℄
ig [L2; U2℄) � [max(0; L1 + L2 � 1);min(U1; U2)℄([L1; U1℄�ig [L2; U2℄) � [max(L1; L2);min(1; U1 + U2)℄([L1; U1℄	ig [L2; U2℄) � [max(0; L1 � U2);min(U1; 1� L2)℄Independen
e ([L1; U1℄
in [L2; U2℄) � [L1 � L2; U1 � U2℄([L1; U1℄�in [L2; U2℄) � [L1+L2�(L1 �L2); U1+U2�(U1 �U2)℄([L1; U1℄	in [L2; U2℄) � [L1 � (1� U2); U1 � (1� L2)℄Positive Correlation ([L1; U1℄
p
 [L2; U2℄) � [min(L1; L2);min(U1; U2)℄(when e1 implies e2, ([L1; U1℄�p
 [L2; U2℄) � [max(L1; L2);max(U1; U2)℄or e2 implies e1) ([L1; U1℄	p
 [L2; U2℄) � [max(0; L1 � U2);max(0; U1 � L2)℄Mutual Ex
lusion ([L1; U1℄
me [L2; U2℄) � [0; 0℄(when e1 and e2 are ([L1; U1℄�me [L2; U2℄) � [min(1; L1 + L2);min(1; U1 + U2)℄mutually ex
lusive) ([L1; U1℄	me [L2; U2℄) � [L1;min(U1; 1� L2)℄4.2 Probability Distribution Fun
tionsProbability distribution fun
tions assign probabilities to elementary events in a
oherent way. For example, if we are told that plant p1 is 
urrently at one of thelo
ations a; b; 
 with probability 60-70%, then a distribution fun
tion allows us toassign parts of this probability mass to the events \plant p1 is at lo
ation a," \plantp1 is at lo
ation b," and \plant p1 is at lo
ation 
."3Note that the pre
ondition is ne
essary. E.g., if I1= [0; 1℄, and :e1 ^:e2 (resp., e1 ^:e2) is 
on-tradi
tory, then (I1	 [0; 0℄)= [1; 1℄ 6= I1 (resp., (I1 	 [0; 0℄)= [0; 0℄ 6= I1) by the laws of probability.



8 � T. Eiter et al.De�nition 4.3 (distribution fun
tion) Let X be a �nite set. A (probability)distribution fun
tion � over X is a mapping from X to the real interval [0; 1℄ su
hthat �x2X �(x) � 1.We do not require that �x2X �(x) = 1 holds; a distribution fun
tion � with thisproperty is said to be 
omplete. The above de�nition allows to assign probabilitiesto a subset X � Y of elements, leaving the probabilities of the other elements open.An important distribution fun
tion whi
h we often en
ounter in pra
ti
e is theuniform distribution. For a �nite set X , it is de�ned by uX(x) = 1jXj for allx 2 X . We abbreviate uX by u, whenever X is 
lear from the 
ontext. Many otherdistribution fun
tions are 
on
eivable; we do not study this further here.De�nition 4.4 (probabilisti
 triple) A probabilisti
 triple hX;�; �i 
onsists ofa �nite set X , a distribution fun
tion � over X , and a fun
tion � : X ! [0; 1℄mapping X to the real interval [0; 1℄ su
h that (i) �(x) � �(x) for all x 2 X and(ii) Px2X �(x) � 1 hold.Informally, a probabilisti
 triple assigns to ea
h element x 2 X a probability interval[�(x); �(x)℄. This assignment is 
onsistent in the sense that we 
an assign ea
helement in X a probability p(x) from [�(x); �(x)℄ su
h that the sum of all p(x)adds up to 1. In the sequel, we impli
itly assume that all probabilisti
 tripleshX;�; �i are tight, i.e., for ea
h x 2 X , the bounds �(x) and �(x) are the minimumand maximum, respe
tively, of p(x) subje
t to all 
omplete distribution fun
tionsp over X su
h that p(x0) 2 [�(x0); �(x0)℄ for all x0 2 X . Thus, any probabilisti
triple that is entered by a user or 
omputed by our algebrai
 operations is impli
itlyassumed to be transformed into its tight equivalent (whi
h 
an easily be done).5. TYPES AND PROBABILISTIC OBJECT BASE SCHEMASIn this se
tion, we provide some basi
 de�nitions underlying a probabilisti
 ob-je
t base (POB). We �rst 
onsider types and values, and then the s
hema of aPOB. The notion of POB-s
hema is more 
omplex than in the 
ontext of rela-tional databases, and may lead to in
onsistent spe
i�
ations; we present eÆ
ientalgorithms for 
he
king s
hema 
onsisten
y.5.1 Types and ValuesWe start with the de�nition of types.De�nition 5.1 (types) Let A be a set of attributes and let T be a set of atomi
types. We de�ne types indu
tively as follows:|Every atomi
 type from T is a type.|If � is a type, then f�g is a type, whi
h is 
alled the set type of � ;|If A1; : : : ; Ak are pairwise di�erent attributes from A and �1; : : : ; �k are types,then [A1 : �1; : : : ; Ak : �k℄ is a type. This type is 
alled a tuple type over the setof attributes fA1; : : : ; Akg. Given su
h a type � = [A1 : �1; : : : ; Ak : �k℄, we use�:Ai to denote �i. We 
all A1; : : : ; Ak the top-level attributes of � .
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t Bases � 9Example 5.1 (Plant Example: types) In the Plant Example, some atomi
types from T are integer, real, string, soiltype, and suntype. The attributes soil,sun (sun-exposure), and rain (daily water) des
ribe 
onditions needed for a plantto grow. Some other attributes are pname, size, height, and width. Some (nonatomi
) types in
lude: fsoiltypeg, [soil : fsoiltypeg; sun : suntype; rain : integer℄, and[pname : string; size : [height : integer; width : integer℄℄.De�nition 5.2 (values) Every atomi
 type � 2 T has an asso
iated domaindom(�). We de�ne values by indu
tion as follows:|For all atomi
 types � 2 T , every v 2 dom(�) is a value of type � .|If v1; : : : ; vk are values of type � , then fv1; : : : ; vkg is a value of type f�g.|If A1; : : : ; Ak are pairwise di�erent attributes from A and v1; : : : ; vk are values oftypes �1; : : : ; �k, then [A1 : v1; : : : ; Ak : vk℄ is a value of type [A1 : �1; : : : ; Ak : �k℄.Example 5.2 (Plant Example: values) Let us return to the types of Exam-ple 5.1. We assign the usual domains to integer, real, and string. Let soiltypeand suntype be enumerated types having the domains floamy; swampy; sandyg andfmild;medium; heavyg, respe
tively. The value sets asso
iated with the types ofExample 5.1 are as follows:|soiltype: Any element of floamy; swampy; sandyg is a value of soiltype. For exam-ple, loamy is a value of soiltype. When asso
iated with a parti
ular plant, thisvalue might say that the plant needs loamy soil to 
ourish.|fsoiltypeg: Any set of values of soiltype is a value of this type. For exam-ple, if a parti
ular plant 
an grow well in either loamy or swampy soil, thenfloamy; swampyg is an appropriate value of this type that 
an be asso
iated withthis plant.|[soil : fsoiltypeg; sun : suntype; rain : integer℄: Any triple (v1; v2; v3) is a value of thistype, where v1 is a set of values of soiltype, v2 is a value of suntype, and v3 is avalue of integer. For example, (floamy; swampyg;mild; 3) is a value of this type.It says that the plant needs either loamy or swampy soil, mild sun, and 3 unitsof water per day to 
ourish.De�nition 5.3 (probabilisti
 tuple values) If A1; : : : ; Ak are pairwise distin
tattributes from A and (V1; �1; �1); : : : ; (Vk; �k; �k) are probabilisti
 triples whereV1; : : : ; Vk are sets of values of types �1; : : : ; �k, then the expression [A1 : (V1; �1; �1);: : : ; Ak : (Vk ; �k; �k)℄ is a probabilisti
 tuple value of type [A1 : �1; : : : ; Ak : �k℄ overthe set of attributes fA1; : : : ; Akg. For probabilisti
 tuple values ptv = [A1 : (V1; �1,�1); : : : ; Ak : (Vk ; �k; �k)℄, we use ptv :Ai to denote (Vi; �i; �i).Note that the order of the Ai : (Vi; �i; �i)'s in a probabilisti
 tuple value ptv =[A1 : (V1; �1; �1), : : : ; Ak : (Vk; �k; �k)℄ is not important.Example 5.3 (Plant Example: probabilisti
 tuple values) Assume we knowthat the soil type of a wild forest plant is loamy (presumably, as we 
an see, theplant is 
ourishing in the pla
e in whi
h it is 
urrently growing). Moreover, weare sure that this plant is Thyme, but unsure whether it is Fren
h Thyme (fren
h),



10 � T. Eiter et al.Silver Thyme (silver) or Wooly Thyme (wooly). If we are sure with 20{60% prob-ability ea
h that it is Fren
h Thyme, Silver Thyme, and Wooly Thyme, thenwe may en
ode this knowledge via the following probabilisti
 tuple value of type[soil : soiltype; 
lassi�
ation : string℄ over the set of attributes fsoil; 
lassi�
ationg:[soil : hfloamyg; u; ui; 
lassi�
ation : hffren
h; silver;woolyg; 0:6 u; 1:8 ui℄ .Note that the expressions \0:6 u" and \1:8 u" denote the distribution fun
tion � andthe fun
tion �, respe
tively, that are de�ned by �(x) = 0:6 �1=3 and �(x) = 1:8 �1=3for all x from ffren
h; silver;woolyg.In the above de�nition, a probabilisti
 triple (Vi; �i; �i) may only assign a prob-ability interval to some values v (viz. those in Vi) for the attribute Ai. Nothing isstated for the (possibly in�nitely many) other values that Ai 
ould have a

ordingto its type �i. We must �nd a 
lean and appealing way in whi
h su
h in
ompleteknowledge about the probability assignment is handled.As in relational databases, we adopt a 
losed world assumption (CWA): We as-sume that every value v 2 dom(�i) � Vi has probability 0, i.e., it is impli
itly as-signed the probability interval [0; 0℄. Under this 
onvention, \
onsisten
y" (whi
hwe will de�ne formally later) of the probability information given by (Vi; �i; �i) ispreserved in the larger 
ontext of dom(�i): there exists a probability fun
tion p overdom(�i) that is 
ompatible with (Vi; �i; �i) su
h that all p(v) with v 2 dom(�i) sumup to 1. The probabilisti
 obje
t base algebra de�ned in Se
tion 7 will be based onthis CWA. Noti
e that an open world view is still possible for parti
ular values. Wemay, for instan
e, add v to V and set �(v) = 0, �(v) = 1; this expli
itly expressesthat the probability of v is unknown.5.2 Probabilisti
 Obje
t Base S
hemaInformally, a probabilisti
 obje
t base s
hema 
onsists of a hierar
hy of 
lasses.Membership of an obje
t in an immediate sub
lass of any 
lass is expressed by aprobability value.De�nition 5.4 (probabilisti
 obje
t base s
hema) A probabilisti
 obje
t bases
hema (POB-s
hema) is a quintuple (C; �;);me; }), where:|C is a �nite set of 
lasses. Intuitively, these re
e
t the 
lasses asso
iated withthis probabilisti
 obje
t base.|� maps ea
h 
lass from C to a tuple type. Intuitively, this mapping spe
i�es thedata type of ea
h 
lass.|) is a binary relation on C su
h that (C;)) is a dire
ted a
y
li
 graph (dag).Intuitively, ea
h node of the dire
ted a
y
li
 graph (C;)) is a 
lass from C andea
h edge 
1 ) 
2 says that the 
lass 
1 is an immediate sub
lass of 
2.|me maps ea
h 
lass 
 to a partition of the set of all immediate sub
lasses of 
.Intuitively, suppose 
lass 
 has the �ve sub
lasses 
1; : : : ; 
5 and suppose me(
) isgiven by the partition ff
1; 
2g; f
3; 
4; 
5gg. Here, me(
) produ
es two 
lusters.An obje
t o 2 
 
an belong to either or both 
lusters. However, the 
lasses withina 
luster are mutually ex
lusive, i.e., o 
annot belong to both 
1 and 
2 at thesame time.



Probabilisti
 Obje
t Bases � 11|} maps ea
h edge in (C;)) to a positive rational 4 number in the unit inter-val [0; 1℄ su
h that for all 
lasses 
 and all 
lusters P 2 me(
), it holds that�d2P}(d; 
) � 1. Intuitively, if 
1 ) 
2, then }(
1; 
2) spe
i�es the 
onditionalprobability that an arbitrary obje
t belongs to the sub
lass 
1 given that it be-longs to the super
lass 
2. The summation 
ondition says that the sum of theprobabilities of edges within a mutually ex
lusive set of sub
lasses must sum upto less than or equal to 1.A dire
ted path in the dire
ted a
y
li
 graph (C;)) is a sequen
e of 
lasses 
1; 
2; : : : ,
k su
h that 
1 ) 
2 ) � � � ) 
k and k � 1. We use )? to denote the re
exiveand transitive 
losure of ). Note that )? indu
es a natural partial order � on Cby 
 � d i� 
)? d for all 
; d 2 C.We use S(
) = fd 2 C j d ) 
g to denote the set of all immediate sub
lasses of
 2 C, and S?(
) = fd 2 C j d )� 
g to denote the set of sub
lasses of 
 2 C. A
lass d is a sub
lass of a partition 
luster P i� d is a sub
lass of some 
 2 P .We will represent the above stru
ture (ex
luding the type assignment �) in agraphi
al way as shown in Figure 1, where the edges are labeled by 
onditionalprobabilities.Example 5.4 (Plant Example: probabilisti
 obje
t base s
hema) A POB-s
hema for the Plant Example may 
onsist of the following 
omponents:|C = fplants; annuals; perennials; vegetables; herbs; 
owers; annuals herbs,perennials 
owersg.|� is given by Table III.|(C;)) is the graph obtained from Figure 1 by 
ontra
ting the d-nodes to plantsand ignoring probabilities.|me is the partitioning of edges shown in Figure 1.|} is the probability assignment in Table IV.For example, annuals and annual herbs are sub
lasses of plants, and annuals is animmediate sub
lass of plants while annual herbs is not; annual herbs is a sub
lass ofthe 
luster fannuals, perennialsg.The POB-s
hemas de�ned thus far may be in
onsistent, i.e. it may not alwaysbe possible to �nd a set of obje
ts that satis�es the taxonomi
 and probabilisti
knowledge expressed by the dire
ted a
y
li
 graph, the partitioning of edges, andthe probability assignment. The formal de�nition of 
onsisten
y of a POB-s
hemais given below.De�nition 5.5 (
onsistent POB-s
hema) Let S = (C; �;);me; }) be a POB-s
hema. An interpretation of S is any mapping " from C to the set of all �nitesubsets of a set O. An interpretation " of S is 
alled a taxonomi
 model of S i�:4Note that we assume rational numbers here, sin
e we will adopt a probabilisti
 semanti
s of
lass hierar
hies that is based on relative 
ardinalities of sets of obje
ts. We 
an easily generalizeour model to real numbers, if we assume a more general probabilisti
 semanti
s that is based onreal-valued probability fun
tions over a set of possible worlds. All the results of this subse
tion,ex
ept for the NP-membership result in Theorem 5.2, 
arry over to this more general setting.



12 � T. Eiter et al. Table III. Type assignment �
 �(
)plants [pname : string; soil : soiltype; rain : integer℄annuals [pname : string; soil : soiltype; rain : integer;sun : suntype℄perennials [pname : string; soil : soiltype; rain : integer;sun : suntype; expyears : integer℄vegetables [pname : string; soil : soiltype; rain : integer;sun : suntype; expyears : integer℄herbs [pname : string; soil : soiltype; rain : integer;sun : suntype; expyears : integer; 
lassi�
ation : string℄
owers [pname : string; soil : soiltype; rain : integer;sun : suntype; expyears : integer; 
lassi�
ation : string℄annuals herbs [pname : string; soil : soiltype; rain : integer;sun : suntype; expyears : integer; 
lassi�
ation : string℄perennials 
owers [pname : string; soil : soiltype; rain : integer;sun : suntype; expyears : integer; 
lassi�
ation : string℄Table IV. Probability assignment }edge probabilityannuals) plants 0.6perennials) plants 0.4vegetables) plants 0.2herbs) plants 0.3
owers ) plants 0.4annuals herbs) annuals 0.4annuals herbs) herbs 0.8perennials 
owers ) perennials 0.3perennials 
owers ) 
owers 0.3C1 "(
) 6= ;, for all 
lasses 
 2 C.C2 "(
) � "(d), for all 
lasses 
; d 2 C with 
) d.C3 "(
)\ "(d) = ;, for all distin
t 
lasses 
; d 2 C that belong to the same 
lusterP 2 Sme(C).Two 
lasses 
; d 2 C are taxonomi
ally disjoint (t-disjoint) i� "(
) \ "(d) = ; forall taxonomi
 models " of S. " is a taxonomi
 and probabilisti
 model (or simplymodel) of S i� it is a taxonomi
 model of S and it satis�es the 
ondition:C4 j"(
)j = }(
; d) � j"(d)j for all 
lasses 
; d 2 C with 
) d.We say S is 
onsistent i� it has a model.Let us illustrate this de�nition within the Plant Example.



Probabilisti
 Obje
t Bases � 13Example 5.5 (Plant Example: 
onsistent POB-s
hema) Let S = (C; �;),me; }) be the POB-s
hema given in Example 5.4. Let O be a set of 
ardinality800, whi
h is partitioned into pairwise disjoint subsets O1, O2, . . . , O10 having
ardinalities 90, 27, 126, 45, 192, 21, 98, 35, 70, and 96, respe
tively. An interpre-tation " of S is given in Table V. It is easy to see that " is also a model of S. Forexample, "(plants) 6= ;, "(annuals) � "(plants), "(annuals) \ "(perennials) = ;, andj"(annuals)j = 0:6 � j"(plants)j. Hen
e, S is 
onsistent.Table V. Interpretation " of s
hema S
 "(
) j"(
)jplants O1 [ � � � [ O10 800annuals O1 [ � � � [ O5 480perennials O6 [ � � � [ O10 320vegetables O1 [ O9 160herbs O2 [ O5 [ O6 240
owers O3 [ O7 [ O10 320annuals herbs O5 192perennials 
owers O10 96It would be ni
e to have an eÆ
ient algorithm for de
iding the 
onsisten
y ofa given POB-s
hema. For this purpose, we need a suitable 
hara
terization of
onsisten
y. The following 
ondition is a natural 
andidate.De�nition 5.6 (pseudo-
onsistent POB-s
hema) The POB-s
hema S = (C,�;);me; }) is pseudo-
onsistent i� the following 
onditions hold:P1 For any two di�erent 
lasses 
1; 
2 2 C with 
1 )? 
2, the produ
t of the edgeprobabilities is the same on all paths from 
1 up to 
2.P2 For all 
lusters P 2Sme(C), no two distin
t 
lasses 
1; 
2 2P have a 
ommonsub
lass.Example 5.6 (Plant Example: pseudo-
onsistent POB-s
hema) It is easyto see that the POB-s
hema S = (C; �;);me; }) shown in Example 5.4 is pseudo-
onsistent:|The two paths from annuals herbs up to plants and from perennials 
owers up toplants have both 0.24 and 0.12, respe
tively, as the produ
t of the edge probabil-ities.|Neither annuals herbs nor perennials 
owers is a sub
lass of two t-disjoint 
lasses.Indeed, it is straightforward to show that pseudo-
onsisten
y is a ne
essary 
on-dition for 
onsisten
y.Theorem 5.1 Every 
onsistent POB-s
hema is pseudo-
onsistent.
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onsisten
y is not a suÆ
ient 
ondition for 
onsisten
y. Evenworse, de
iding the 
onsisten
y of a pseudo-
onsistent POB-s
hema is intra
table.We have the following result.Theorem 5.2 The problem of de
iding whether a given POB-s
hema S is 
onsis-tent is NP-
omplete. Hardness holds even if S is pseudo-
onsistent.Proof. The problem is in NP, sin
e it polynomially redu
es to the NP-
ompleteproblem of de
iding whether a weight formula is satis�able in a measurable proba-bility stru
ture [Fagin et al. 1990℄. Noti
e that the proof of NP-membership of thelatter problem heavily relies on results from the theory of linear programming (themain idea is to prove a small model theorem, whi
h says that a weight formula issatis�able in a measurable probability stru
ture i� it is satis�able in a measurableprobability stru
ture of polynomial size, see [Fagin et al. 1990℄).More pre
isely, weight formulas are de�ned as Boolean 
ombinations of basi
weight formulas, whi
h are expressions of the form a1 �w(�1) + � � �+ ak �w(�k) � awith integers a1; : : : ; ak; a and propositional formulas �1; : : : ; �k. A measurableprobability stru
ture 
an be identi�ed with a probability fun
tion on the �nite setof all truth assignments to the primitive propositions, whi
h is extended in a naturalway to propositional formulas, basi
 weight formulas, and weight formulas.It 
an now easily be shown that a POB-s
hema S = (C; �;);me; }) is 
onsis-tent i� the 
onjun
tion of the following weight formulas, whi
h 
apture C1{C4 inDe�nition 5.5, is satis�able:C1 :((�1) � w(
) � 0) for all 
lasses 
 2 C.C2 (w(
 ^ :d) � 0) ^ ((�1) � w(
 ^ :d) � 0) for all 
lasses 
; d 2 C with 
) d.C3 (w(
^d) � 0)^ ((�1) �w(
^d) � 0) for all distin
t 
lasses 
; d 2 C of the same
luster.C4 (n �w(
)+(�m) �w(d) � 0)^ ((�n) �w(
)+m �w(d) � 0) for all 
lasses 
; d 2 Cwith 
) d, where m and n are natural numbers su
h that }(
; d) = mn .The proof of NP-hardness is given in [Eiter et al. 1999℄. 2Nonetheless, polynomial algorithms for de
iding the 
onsisten
y of a POB-s
hemain relevant spe
ial 
ases may be possible. Well-stru
tured POB-s
hemas, whi
h weintrodu
e next, enjoy this property.De�nition 5.7 (well-stru
tured POB-s
hema) The POB-s
hema S = (C; � ,);me; }) is well-stru
tured i� the following 
onditions hold:W1 There exists a 
lass 
 2 C su
h that every 
lass d 2 C is a sub
lass of 
 (i.e.,the graph (C;)) has a top element).W2 For every 
lass 
 2 C and distin
t 
1; 
2 2 S(
), the set S := S?(
1) \ S?(
2)is either empty or has a unique element dm 6= 
1; 
2 su
h that d )? dm forall d 2 S (i.e., for every 
lass 
 2 C, any two distin
t immediate sub
lasses 
1and 
2 of 
 either have no 
ommon sub
lass or a greatest 
ommon sub
lassdm, whi
h is di�erent from them).
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t Bases � 15W3 For every 
lass 
2C, the undire
ted graph GS(
)= (V ; E) that is de�ned byV =me(
) and E = ffP1;P2g2V � V j P1 6= P2; S S?(P1) \ S S?(P2) 6= ;gis a
y
li
 (i.e., for every 
lass 
 2 C, the partition 
lusters in me(
) are not
y
li
ally 
onne
ted through 
ommon sub
lasses. Roughly speaking, multipleinheritan
e does not 
y
li
ally 
onne
t partition 
lusters).W4 For every 
lass 
 2 C: if the graph GS(
) has an edge, i.e., two distin
t 
lustersP1;P2 2 me(
) have a 
ommon sub
lass, then every path from a sub
lass of 
to the top element of (C;)) goes through 
 (i.e., multiple inheritan
e 
an belo
ally isolated in the graph (C;))).Informally, these 
onditions restri
t multiple inheritan
e so that a model forthe s
hema S 
an be built bottom up from models of subs
hemas. Spe
i�
ally,W2 and W3 ensure that a model for a subs
hema under a 
lass 
 2 C 
an be
onstru
ted from models of smaller subs
hemas that are related to the partition
lusters in me(
). Moreover, W4 and W1 ensure that these lo
al 
onstru
tionsdo not in
uen
e ea
h other, and that they yield a model for the whole s
hema S,respe
tively. We feel that well-stru
turedness is a reasonable restri
tion on multipleinheritan
e5. In parti
ular, W1 and W2 
an always be satis�ed by simply addingmissing top elements to 
ertain sets of 
lasses (during the design of a POB-s
hema,before spe
ifying the probability assignment }). Let us now re
onsider the PlantExample.Example 5.7 (Plant Example: well-stru
tured POB-s
hema) The POB-s
hema S given in Example 5.4 is well-stru
tured:|Every 
lass is a sub
lass of plants.|The 
lasses annuals herbs and perennials 
owers are t-disjoint.|There are no 
y
li
ally 
onne
ted partition 
lusters.|The multiple inheritan
e at the 
lasses annuals herbs and perennials 
owers islo
ally isolated under the 
lass plants.As far as well-stru
tured POB-s
hemas are 
on
erned, we have the ni
e result thatpseudo-
onsisten
y is a ne
essary and suÆ
ient 
ondition for 
onsisten
y. However,the proof of this result is highly nontrivial, see [Eiter et al. 1999℄.Theorem 5.3 Every pseudo-
onsistent and well-stru
tured POB-s
hema S is 
on-sistent.It is easily seen that any S = (C; �;);me; }) without multiple inheritan
e, i.e.,jfd 2 C j 
) dgj � 1 for ea
h 
lass 
 2 C, satis�es W2-W4. We obtain the following
orollary to Theorem 5.3.Corollary 5.4 Every POB-s
hema with top element and without multiple inheri-tan
e is 
onsistent.5Note that multiple inheritan
e was 
onsidered an optional feature of obje
t-oriented databasesystems in the \manifesto" [Atkinson et al. 1989℄.



16 � T. Eiter et al.It now remains to show that pseudo-
onsisten
y and well-stru
turedness of aPOB-s
hema 
an be de
ided eÆ
iently. We �rst �rst show, via Algorithm 5.2(whi
h used Algorithm 5.1) how to 
he
k pseudo-
onsisten
y.Theorem 5.5 The problem of de
iding whether a given POB-s
hema S = (C; �;),me; }) is pseudo-
onsistent 
an be done using Algorithm 5.2 in time O(n(e + n)),where n = jCj and e is the number of dire
ted edges in (C;)).Proof. Algorithm 5.2 de
ides the pseudo-
onsisten
y of S. It uses Algorithm 5.1,whi
h 
omputes the rea
hability relation of the graph (C;)).Algorithm 5.1 works as follows. Steps 1{4 initialize the rea
hability relation. Insteps 5{8, for ea
h 
lass 
, the set S(
) of all its sub
lasses, and the number Æ(
) ofall its immediate super
lasses are 
omputed. Step 9 
al
ulates the set of all 
lasses 
with Æ(
)= 0. The while-loop in 10{20 then 
omputes the rea
hability relation.In detail, every time step 10 is entered, the produ
t of the edge probabilities is
orre
tly 
omputed along all paths that involve only edges a) b with 
lasses b su
hthat Æ(b)= 0 and b =2N . Given this, in 11{18, we take some 
2N , and we 
orre
tly
ompute the edge probabilities along all paths d ) 
 )? e, where 
 )? e involvesonly edges a) b with 
lasses b su
h that Æ(b)= 0 and b =2N . In step 16, we returnnil when two distin
t produ
ts are 
omputed between two 
lasses d and e.In Algorithm 5.2, we �rst 
he
k in steps 1 and 2 whether the s
hema S violates P1.We then 
he
k in steps 3{5 whether a 
lass 
 exists that is a sub
lass of two distin
t
lasses in the same 
luster, that is, whether S violates P2.We now show that Algorithm 5.1 runs in time O(n(e + n)): The initializationsteps 1{4, 5{8, and 9 run in time O(n2), O(ne), and O(n), respe
tively. Next, itis easy to see that the for-loop in 15{17 is performed as many times as there areedges in (C;)), and ea
h exe
ution takes O(n) time. Thus, the whole while-loopin 10{20 runs in time O(ne).Hen
e, also Algorithm 5.2 runs in time O(n(e + n)): The steps 1{2 run in timeO(n(e+n)). The for-loop in 4{5 runs in linear time in the input size of me (i.e, in e).Thus, the whole for-loop in 3{5 runs in time O(ne). 2We now fo
us on de
iding well-stru
turedness via Algorithm 5.3.Theorem 5.6 The problem of de
iding whether a pseudo-
onsistent POB-s
hemaS = (C; �;), me; }) is well-stru
tured 
an be solved using Algorithm 5.3 in timeO(n2e), where n = jCj and e is the number of dire
ted edges in (C;)).Proof. Algorithm 5.3 de
ides the well-stru
turedness of S. Steps 1{3 
he
k whetherS satis�es W1. In 4{16, it is then 
he
ked whether S satis�es W2. Moreover, theunion of all undire
ted graphs GS(
) with 
 2 C and the set of all 
lasses withmultiple inheritan
e at sub
lasses are 
omputed. Step 17 
he
ks that all the graphsGS(
) with 
 2 C are a
y
li
, i.e., that S satis�es W3. In steps 18{22, it is �nally
he
ked whether S satis�es W4.We now show that Algorithm 5.3 runs in time O(n2e). It is easy to see thatsteps 1{2, 3, and 4 run in time O(ne), O(n), and O(n(e+n)) = O(ne), respe
tively(note that W1 ensures e � n� 1). Step 10 is done one time for ea
h edge in (C;))and ea
h 
lass in a set of 
lasses limited by C. The set D there 
an be 
omputed
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Algorithm 5.1: rea
hability(S)Input: POB-s
hema S = (C; �;);me; }).Output: If S does not satisfy P1, then nil is returned. Otherwise, a mapping w : C�C ! [0; 1℄is returned su
h that w(
; d) is the produ
t of the edge probabilities on all pathsfrom 
 up to d if su
h a path exists and w(
; d) is 0 otherwise.1. for ea
h 
; d 2 C do2. if 
 = d then w(
; d) := 13. else if 
) d then w(
; d) := }(
; d)4. else w(
; d) := 0;5. for ea
h 
 2 C do begin6. S(
) := fd 2 C j d) 
g;7. Æ(
) := jfd 2 C j 
) dgj8. end;9. N := f
 2 C j Æ(
) = 0g;10. while N 6= ; do begin11. take any 
 2 N ;12. for ea
h d 2 S(
) do begin13. Æ(d) := Æ(d) � 1;14. if Æ(d) = 0 then N := N [ fdg;15. for ea
h e 2 C with w(
; e) > 0 do16. if w(d; e) > 0 and w(d; e) 6= w(d; 
) �w(
; e) then return nil17. else w(d; e) := w(d; 
) �w(
; e)18. end;19. N := N � f
g;20. end;21. return w. Fig. 3. Algorithm 5.1
Algorithm 5.2: pseudo-
onsistent(S)Input: POB-s
hema S = (C; �;);me; }).Output: true if S is pseudo-
onsistent and false otherwise.1. w := rea
hability(S);2. if w = nil then return false; (S does not satisfy P1)3. for ea
h 
 2 C do4. for ea
h P 2 Sme(C) do5. if jfe 2 P jw(
; e) > 0gj > 1 then return false; (S does not satisfy P2)6. return true. (S is pseudo-
onsistent)Fig. 4. Algorithm 5.2



18 � T. Eiter et al.Algorithm 5.3: well-stru
tured(S)Input: Pseudo-
onsistent POB-s
hema S = (C; �;);me; }).Output: true if S is well-stru
tured and false otherwise.Notation: We use top(S) to denote the top element of (C;)). For 
lasses 
 2 C, theexpression S� 
 denotes the POB-s
hema that is obtained from S by removing 
.max(D), where D � C, is the set of all maximal members in D w.r.t. )?.1. for ea
h 
 2 C do2. Æ(
) := jfd 2 C j 
) dgj;3. if jf
 2 C j Æ(
) = 0gj > 1 then return false; (S does not satisfy W1)4. w := rea
hability(S);5. E := ;;6. M := ;;7. for ea
h 
 2 C do8. for ea
h distin
t P1;P2 2 me(
) do9. for ea
h (
1; 
2) 2 P1 � P2 do begin10. D := fd 2 C j w(d; 
1) > 0 and w(d; 
2) > 0g;11. if jmax(D)j > 1 or D \ f
1; 
2g 6= ; then return false (S does not satisfy W2)12. else if jmax(D)j = 1 then begin13. E := E [ ffP1;P2gg;14. M :=M [ f
g15. end16. end;17. if (Sme(C); E) 
ontains a 
y
le then return false; (S does not satisfy W3)18. for ea
h 
 2M do begin19. v := rea
hability(S� 
);20. for ea
h d 2 C with w(d; 
) > 0 do21. if v(d; top(S)) > 0 then return false; (S does not satisfy W4)22. end;23. return true. (S is well-stru
tured)Fig. 5. Algorithm 5.3in time O(n). The tests in steps 11 and 12 
an be done, using a simple algorithm,in time O(n). Hen
e, steps 5{16 run in time O(n2e). In step 17, the number of
lusters in Sme(C) is in the worst 
ase equal to e. Thus, step 17 
an be performedin time O(e) using standard algorithms for 
he
king a
y
li
ity. Finally, it is easyto see that steps 18{22 run in time O(n2e). 26. INHERITANCE AND PROBABILISTIC OBJECT BASE INSTANCESThus far, we have not addressed inheritan
e of attributes that may arise throughsub
lass relationships in a POB-s
hema S. For example, if 
 is a sub
lass of d,and d's type has a top-level attribute A, then 
lass 
 should inherit this attribute,unless 
 already has su
h an attribute. The issue of inheritan
e has been extensivelydis
ussed in the literature, e.g. [Bertino and Martino 1993℄. We now in
orporateinheritan
e in our framework, and de�ne instan
es of a POB-s
hema.6.1 Inheritan
e Completion and Fully Inherited S
hemasThe main idea behind the inheritan
e of attributes is that every 
lass should inheritall top-level attributes of all its super
lasses. In order to handle 
ases in whi
hthe same attribute is inherited from more than one super
lass, we make use ofinheritan
e strategies.



Probabilisti
 Obje
t Bases � 19Let us assume that any s
hema S = (C; �;);me; }) has an asso
iated inheritan
estrategy inhS that determines from whi
h super
lass d a 
lass 
 inherits a top-levelattribute A. More formally, let A denote the set of all top-level attributes of S.For ea
h pair (
; A) 2 C �A, let 
A be de�ned as follows:
A = fd 2 C j 
)? d; A is a top-level attribute of �(d)g :We now de�ne inhS : C�A! C as a partial mapping that assigns ea
h pair (
; A) 2C �A with 
A 6= ; a minimal element in 
A under the partial order )? (the valueof inhS(
; A) is unde�ned if 
A = ;). In parti
ular, inhS(
; A) = 
 if A is a top-levelattribute of �(
).This notion of inheritan
e strategy 
overs strategies (su
h as an ordering on
lasses) that are 
ommonly used to resolve multiple inheritan
e in pra
ti
e. Simi-larly, if we wish to use the strategy of the O2 system [Ban
ilhon et al. 1991℄ whererenamed inheritan
e of the same attribute with distin
t origins is desired, we 
ouldgeneralize inhS(
; A) to return all pairs (d;A0) with 
lasses d from whi
h attribute A,renamed to A0, is inherited.Applying inhS on a POB-s
hema S = (C; �;);me; }) indu
es another POB-s
hema S? = (C; �?;); me; }), whi
h only di�ers from S in its type assignment �?.More pre
isely, for ea
h 
 2 C, we de�ne �?(
) = [A1 : �(d1):A1; : : : ; Ak : �(dk):Ak ℄,where A1; : : : ; Ak are the top-level attributes that are inherited by 
 via inhS fromthe 
lasses d1; : : : ; dk, respe
tively. We 
all S? the inheritan
e 
ompletion of S. APOB-s
hema S is fully inherited i� S = S?.Example 6.1 (Plant Example: probabilisti
 obje
t base s
hema) Let us
onsider the POB-s
hema S = (C; �;);me; }) for the Plant Example de�ned inExample 5.4. It is easily 
he
ked that for every sub
lass 
 of any 
lass d, ea
htop-level attribute of �(d) is a top-level attribute of �(
), i.e., all attributes in d arealready present in 
. Thus, no attributes are inherited from proper super
lasses,whi
h means that S is fully inherited. The type assignment � in S may be 
onsid-ered ill-designed, however, as it does not re
e
t natural inheritan
e relationships.Consider now the redesigned s
hema S0 = (C; � 0;);me; }) with the redesignedtype assignment � 0 shown in Table VI, and adopt an inheritan
e strategy inhS0 thatresolves multiple inheritan
e by ordering \left-to-right" in Figure 1, i.e., ordersannuals before herbs and perennials before 
owers.6 Then, the original s
hema S isgiven by the inheritan
e 
ompletion of S0.In the rest of this paper, we impli
itly assume that all POB-s
hemas S are 
on-sistent (see De�nition 5.5), and that they are all fully inherited. In parti
ular,POB-instan
es in the next subse
tion, and operations in our POB-Algebra in Se
-tion 7 are de�ned with respe
t to fully inherited POB-s
hemas. Note that thesede�nitions 
an easily be extended to POB-s
hemas S that are not fully inherited.6.2 Probabilisti
 Obje
t Base Instan
eWe are now ready to de�ne a probabilisti
 obje
t base instan
e (POB-instan
e).The following assumption is 
ommon in obje
t-oriented databases [Kim 1990℄.6No renaming is assumed here for the same attribute with distin
t origins.



20 � T. Eiter et al.Table VI. Redesigned type assignment � 0
 � 0(
)plants [pname : string; soil : soiltype; rain : integer℄annuals [sun : suntype℄perennials [sun : suntype; expyears : integer℄vegetables [sun : suntype; expyears : integer℄herbs [sun : suntype; expyears : integer; 
lassi�
ation : string℄
owers [sun : suntype; expyears : integer; 
lassi�
ation : string℄annuals herbs [ ℄perennials 
owers [ ℄Assumption. In the rest of this paper, we assume that there is a (
ountably)in�nite set O of obje
t identi�ers (oids).Ea
h obje
t, represented by an oid, is asso
iated with a value. The obje
tspopulate a POB-instan
e as follows.De�nition 6.1 (probabilisti
 obje
t base instan
e) Let S = (C; �;);me; })be a 
onsistent POB-s
hema. A probabilisti
 obje
t base instan
e (POB-instan
e)over S is a pair (�; �), where:|� : C ! 2O maps ea
h 
lass 
 to a �nite subset of O, su
h that �(
1)\ �(
2) = ;for di�erent 
1; 
2 2 C. That is, the 
lasses in C are mapped to pairwise disjointsets of oids. We use �(C) to abbreviate Sf�(
) j 
 2 Cg. We de�ne the mapping�? : C ! 2O by �?(
) = Sf�(
0) j 
0 2 C; 
0 )? 
g.Intuitively, �(
) denotes the ids of all obje
ts that are de�ned in the 
lass 
, while�?(
) denotes the ids of all obje
ts that belong to the 
lass 
 (i.e., that are de�nedin 
 or in one of its proper sub
lasses).|� maps ea
h oid o 2 �(C) to a probabilisti
 tuple value of the appropriate type,i.e., type �(
) for the 
lass 
 su
h that o 2 �(
).Let us provide a POB-instan
e for the POB-s
hema of Example 5.4.Example 6.2 (Plant Example: probabilisti
 obje
t base instan
e)A POB-instan
e over the POB-s
hema shown in Example 5.4 is given as follows:|� and �? are the mappings shown in Table VII. Clearly, this is a very simpleprobabilisti
 obje
t base (it 
ontains only seven distin
t obje
ts).|� is the mapping shown in Table VIII.In 
lassi
al obje
t bases, the extent of a 
lass 
 
onsists of all oids belonging to
. The probabilisti
 extent of 
 spe
i�es the probability that an oid belongs to 
.De�nition 6.2 (probabilisti
 extent) Let I = (�; �) be a POB-instan
e overthe 
onsistent POB-s
hema S = (C; �;);me; }). For all 
lasses 
 2 C, the prob-abilisti
 extent of 
, denoted ext(
), maps ea
h oid o 2 �(C) to a set of rationalnumbers in [0; 1℄ as follows:(1) If o 2 �?(
), then ext(
)(o) = f1g.
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 Obje
t Bases � 21Table VII. Mappings � and �?
 �(
) �?(
)plants fo1g fo1; o2; o3; o4; o5; o6; o7gannuals fg fo2; o3; o5; o6; o7gperennials fg fo4gvegetables fg fgherbs fg fo2; o3; o5; o6; o7g
owers fg fo4gannuals herbs fo2; o3; o5; o6; o7g fo2; o3; o5; o6; o7gperennials 
owers fo4g fo4gTable VIII. Value assignment �oid �(oid)o1 [pname :hfLady-Fern;Ostri
h-Ferng; u; ui;soil : hfloamyg; u; ui;rain : hf25; : : : ; 30g; u;ui℄o2 [pname :hfCuban-Basil; Lemon-Basilg; u; ui;soil : hfloamy; sandyg; 0:7 u; 1:3 ui;rain : hf20; : : : ; 30g; u;ui;sun : hfmild;mediumg; 0:8 u; 1:2 ui;expyears : hf2; 3; 4g; 0:6 u; 1:8 ui;
lassi�
ation :hffren
h; silver;woolyg; 0:6 u; 1:8 ui℄o3 [pname : hfMintg; u; ui;soil : hfloamyg; u; ui;rain : hf20g; u; ui;sun : hfmildg; u; ui;expyears : hf2; 3; 4g; 0:6 u; 1:8 ui;
lassi�
ation :hffren
h; silver;woolyg; 0:6 u; 1:8 ui℄o4 [pname : hfAster; Salviag; u; ui;soil : hfloamy; sandyg; 0:6 u; 1:4 ui;rain : hf20; : : : ; 25g; u;ui;sun : hfmildg; u; ui;expyears : hf2; 3; 4g; 0:6 u; 1:8 ui;
lassi�
ation :hffren
h; silver;woolyg; 0:6 u; 1:8 ui℄

oid �(oid)o5 [pname : hfThymeg; u; ui;soil : hfloamyg; u; ui;rain : hf20; : : : ; 25g; u; ui;sun : hfmild;mediumg; 0:8 u; 1:2 ui;expyears : hf2; 3g; 0:8 u; 1:2 ui;
lassi�
ation :hffren
h; silver;woolyg; 0:6 u; 1:8 ui℄o6 [pname : hfMintg; u;ui;soil : hfloamyg; u; ui;rain : hf20g; u; ui;sun : hfmildg; u;ui;expyears : hf2; 3; 4g; 0:6 u; 1:8 ui;
lassi�
ation :hfapple; 
urlyg; 0:6 u; 1:4 ui℄o7 [pname : hfSageg; u; ui;soil : hfsandyg; u; ui;rain : hf20; 21g; u; ui;sun : hfmildg; u;ui;expyears : hf2; 3; 4g; 0:6 u; 1:8 ui;
lassi�
ation :hfred; tri
olorg; 0:6 u; 1:4 ui℄



22 � T. Eiter et al.(2) If o 2 �?(
0) with a 
lass 
0 2 C that is t-disjoint from 
 (i.e., for all models" of S, the sets "(
0) and "(
) are disjoint), then ext(
)(o) = f0g.(3) Otherwise, ext(
)(o)= fp j p is the produ
t of the edge probabilities on apath from 
 up to a 
lass 
0 2 C, where 
0 is minimal with o2�?(
0) and 
)? 
0g.We return to the Plant Example to see what the extents of the various 
lasses are.Example 6.3 (Plant Example: probabilisti
 extent) In the Plant Example,the probabilisti
 extents of annuals herbs and perennials 
owers are given as follows:ext(annuals herbs)(o1) = f0:24g ext(perennials 
owers)(o1) = f0:12gext(annuals herbs)(o2) = f1g ext(perennials 
owers)(o2) = f0gext(annuals herbs)(o3) = f1g ext(perennials 
owers)(o3) = f0gext(annuals herbs)(o4) = f0g ext(perennials 
owers)(o4) = f1gext(annuals herbs)(o5) = f1g ext(perennials 
owers)(o5) = f0gext(annuals herbs)(o6) = f1g ext(perennials 
owers)(o6) = f0gext(annuals herbs)(o7) = f1g ext(perennials 
owers)(o7) = f0gDe�nition 6.3 (
oherent POB-instan
e) Let I = (�; �) be a POB-instan
eover the 
onsistent POB-s
hema S = (C; �;);me; }). The POB-instan
e I is 
o-herent i� for all 
lasses 
 2 C and all obje
ts o 2 �(C), the probabilisti
 extentext(
)(o) 
ontains at most one element.It is easy to see that the Plant Example des
ribed thus far is 
oherent and thattesting 
oheren
e of a given POB-instan
e I of a 
onsistent s
hema S 
an be donein polynomial time.7. PROBABILISTIC OBJECT BASES: ALGEBRAIC OPERATIONSIn this se
tion, we formally de�ne the analogs of the 
lassi
al relational operationson POBs. All standard operations on POBs take POB-instan
es as input, andprodu
e POB-instan
es as output. Re
all that all POB-s
hemas of input POB-instan
es are impli
itly assumed to be 
onsistent and fully inherited.The probability 
omputations in our POB-algebra are based on probabilisti

ombination strategies. As shown in [Eiter et al. 2000a℄, all 
ommon probabilisti

ombination strategies 
an be 
omputed in a 
onstant number of operations fromthe input intervals. Thus, under these strategies, the probability 
omputations inour POB-algebra are all tra
table, and it is easy to see that our algebrai
 operationsare all 
omputable in polynomial time in the size of the input POB-instan
es.7.1 Sele
tionIntuitively, given a POB-instan
e I over the POB-s
hema S, the result of a sele
tionoperation is another POB-instan
e I0 over S su
h that the obje
ts in the extents ofthe 
lasses in I0 all satisfy the sele
tion 
ondition of the query. Before des
ribingthe sele
tion operation, we formally de�ne the syntax and the semanti
s of sele
-tion 
onditions. We start by de�ning the syntax of path expressions and sele
tionexpressions.



Probabilisti
 Obje
t Bases � 23De�nition 7.1 (path expression) Let � = [A1 : �1; : : : ; Ak : �k ℄ be any type. Wede�ne path expressions by indu
tion as follows: (i) every Ai is a path expressionfor � , and (ii) if Pi is a path expression for �i, then Ai:Pi is a path expression for � ,for every i = 1; : : : ; k.We use the Plant Example to demonstrate some path expressions.Example 7.1 (Plant Example: path expression) In the Plant Example, twopath expressions for the type [pname : string; size : [height : integer; width : integer℄℄are given by pname and size:height.We now de�ne the syntax of atomi
 sele
tion expressions.De�nition 7.2 (atomi
 sele
tion expression) Let S = (C; �;);me; }) be aPOB-s
hema and let X be a set of obje
t variables. An atomi
 sele
tion expressionhas one of the following forms:|x 2 
, where x is an obje
t variable from X , and 
 is a 
lass from C.|x:P � v, where x is an obje
t variable from X , P is a path expression overattributes from A, � is a binary predi
ate from f=; 6=;�;�; <;>;�;�;2;3g,and v is a value.|x:P1 =
 x:P2, where x is an obje
t variable from X , P1 and P2 are two distin
tpath expressions over attributes from A, and 
 is a probabilisti
 
onjun
tionstrategy.Let us 
onsider some examples of atomi
 sele
tion expressions.Example 7.2 (Plant Example: atomi
 sele
tion expression) In the PlantExample, some atomi
 sele
tion expressions are as follows (x is an obje
t variable):|Find all obje
ts that are annuals and herbs. This sele
tion 
an be represented bythe atomi
 sele
tion expression x 2 annuals herbs.|Find all obje
ts that require a mild sun. This sele
tion 
an be represented by theatomi
 sele
tion expression x:sun = mild.|Find all obje
ts that require over 21 units of rain. This sele
tion 
an be repre-sented by the atomi
 sele
tion expression x:rain > 21.We now de�ne the syntax of sele
tion expressions.De�nition 7.3 (sele
tion expression) Let S be a POB-s
hema. We de�ne 
on-jun
tive and disjun
tive sele
tion expressions by indu
tion as follows:If � is an atomi
 sele
tion expression and 
 is a probabilisti
 
onjun
tion strat-egy, then � is a 
onjun
tive sele
tion expression over 
. If � and  are 
onjun
tivesele
tion expressions over the same obje
t variable and the same probabilisti
 
on-jun
tion strategy 
, then �
  is a 
onjun
tive sele
tion expression over 
.If � is an atomi
 sele
tion expression and � is a probabilisti
 disjun
tion strat-egy, then � is a disjun
tive sele
tion expression over �. If � and  are disjun
tivesele
tion expressions over the same obje
t variable and the same probabilisti
 dis-jun
tion strategy �, then ��  is a disjun
tive sele
tion expression over �.A sele
tion expression is a 
onjun
tive or disjun
tive sele
tion expression.



24 � T. Eiter et al.Let us illustrate this de�nition via the Plant Example.Example 7.3 (Plant Example: sele
tion expression) In the Plant Example,some sele
tion expressions are given as follows (x is an obje
t variable):|The atomi
 sele
tion expressions x2 annuals herbs, x:sun=mild, and x:rain> 21given in Example 7.2 are sele
tion expressions.|Find all obje
ts that are annuals and herbs and that require a mild sun. Thissele
tion 
an be represented by the sele
tion expression x 2 annuals herbs 
x:sun=mild, where 
 is a probabilisti
 
onjun
tion strategy.|Find all obje
ts that require a mild sun or over 21 units of rain. This sele
tion
an be represented by the sele
tion expression x:sun=mild� x:rain> 21, where� is a probabilisti
 disjun
tion strategy.We are now ready to de�ne the syntax of sele
tion 
onditions.De�nition 7.4 (sele
tion 
ondition) Let S be a POB-s
hema. (i) If � is a se-le
tion expression and L and U are real numbers from [0; 1℄ with L � U , then(�)[L;U ℄ is a sele
tion 
ondition. (ii) If � and � are sele
tion 
onditions over thesame obje
t variable, then :�, (� ^ �), and (� _ �) are sele
tion 
onditions.Let us 
onsider some examples of sele
tion 
onditions.Example 7.4 (Plant Example: sele
tion 
ondition) In the Plant Example,some sele
tion 
onditions are given as follows (x is an obje
t variable):|The sele
tion of all obje
ts that require both a mild sun and over 21 units of rainwith a probability of 30{50%, 
an be done by using the sele
tion 
ondition(x:sun=mild
 x:rain> 21)[0:3; 0:5℄ ;where 
 is a probabilisti
 
onjun
tion strategy.|The sele
tion of all obje
ts that require a mild sun with a probability of at least40%, and over 21 units of rain with a probability of at least 80%, 
an be done byusing the following sele
tion 
ondition:(x:sun=mild)[0:4; 1℄ ^ (x:rain> 21)[0:8; 1℄ :|The sele
tion of all obje
ts that do not require a mild sun with a probability of atleast 40% 
an be done by using the following sele
tion 
ondition::(x:sun=mild)[0:4; 1℄ .Note that a sele
tion expression and a sele
tion 
ondition 
an 
ontain exa
tly oneobje
t variable.It now remains to de�ne the semanti
s of sele
tion expressions and sele
tion
onditions. For this purpose, ea
h triple (S; I; o) 
onsisting of a POB-s
hemaS=(C; �;);me; }), a POB-instan
e I=(�; �) over S, and an oid o2�(C) in I isasso
iated with a probabilisti
 interpretation probS;I;o, whi
h assigns a probabilityinterval to sele
tion expressions, and a truth value to sele
tion 
onditions. We �rstinterpret path expressions and sele
tion expressions.
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 Obje
t Bases � 25De�nition 7.5 (interpretation of path expressions) Suppose we are given atuple type � = [A1 : �1; : : : , Ak : �k℄. The interpretation of a path expression Pfor � under a value v = [A1 : v1; : : : ; Ak : vk℄ of type � , denoted v:P , is indu
tivelyde�ned by v:Ai = vi and v:Ai:Pi = vi:Pi, for every i = 1; : : : ; k.The following example shows how path expressions are interpreted.Example 7.5 (Plant Example: interpretation of path expressions) In thePlant Example, the interpretation of the path expressions pname and size:heightunder the value [pname : Thyme; size : [height : 4, width : 12℄℄ is given by the valuesThyme and 4, respe
tively.We next assign probabilisti
 intervals to atomi
 sele
tion expressions:De�nition 7.6 (interpretation of atomi
 sele
tion expressions) Supposewe are given a POB-instan
e I = (�; �) over the POB-s
hema S = (C; �;);me; }),and let o 2 �(C). The probabilisti
 interpretation with respe
t to S, I, and o,denoted probS;I;o, is the partial mapping from all atomi
 sele
tion expressions tothe set of all subintervals of [0; 1℄ that is de�ned as follows:|probS;I;o(x 2 
) = [min(ext(
)(o));max(ext(
)(o))℄. Intuitively, probS;I;o(x 2 
)des
ribes the interval for the probability that the obje
t o belongs to the 
lass 
.|If �(o):A = hV; �; �i, and P = AP 0 is a path expression for the type of o, whereP 0 is either empty or of the form :P 00, then:probS;I;o(x:P � v) = 8<:[ Pu2W �(u); min(1; Pu2W �(u))℄ ; if W 6= ; ;[0; 0℄ ; otherwise,where W = fu 2 V j uP 0 � vg. Note that probS;I;o(x:P � v) is unde�ned7, ifP is unde�ned for �(o), or if uP 0 � v is unde�ned for some u 2 V . Intuitively,probS;I;o(x:AP 0 � v) des
ribes the interval for the probability that the obje
t ohas a value u in attribute A su
h that uP 0 � v.|If �(o):Ai = hVi; �i; �ii, and Pi = AiPi0 is a path expression for the type of o,where Pi0 is either empty or of the form :Pi00, for i 2 f1; 2g, then:probS;I;o(x:P1 =
 x:P2) = 8<:[ Pu2W �(u); min(1; Pu2W �(u))℄ ; if W 6= ; ;[0; 0℄ ; otherwise,where W = f(u1; u2) 2 V1 � V2 j u1P10 = u2P20g, and[�(u); �(u)℄ = [�1(u1); �1(u1)℄
 [�2(u2); �2(u2)℄ for all u = (u1; u2) 2 W .Note that probS;I;o(x:P1 =
 x:P2) is unde�ned5, if P1 or P2 is unde�ned for �(o).Intuitively, probS;I;o(x:A1P10 =
 x:A2P20) des
ribes the interval for the probabil-ity that the obje
t o has a value u1 in attribute A1 and a value u2 in attribute A27As a 
onsequen
e, two sele
tions on I with respe
t to logi
ally equivalent sele
tion 
onditions �1and �2 generally produ
e the same result only when probS;I;o is de�ned for every atomi
 sele
tionexpression in �1 and �2, and every obje
t o in I.
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h that u1P10 = u2P20. The sele
ted 
onjun
tion strategy 
 re
e
ts the de-penden
ies between the two attributes A1 and A2.Let us give an example to illustrate this de�nition.Example 7.6 (interpretation of atomi
 sele
tion expressions) In the PlantExample, the probabilisti
 interpretations probS;I;o with o 2 fo1; o2; : : : ; o7g mapthe atomi
 sele
tion expressions x2 annuals herbs, x:sun=mild, and x:rain> 21 tothe subintervals of [0; 1℄ shown in Table IX.Table IX. Interpretation of atomi
 sele
tion expressionso probS;I;o(x 2 annuals herbs) probS;I;o(x:sun = mild) probS;I;o(x:rain > 21)o1 [0:24; 0:24℄ unde�ned [1:00; 1:00℄o2 [1:00; 1:00℄ [0:40; 0:60℄ [0:82; 0:82℄o3 [1:00; 1:00℄ [1:00; 1:00℄ [0:00; 0:00℄o4 [0:00; 0:00℄ [1:00; 1:00℄ [0:67; 0:67℄o5 [1:00; 1:00℄ [0:40; 0:60℄ [0:67; 0:67℄o6 [1:00; 1:00℄ [1:00; 1:00℄ [0:00; 0:00℄o7 [1:00; 1:00℄ [1:00; 1:00℄ [0:00; 0:00℄We now assign probabilisti
 intervals to sele
tion expressions:De�nition 7.7 (interpretation of sele
tion expressions) Let I = (�; �) be aPOB-instan
e over the POB-s
hema S = (C; �;);me; }) and let o 2 �(C). Weextend probS;I;o to a partial mapping from the set of all sele
tion expressions tothe set of all 
losed subintervals of [0,1℄ as follows:probS;I;o(� 
  ) = probS;I;o(�) 
 probS;I;o( ):probS;I;o(� �  ) = probS;I;o(�) � probS;I;o( ):Let us illustrate this de�nition via the Plant Example.Example 7.7 (Plant Example: interpretation of sele
tion expressions)In the Plant Example, the two sele
tion expressions �st = \x 2 annuals herbs 
stx:sun = mild" and  st = \x:sun = mild 
st x:rain > 21" are assigned the subinter-vals of [0; 1℄ shown in Table X.We are now ready to assign truth values to sele
tion 
onditions:De�nition 7.8 (satisfa
tion of sele
tion 
onditions) Let I = (�; �) be aPOB-instan
e over the POB-s
hema S = (C; �;);me; }) and let o 2 �(C). Weextend probS;I;o to sele
tion 
onditions as follows:|probS;I;o j= (�)[L;U ℄ i� probS;I;o(�) � [L;U ℄.|probS;I;o j= :� i� it is not the 
ase that probS;I;o j= �.|probS;I;o j= � ^  i� probS;I;o j= � and probS;I;o j=  .|probS;I;o j= � _  i� probS;I;o j= � or probS;I;o j=  .
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t Bases � 27Table X. Interpretation of sele
tion expressionso probS;I;o(�in) probS;I;o(�ig) probS;I;o( in ) probS;I;o( ig )o1 unde�ned unde�ned unde�ned unde�nedo2 [0:40; 0:60℄ [0:40; 0:60℄ [0:33; 0:49℄ [0:22; 0:60℄o3 [1:00; 1:00℄ [1:00; 1:00℄ [0:00; 0:00℄ [0:00; 0:00℄o4 [0:00; 0:00℄ [0:00; 0:00℄ [0:67; 0:67℄ [0:67; 0:67℄o5 [0:40; 0:60℄ [0:40; 0:60℄ [0:27; 0:40℄ [0:07; 0:60℄o6 [1:00; 1:00℄ [1:00; 1:00℄ [0:00; 0:00℄ [0:00; 0:00℄o7 [1:00; 1:00℄ [1:00; 1:00℄ [0:00; 0:00℄ [0:00; 0:00℄Let us give an illustrating example.Example 7.8 (Plant Example: satisfa
tion of sele
tion 
onditions) In thePlant Example, we have:|probS;I;o2 j= (x:sun=mild
in x:rain> 21)[0:3; 0:5℄ (see Example 7.7).|probS;I;o2 6j= (x:sun=mild
ig x:rain> 21)[0:3; 0:5℄ (see Example 7.7).|probS;I;o2 j= (x:sun=mild)[0:4; 1℄ ^ (x:rain> 21)[0:8; 1℄ (see Example 7.6).|probS;I;o3 6j= (x:sun=mild)[0:4; 1℄ ^ (x:rain> 21)[0:8; 1℄ (see Example 7.6).We are now �nally ready to de�ne the sele
tion operation.De�nition 7.9 (sele
tion on POB-instan
es) Let I = (�; �) be a POB-in-stan
e over the POB-s
hema S = (C; �;);me; }) and let � be a sele
tion 
onditionover the obje
t variable x. The sele
tion on I with respe
t to �, denoted ��(I), isthe POB-instan
e (�0; �0) over S, where:|�0(
) = fo 2 �(
) j probS;I;o j= � g.|�0 = � j�0(C) (i.e., the mapping � restri
ted to �0(C)).The following example shows pre
isely what happens in the Plant Example whenwe perform sele
tion with respe
t to sele
tion 
onditions.Example 7.9 (Plant Example: sele
tion) In the Plant Example, the sele
tionon I = (�; �) with respe
t to the sele
tion 
ondition(x:sun=mild)[0:4; 1℄ ^ (x:rain> 21)[0:8; 1℄is the POB-instan
e (�0; �0) over S (see Example 7.6), where �0 and �0 are shownin Tables XI and XII, respe
tively. This result is also obtained by the sele
tion onI with respe
t to (x:sun=mild
in x:rain> 21)[0:3; 0:5℄ (see Example 7.7).The sele
tion on I with respe
t to (x:sun=mild
ig x:rain> 21)[0:3; 0:5℄, in 
on-trast, produ
es the empty POB-instan
e over S (see Example 7.7).7.2 Proje
tion and RenamingIn this se
tion, we de�ne the proje
tion of POB-instan
es on arbitrary sets ofattributes, and the renaming of (top-level) attributes in POB-instan
es. We startby de�ning proje
tion on POB-instan
es. We �rst de�ne the proje
tion of POB-s
hemas on sets of attributes.



28 � T. Eiter et al. Table XI. �0 resulting from sele
tion
 �0(
)plants fgannuals fgperennials fgvegetables fgherbs fg
owers fgannuals herbs fo2gperennials 
owers fgTable XII. �0 resulting from sele
tionoid �0(oid)o2 [pname : hfCuban-Basil; Lemon-Basilg; u; ui;soil : hfloamy; sandyg; 0:7 u; 1:3 ui;rain : hf20; : : : ; 30g; u; ui;sun : hfmild;mediumg; 0:8 u; 1:2 ui;expyears : hf2; 3; 4g; 0:6 u; 1:8 ui;
lassi�
ation : hffren
h; silver;woolyg; 0:6 u; 1:8 ui℄De�nition 7.10 (proje
tion of POB-s
hemas) Let S = (C; �;);me; }) be aPOB-s
hema and let A be a set of attributes. The proje
tion of S on A, denoted�A(S), is the POB-s
hema (C; � 0;);me; }), where the new type � 0(
) of ea
h 
lass
 2 C is obtained from the old type �(
) = [B1 : �1; : : : ; Bk : �k℄ by deleting allBj : �j 's with Bj =2 A.Let us 
onsider an example to illustrate the proje
tion of POB-s
hemas.Example 7.10 (Plant Example: proje
tion of POB-s
hemas) Consider thePOB-s
hema S des
ribed in Example 5.4. Then, the proje
tion of S on the set ofattributes A = fpname; raing has the type assignment � 0 shown in Table XIII.Table XIII. � 0 resulting from proje
tion
 � 0(
)plants [pname : string; rain : integer℄annuals [pname : string; rain : integer℄perennials [pname : string; rain : integer℄vegetables [pname : string; rain : integer℄herbs [pname : string; rain : integer℄
owers [pname : string; rain : integer℄annuals herbs [pname : string; rain : integer℄perennials 
owers [pname : string; rain : integer℄
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 Obje
t Bases � 29We next de�ne the proje
tion of probabilisti
 tuple values.De�nition 7.11 (proje
tion of probabilisti
 tuple values)Let ptv be a prob-abilisti
 tuple value of the form [B1 : (V1; �1; �1); : : : ; Bk : (Vk ; �k; �k)℄ and let A bea set of attributes. The proje
tion of ptv on A, denoted �A(ptv), is obtainedfrom [B1 : (V1; �1; �1); : : : ; Bk : (Vk ; �k; �k)℄ by deleting all Bj : (Vj ; �j ; �j)'s withBj =2 A.We give a small example to illustrate the proje
tion of probabilisti
 tuple values.Example 7.11 (Plant Example: proje
tion of probabilisti
 tuple values)Let the probabilisti
 tuple value ptv be given as follows (note that ptv is asso
iatedwith the obje
t o2 in Example 6.2):ptv = [ pname : hfCuban-Basil; Lemon-Basilg; u; ui;soil : hfloamy; sandyg; 0:7 u; 1:3 ui;rain : hf20; : : : ; 30g; u; ui;sun : hfmild;mediumg; 0:8 u; 1:2 ui;expyears : hf2; 3; 4g; 0:6 u; 1:8 ui;
lassi�
ation : hffren
h; silver;woolyg; 0:6 u; 1:8 ui℄ :The proje
tion of ptv on the set of attributes A = fpname; raing is given as follows:�A(ptv )= [pname : hfCuban-Basil; Lemon-Basilg; u; ui; rain : hf20; : : : ; 30g; u; ui℄ :We are now ready to de�ne proje
tion of POB-instan
es.De�nition 7.12 (proje
tion of POB-instan
es) Let I = (�; �) be a POB-in-stan
e over the POB-s
hema S = (C; �;);me; }) and let A be a set of attributes.The proje
tion of I on A, denoted �A(I), is de�ned as the POB-instan
e (�0; �0)over the POB-s
hema �A(S), where:|�0(
) = �(
) for all 
lasses 
 2 C.|�0(o) = �A(�(o)) for all oids o 2 �(C).Let us illustrate this de�nition within the Plant Example.Example 7.12 (Plant Example: proje
tion of POB-instan
es) Let us 
on-sider the POB-instan
e I = (�; �) des
ribed in Example 6.2. The proje
tion of Ion A = fpname; raing is the POB-instan
e (�0; �0), where �0 is the same as �, and�0 is given in Table XIV.We next de�ne the renaming of (top-level) attributes in POB-instan
es. Thisoperation is espe
ially useful in 
onne
tion with Cartesian produ
t and join (seeSe
tions 7.3 and 7.4). We �rst de�ne renaming expressions.De�nition 7.13 (renaming expression) Let S = (C; �;);me; }) be a POB-s
hema and let A be the set of all top-level attributes of S. A renaming ex-pression has the form ~B ~C, where ~B = B1; B2; : : : ; Bl is a list of distin
t at-tributes from A, and ~C = C1; C2; : : : ; Cl is a list of distin
t attributes from



30 � T. Eiter et al.Table XIV. �0 resulting from proje
tionoid �0(oid)o1 [pname : hfLady-Fern;Ostri
h-Ferng; u; ui,rain : hf25; : : : ; 30g; u; ui℄o2 [pname : hfCuban-Basil; Lemon-Basilg; u;ui,rain : hf20; : : : ; 30g; u; ui℄o3 [pname : hfMintg; u;ui, rain : hf20g; u; ui℄o4 [pname : hfAster; Salviag; u; ui,rain : hf20; : : : ; 25g; u; ui℄o5 [pname : hfThymeg; u; ui, rain : hf20; : : : ; 25g; u; ui℄o6 [pname : hfMintg; u;ui, rain : hf20g; u; ui℄o7 [pname : hfSageg; u; ui, rain : hf20; 21g; u; ui℄A � (A � fB1; B2; : : : ; Blg) (this 
ondition ensures that ea
h attribute Ci thatbelongs to A must also o

ur in ~B, i.e., ea
h su
h Ci must itself be renamed).We now de�ne the renaming of attributes in POB-s
hemas.De�nition 7.14 (renaming in POB-s
hemas) Let S = (C; �;);me; }) be aPOB-s
hema and let N = B1; B2; : : : ; Bl C1; C2; : : : ; Cl be a renaming expres-sion. The renaming in S with respe
t to N , denoted ÆN (S), is the POB-s
hema(C; � 0;);me; }), where the new type � 0(
) of ea
h 
lass 
 2 C is obtained from theold type �(
) = [A1 : �1; : : : ; Ak : �k℄ by repla
ing ea
h attribute Aj with Aj = Bifor some i 2 f1; : : : ; lg by the new attribute Ci.Note. Though the above de�nition does not in
lude renaming of nested at-tributes, this may be a

omplished by a straightforward extension. For the sake ofsimpli
ity, we skip this.Let us give an example to illustrate the renaming of attributes in POB-s
hemas.Example 7.13 (Plant Example: renaming in POB-s
hemas) Let us 
on-sider again the POB-s
hema S 
omputed in Example 7.10. The renaming in Swith respe
t to the renaming expressionpname; rain  pname2; rain2has the type assignment � 0 shown in Table XV.We next de�ne the renaming of attributes in probabilisti
 tuple values.De�nition 7.15 (renaming in probabilisti
 tuple values) Let ptv be a prob-abilisti
 tuple value of the form [A1 : (V1; �1; �1), : : : , Ak : (Vk ; �k; �k)℄ and letN = B1; B2; : : : ; Bl  C1; C2; : : : ; Cl be a renaming expression. The renamingin ptv with respe
t to N , denoted ÆN (ptv), is obtained from [A1 : (V1; �1; �1), : : : ,Ak : (Vk ; �k; �k)℄ by repla
ing ea
h attribute Aj with Aj =Bi for some i2f1; : : : ; lgby the new attribute Ci.
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t Bases � 31Table XV. � 0 resulting from renaming
 � 0(
)plants [pname2 : string; rain2 : integer℄annuals [pname2 : string; rain2 : integer℄perennials [pname2 : string; rain2 : integer℄vegetables [pname2 : string; rain2 : integer℄herbs [pname2 : string; rain2 : integer℄
owers [pname2 : string; rain2 : integer℄annuals herbs [pname2 : string; rain2 : integer℄perennials 
owers [pname2 : string; rain2 : integer℄We are now ready to de�ne the renaming of attributes in POB-instan
es.De�nition 7.16 (renaming in POB-instan
es) Let I = (�; �) be a POB-in-stan
e over the POB-s
hema S = (C; �;);me; }) and let N be a renaming ex-pression. The renaming in I with respe
t to N , denoted ÆN (I), is de�ned as thePOB-instan
e (�0; �0) over the POB-s
hema ÆN (S), where:|�0(
) = �(
) for all 
lasses 
 2 C.|�0(o) = ÆN (�(o)) for all oids o 2 �(C).Let us illustrate this de�nition within the Plant Example.Example 7.14 (Plant Example: renaming in POB-instan
es) Let us 
on-sider the POB-instan
e I = (�; �) 
omputed in Example 7.12. The renaming in Iwith respe
t to the renaming expression pname; rain pname2; rain2 is the POB-instan
e (�0; �0), where �0 is the same as �, and �0 is given in Table XVI.7.3 Cartesian Produ
tIn relational databases, the Cartesian produ
t of two relations 
onsists of the set ofall tuples that 
an be obtained by 
on
atenating a tuple in the �rst relation witha tuple in the se
ond relation. If one follows this intuition, the Cartesian produ
tof two POB-instan
es should be obtained by 
on
atenating the property list of anyobje
t in the �rst POB-instan
e with the property list of any obje
t in the se
ondPOB-instan
e. This will be the intuition underlying our de�nition of Cartesianprodu
t (a similar idea stands behind Ojoin by Shaw and Zdonik [1990℄).Let us �rst 
ome ba
k to the Plant Example to show that the Cartesian produ
tis meaningful.Example 7.15 (Plant Example: Cartesian produ
t) Suppose we are inter-ested in pairs of plants that 
ourish with a 
ertain probability in the same en-vironment (for example, in pairs of plants that have the same rain requirementswith some probability). To obtain this information, we must somehow 
onne
t theknowledge tied to ea
h oid with the knowledge tied to other oids.The �rst 
hallenge in de�ning the Cartesian produ
t of two POB-instan
es is thefollowing. Suppose we know that the POB-s
hemas of our two POB-instan
es are



32 � T. Eiter et al. Table XVI. �0 resulting from renamingoid �0(oid)o1 [pname2 : hfLady-Fern;Ostri
h-Ferng; u; ui,rain2 : hf25; : : : ; 30g; u; ui℄o2 [pname2 : hfCuban-Basil; Lemon-Basilg; u; ui,rain2 : hf20; : : : ; 30g; u; ui℄o3 [pname2 : hfMintg; u; ui,rain2 : hf20g; u; ui℄o4 [pname2 : hfAster; Salviag; u; ui,rain2 : hf20; : : : ; 25g; u; ui℄o5 [pname2 : hfThymeg; u; ui,rain2 : hf20; : : : ; 25g; u; ui℄o6 [pname2 : hfMintg; u; ui,rain2 : hf20g; u; ui℄o7 [pname2 : hfSageg; u; ui,rain2 : hf20; 21g; u; ui℄S1 = (C1; �1;)1;me1; }1) and S2 = (C2; �2;)2;me2; }2). Let the POB-s
hema ofthe Cartesian produ
t instan
e be denoted by S = (C; �;);me; }). What shouldthe relationship between S1, S2, and S be?Re
all �rst that in 
lassi
al relational algebra (based on attributes, and not on anumbering of the 
olumns in ea
h relation), the Cartesian produ
t R1 �R2 of tworelation s
hemas R1 and R2 is in general only de�ned if they have disjoint sets ofattributes. Thus, we de�ne the Cartesian produ
t only for two input s
hemas S1and S2 that do not have any top-level attributes in 
ommon.Re
all next that in 
lassi
al relational algebra, R1�R2 and R2�R1 yield the sames
hema. Similarly, we also desire that S1�S2 = S2�S1 holds in our POB-algebra.Suppose now that the sets of 
lasses of S1 � S2 and S2 � S1 are given by C1 � C2and C2�C1, respe
tively. Then, the desired relationship S1�S2 = S2�S1 impliesthe 
ondition C1�C2 = C2�C1. The latter is a
hieved by the following te
hnique ofassuming that every set of 
lasses of a POB-s
hema is a
tually a 
lassi
al relationover a 
lassi
al relation s
hema:Assumption. In the rest of this paper, we assume that for ea
h POB-s
hemaS = (C; �;);me; }), the set of 
lasses C is a 
lassi
al relation over a 
lassi
alrelation s
hema R(S) = fA1; : : : ; Amg asso
iated with S. That is, ea
h 
lass 
 2 Cis 
onsidered as a tuple over R(S). In parti
ular, for ea
h basi
 POB-s
hema S, therelation s
hema R(S) 
onsists of a single distinguished attribute AS.Thus, as another restri
tion on the input s
hemas S1 and S2, we also assumethat R(S1) and R(S2) are disjoint. We now summarize whi
h POB-s
hemas S1and S2 
an be 
ombined using Cartesian produ
t.De�nition 7.17 (Cartesian-produ
t-
ompatible POB-s
hemas) The POB-s
hemas S1 = (C1; �1;)1, me1; }1) and S2 = (C2; �2;)2;me2; }2) are Cartesian-produ
t-
ompatible i� S1 and S2 do not have any top-level attributes in 
ommon,



Probabilisti
 Obje
t Bases � 33and R(S1) and R(S2) are disjoint.Note that any two POB-s
hemas S1 and S2 
an be made Cartesian-produ
t-
ompatible by renaming all the 
ommon top-level attributes of S1 and S2, and allthe attributes in R(S1) \ R(S2).We are now ready to de�ne the Cartesian produ
t of two s
hemas S1 and S2.De�nition 7.18 (Cartesian produ
t of POB-s
hemas) Let S1 = (C1; �1;)1,me1; }1) and S2 = (C2; �2,)2;me2; }2) be two Cartesian-produ
t-
ompatible POB-s
hemas, and let R1=R(S1) and R2=R(S2). The Cartesian produ
t of S1 and S2,denoted S1�S2, is the POB-s
hema S=(C; �;);me; }) su
h that:|C = C1 � C2.|For all 
lasses 
 2 C, let �(
[R1℄; 
[R2℄) = [A1 : �1, : : : , Ak : �k, Ak+1 : �k+1,: : : , Ak+m : �k+m℄, where �1(
[R1℄) = [A1 : �1, : : : , Ak : �k℄ and �2(
[R2℄) =[Ak+1 : �k+1, : : : , Ak+m : �k+m℄.8|The dire
ted a
y
li
 graph (C;)) is de�ned as follows. For all 
; d 2 C:
) d i� (
[R1℄)1 d[R1℄^
[R2℄ = d[R2℄) or (
[R1℄ = d[R1℄^
[R2℄)2 d[R2℄):|The partitioning me is given as follows. For all 
 2 C:me(
) = fP1�f
[R2℄g j P1 2 me1(
[R1℄)g [ ff
[R1℄g�P2 j P2 2 me2(
[R2℄)g:|The probability assignment } is de�ned as follows. For all 
) d:}(
; d) = (}1(
[R1℄; d[R1℄) if 
[R2℄ = d[R2℄}2(
[R2℄; d[R2℄) if 
[R1℄ = d[R1℄ .(Note that C = C1 � C2 impli
itly de�nes that R(S) = R1 [R2.)Let us illustrate this de�nition within the Plant Example.Example 7.16 (Plant Example: Cartesian produ
t of POB-s
hemas) LetS1 be the POB-s
hema 
omputed in Example 7.10, and let S2 be the POB-s
hema
omputed in Example 7.13 in whi
h ea
h 
lass 
 is repla
ed by 
0. The Cartesianprodu
t s
hema S1 � S2 = (C; �;);me; }) is given as follows:|A partial view on the set of 
lasses C is given in Figure 6 (note that we use pl, an,pe, ve, he, 
, ah, and pf as abbreviations for plants, annuals, perennials, vegetables,herbs, 
owers, annuals herbs, and perennials 
owers, respe
tively).|Ea
h 
lass 
 2 C is assigned the following type under � :�(
) = [pname : string; rain : integer; pname2 : string; rain2 : integer℄ :|A partial view on the dire
ted a
y
li
 graph (C;)), the partitioning me, and theprobability assignment } is also given in Figure 6.We now de�ne the Cartesian produ
t of probabilisti
 tuple values.8As usual, 
[U ℄ denotes the restri
tion of tuple 
 to the attributes in U .
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Fig. 6. Some 
lasses in the Cartesian produ
t of the Plant ExampleDe�nition 7.19 (Cartesian produ
t of probabilisti
 tuple values) Let ptv 1and ptv2 be two probabilisti
 tuple values over the disjoint sets of attributes A1and A2, respe
tively. The Cartesian produ
t of ptv1 and ptv2, denoted ptv1�ptv2,is the probabilisti
 tuple value ptv over the set of attributes A1 [A2 de�ned by:|ptv :A = ptv1:A for all attributes A 2 A1 .|ptv :A = ptv2:A for all attributes A 2 A2 .Note that ptv1 � ptv2 = ptv2 � ptv1, sin
e by 
onvention the ordering of attributesin a probabilisti
 tuple value is immaterial.Example 7.17 (Cartesian produ
t of probabilisti
 tuple values) Considerthe following two probabilisti
 tuple values (taken from Examples 7.12 and 7.14,respe
tively):ptv 1 = [pname : hfCuban-Basil; Lemon-Basilg; u; ui; rain : hf20; : : : ; 30g; u; ui℄ptv 2 = [pname2 : hfMintg; u; ui; rain2 : hf20g; u; ui℄ :The Cartesian produ
t ptv1 � ptv 2 of ptv1 and ptv 2 is given as follows:[pname : hfCuban-Basil; Lemon-Basilg; u; ui; rain : hf20; : : : ; 30g; u; ui;pname2 : hfMintg; u; ui; rain2 : hf20g; u; ui℄:We are �nally ready to de�ne the Cartesian produ
t of two POB-instan
es.Assumption. In the rest of this paper, we assume that ea
h oid o 2 O that o

ursin a POB-instan
e I over S is a tuple over R(S) = fA1; : : : ; Amg. Ea
h su
h o maybe written as (o[A1℄; : : : ; o[Am℄).Roughly speaking, ea
h obje
t in the Cartesian produ
t instan
e is obtained fromtwo obje
ts in the input instan
es by �rst 
on
atenating their two oids, and se
ond
olle
ting all their attribute values. The 
lass in whi
h the new obje
t is de�ned isobtained by 
on
atenating the 
lasses in whi
h the two input obje
ts are de�ned.
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t Bases � 35De�nition 7.20 (Cartesian produ
t of POB-instan
es) Let I1 = (�1; �1)and I2 = (�2; �2) be two POB-instan
es over the Cartesian-produ
t-
ompatiblePOB-s
hemas S1=(C1; �1;)1;me1; }1) and S2 = (C2, �2;)2;me2; }2), respe
-tively, and let R1 = R(S1) and R2 = R(S2). The Cartesian produ
t of I1 and I2,denoted I1 � I2, is de�ned as the POB-instan
e (�; �) over the POB-s
hema S =S1 � S2, where|�(
) = �1(
[R1℄)��2(
[R2℄), for all 
2C (here, �(
)�O is assumed, for all 
2C).|�(o) = �1(o[R1℄)� �2(o[R2℄), for all o 2 �(C).Let us illustrate this de�nition within the Plant Example.Example 7.18 (Plant Example: Cartesian produ
t of POB-instan
es)Let I1 and I2 be the two POB-instan
es 
omputed in Examples 7.12 and 7.14,respe
tively. The Cartesian produ
t of I1 and I2 is the POB-instan
e (�; �), wherepartial views of � and � are given in Tables XVII and XVIII, respe
tively.Table XVII. � resulting from Cartesian produ
t (partial view)
 �(
)(pl; pl) f(o1; o1)g(an; pl) fg(ah; pl) f(o2; o1); (o3; o1); (o5; o1); (o6; o1); (o7; o1)g(pf; pl) f(o4; o1)gTable XVIII. � resulting from Cartesian produ
t (partial view)oid �(oid)(o1; o1) [pname : hfLady-Fern;Ostri
h-Ferng; u; ui,rain : hf25; : : : ; 30g; u; ui,pname2 : hfLady-Fern;Ostri
h-Ferng; u; ui,rain2 : hf25; : : : ; 30g; u;ui℄(o2; o1) [pname : hfCuban-Basil; Lemon-Basilg; u; ui,rain : hf20; : : : ; 30g; u; ui,pname2 : hfLady-Fern;Ostri
h-Ferng; u; ui,rain2 : hf25; : : : ; 30g; u;ui℄(o3; o1) [pname : hfMintg; u; ui,rain : hf20g; u;ui,pname2 : hfLady-Fern;Ostri
h-Ferng; u; ui,rain2 : hf25; : : : ; 30g; u;ui℄7.4 JoinIn 
lassi
al relational databases, the join operator is a generalization of the Carte-sian produ
t. This will also be the 
ase for the join of POB-instan
es, whi
h isde�ned in this se
tion. We start with the notion of join-
ompatibility.
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ompatible POB-s
hemas) Two POB-s
hemas S1 =(C1; �1, )1;me1, }1) and S2 = (C2, �2;)2;me2; }2) are join-
ompatible i� R(S1)and R(S2) are disjoint and �1(
1):A = �2(
2):A for all 
lasses 
1 2 C1, 
2 2 C2 andattributes A de�ned for both �1(
1) and �2(
2).We next de�ne the join of two POB-s
hemas.De�nition 7.22 (join of POB-s
hemas) Let S1 = (C1; �1;)1;me1; }1) and S2= (C2, �2;)2, me2; }2) be two join-
ompatible POB-s
hemas, and let R1 = R(S1)and R2 = R(S2) . The join of S1 and S2, denoted S1 ./ S2, is the POB-s
hemaS = (C; �;);me; }), where C, ), me, and } are as in the de�nition of S = S1�S2(see De�nition 7.18), and � is de�ned as follows:|For all 
 2 C, the tuple type �(
) = [A1 : �1; : : : ; Al : �l℄ 
ontains exa
tly all Ai : �ithat belong to either the tuple type �1(
[R1℄) or the tuple type �2(
[R2℄).For the join of two probabilisti
 tuple values ptv1 and ptv2, we need to 
ombinethe two values of a 
ommon attribute Ai to a single value for the result. Thisis done through 
onjun
tion of the probabilisti
 triples representing these values,along the following de�nition.De�nition 7.23 (
onjun
tion strategies on probabilisti
 triples) Let pt1=(V 0; �0; �0), pt2=(V 00; �00; �00) be probabilisti
 triples, and let 
 be a probabilisti

onjun
tion strategy. Then, pt1
 pt2 is the probabilisti
 triple pt=(V; �; �) with:|V = fv 2 V 0 \ V 00 j [�0(v); �0(v)℄
 [�00(v); �00(v)℄ 6= [0; 0℄g.|[�(v); �(v)℄ = [�0(v); �0(v)℄
 [�00(v); �00(v)℄ for all v 2 V .Note that impossible values v in V 0 \ V 00 (having probability 0) are ex
ludedfrom V as they are impli
itly represented by the CWA. The out
ome pt = pt1
pt2is well-de�ned only if pt is 
onsistent, whi
h requires that Pv2V �(v) � 1. Whenan in
onsisten
y arises, we 
ag an error. Moreover, note that when some inter-vals [�0(v); �0(v)℄ and [�00(v); �00(v)℄ are in
onsistent under the event dependen
iesasso
iated with 
 (see De�nition 4.1), we also 
ag an error.We now de�ne the join of two probabilisti
 tuple values.De�nition 7.24 (join of probabilisti
 tuple values) Let ptv1 and ptv2 be twoprobabilisti
 tuple values over the sets of attributes A1 and A2, respe
tively, su
hthat for all A 2 A1\A2, the values ptv1:A and ptv2:A are of the same type. Let 
be a probabilisti
 
onjun
tion strategy. The join of ptv1 and ptv2 under 
, denotedptv1 ./
 ptv2, is the probabilisti
 tuple value ptv over A1 [A2 de�ned by:|ptv :A = ptv1:A for all attributes A 2 A1 �A2 .|ptv :A = ptv2:A for all attributes A 2 A2 �A1 .|ptv :A = ptv1:A
 ptv 2:A for all attributes A 2 A1 \A2 .Note that for any probabilisti
 
onjun
tion strategy 
, ptv1 ./
 ptv2 = ptv2 ./
ptv1, i.e., the join of probabilisti
 tuple values is 
ommutative.
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t Bases � 37Example 7.19 Let us 
onsider the following two probabilisti
 tuple values:ptv1 = [A : hfa; bg; 0:6 u; 1:4 ui; B : hfa; 
g; 0:7 u; 1:3 ui℄ ;ptv2 = [A : hfa; b; 
g; 0:3 u; 2:4 ui; C : hf
; dg; 0:4 u; 1:6 ui℄ :The join ptv1 ./
in ptv2 of ptv1 and ptv2 under independen
e is given by:[A : hfa; bg; 0:06 u; 1:12 ui; B : hfa; 
g; 0:7 u; 1:3 ui; C : hf
; dg; 0:4 u; 1:6 ui℄ :We are now ready to de�ne the join of two POB-instan
es.De�nition 7.25 (join of POB-instan
es) Let I1 = (�1; �1) and I2 = (�2; �2)be POB-instan
es over the join-
ompatible POB-s
hemas S1 = (C1; �1;)1;me1; }1)and S2 = (C2; �2;)2;me2; }2), respe
tively, and let R1 = R(S1) and R2 = R(S2).Let A1 and A2 be the sets of top-level attributes of S1 and S2, respe
tively. Let
 be a probabilisti
 
onjun
tion strategy. The join of I1 and I2 under 
, denotedI1 ./
 I2, is the POB-instan
e (�; �) over the POB-s
hema S1 ./ S2, where:|�(
) = f(o1; o2) 2 �1(
[R1℄)� �2(
[R2℄) j for all A 2 A1 \A2:if (�1(o1) ./
 �2(o2)):A= hV; �; �i, then V 6= ;g, for all 
2C1�C2.|�(o) = �1(o[R1℄) ./
 �2(o[R2℄), for all o 2 �(C).We remark that the join is the only operation of our algebra in whi
h probabilisti
attribute values of two distin
t obje
ts are 
ombined. The sele
tion operation andthe interse
tion operation (see next subse
tion), in 
ontrast, just allow to 
ombineprobabilisti
 attribute values assigned to one single obje
t.7.5 Interse
tion, Union, and Di�eren
eIn this se
tion, we de�ne the 
lassi
al set operations of interse
tion, union, anddi�eren
e for two POB-instan
es over the same s
hema.The de�nition of interse
tion is intuitive: 
ommon obje
ts are sele
ted, and theirrespe
tive attribute values are 
ombined by 
onjun
tion.De�nition 7.26 (interse
tion of probabilisti
 tuple values) Let ptv1 andptv2 be two probabilisti
 tuple values over the same set of attributes A, and let 
be a probabilisti
 
onjun
tion strategy. The interse
tion of ptv1 and ptv 2 under 
,denoted ptv1\
 ptv 2, is the probabilisti
 tuple value ptv overA de�ned by ptv :A =ptv1:A
 ptv2:A for all A 2 A.De�nition 7.27 (interse
tion of POB-instan
es) Let I1 = (�1; �1) and I2 =(�2; �2) be two POB-instan
es over the same POB-s
hema S, and let 
 be a prob-abilisti
 
onjun
tion strategy. The interse
tion of I1 and I2 under 
, denotedI1 \
 I2, is the POB-instan
e (�; �) over S, where:|�(
) = �1(
) \ �2(
) .|�(o) = �1(o) \
 �2(o) .The union of two POB-instan
es is de�ned in the same spirit as their interse
tion.



38 � T. Eiter et al.De�nition 7.28 (disjun
tion strategies on probabilisti
 triples) Let pt1 =(V 0; �0; �0), pt2 = (V 00; �00; �00) be probabilisti
 triples, and let � be a probabilisti
disjun
tion strategy. Then, pt1�pt2 is the probabilisti
 triple pt=(V; �; �), where:|V = V 0 [ V 00 .|[�(v); �(v)℄ = 8><>:[�0(v); �0(v)℄ if v 2 V 0 � V 00[�00(v); �00(v)℄ if v 2 V 00 � V 0[�0(v); �0(v)℄� [�00(v); �00(v)℄ if v 2 V 0 \ V 00 .As in the 
ase of 
onjun
tion, the out
ome pt of pt1 � pt2 is only de�ned if pt is
onsistent, whi
h requires that Pv2V �(v) � 1. A violation of this 
ondition indi-
ates in
orre
t data or improper appli
ation of the disjun
tion strategy �. Again,this is 
agged as an error.De�nition 7.29 (union of probabilisti
 tuple values) Let ptv1 and ptv2 betwo probabilisti
 tuple values over the same set of attributes A, and let � be aprobabilisti
 disjun
tion strategy. The union of ptv 1 and ptv2 under �, denotedptv1[�ptv2, is the probabilisti
 tuple value ptv overA de�ned by ptv :A = ptv1:A�ptv2:A for all A 2 A.De�nition 7.30 (union of POB-instan
es) Let I1 = (�1; �1) and I2 = (�2; �2)be two POB-instan
es over the same POB-s
hema S su
h that �1(
1) \ �2(
2) = ;for all pairs of distin
t 
lasses 
1; 
2 2 C. Let � be a probabilisti
 disjun
tionstrategy. The union of I1 and I2 under �, denoted I1 [� I2, is de�ned as thePOB-instan
e (�; �) over S, where:|�(
) = �1(
) [ �2(
) .|�(o) = 8><>:�1(o) if o 2 �1(C)� �2(C)�2(o) if o 2 �2(C)� �1(C)�1(o) [� �2(o) if o 2 �1(C) \ �2(C) .Finally, we 
onsider the di�eren
e of two POB-instan
es. For this, we use thenotion of a di�eren
e strategy for probabilisti
 tuple values.De�nition 7.31 (di�eren
e strategies on probabilisti
 triples) Let pt1 =(V 0; �0; �0), pt2 = (V 00; �00; �00) be probabilisti
 triples, and let 	 be a probabilisti
di�eren
e strategy. Then, pt1 	 pt2 is the probabilisti
 triple pt = (V; �; �), where:|V = V 0 � fv 2 V 0 \ V 00 j [�0(v); �0(v)℄ 	 [�00(v); �00(v)℄ = [0; 0℄g .|[�(v); �(v)℄ = ([�0(v); �0(v)℄ if v 2 V � V 00[�0(v); �0(v)℄	 [�00(v); �00(v)℄ if v 2 V \ V 00 .De�nition 7.32 (di�eren
e of probabilisti
 tuple values) Let ptv1 and ptv 2be two probabilisti
 tuple values over the same set of attributes A, and let 	be a probabilisti
 di�eren
e strategy. The di�eren
e of ptv1 and ptv2 under 	,denoted ptv1�	 ptv2 is the probabilisti
 tuple value ptv over A de�ned by ptv :A =ptv1:A	 ptv2:A for all A 2 A.
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t Bases � 39De�nition 7.33 (di�eren
e of POB-instan
es) Let I1 = (�1; �1) and I2 =(�2; �2) be POB-instan
es over the same POB-s
hema S, and let 	 be a proba-bilisti
 di�eren
e strategy. The di�eren
e of I1 and I2 under 	, denoted I1 �	 I2,is de�ned as the POB-instan
e (�; �) over S, where:|�(
) = �1(
) .|�(o) = (�1(o) if o 2 �1(C)� �2(C)�1(o)�	 �2(o) if o 2 �1(C) \ �2(C) .7.6 Consisten
y PreservationWe now prove that all operations of our POB-algebra that produ
e new POB-s
hemas preserve 
onsisten
y. In detail, given 
onsistent POB-s
hemas as input,the operations proje
tion, renaming, Cartesian produ
t, and join always produ
e a
onsistent POB-s
hema as output. This is shown by the following theorem.Theorem 7.1 Let S, S1, and S2 be POB-s
hemas. Let S1 and S2 be Cartesian-produ
t-
ompatible in (
) and join-
ompatible in (d). Let A be a set of attributes,and let N be a renaming expression.(a) If S is 
onsistent, then �A(S) is 
onsistent.(b) If S is 
onsistent, then ÆN (S) is 
onsistent.(
) If S1 and S2 are 
onsistent, then S1 � S2 is 
onsistent.(d) If S1 and S2 are 
onsistent, then S1 ./ S2 is 
onsistent.It is worth noting that in the POB-algebra, users may express queries that aresometimes \internally in
onsistent". For instan
e, a user may ask a sele
tion queryinvolving the sele
tion 
ondition (x:soil= loamy 
me x:soil= loamy)[0:3; 0:7℄. Here,the user is sele
ting obje
ts that have loamy soil assuming mutual ex
lusion of twoidenti
al sele
tion expressions ! Clearly, this query does not make sense. Similarly,a query involving the sele
tion 
ondition (x:rain< 10 
in x:rain> 20)[0:3; 0:7℄ doesnot make sense | one 
annot assume independen
e of rain being less than 10 andover 20 ! Determining what queries are \safe" w.r.t. su
h probabilisti
 intuitions isa major 
hallenge that will be addressed in a future paper.8. POB-ALGEBRA: EQUIVALENCE RESULTSIn this se
tion, we derive some results on equivalen
es that hold in our POB-algebra.We fo
us here on equivalen
es similar to well-known equivalen
es in the 
ontext of
lassi
al relational algebra. The list of equivalen
es is by no means 
omplete, butshows that query optimization in our POB-algebra is possible along similar linesas in 
lassi
al relational algebra [Abiteboul et al. 1995℄. Our �rst result says thatsele
tions may be reordered.Theorem 8.1 Let I = (�; �) be a POB-instan
e over the POB-s
hema S. Let �1and �2 be two sele
tion 
onditions. Then��1(��2 (I)) = ��2(��1 (I)) = ��1^�2(I); (1)where the last expression assumes that �1 and �2 have the same obje
t variable.



40 � T. Eiter et al.Our next result says two things: �rst that the proje
tions may be reordered andse
ond, that proje
tions may be pushed through sele
tions under appropriate 
on-ditions.Theorem 8.2 Let I be a POB-instan
e over the POB-s
hema S. Let A and B besets of attributes, and let � be a sele
tion 
ondition in whi
h all path expressionsstart with attributes from A. Then,�A(�B(I)) = �B(�A(I)) (2)�A(��(I)) = ��(�A(I)) : (3)Note that, for example, for A � B, Equation (2) redu
es to �A(�B(I)) = �A(I),sin
e �B(�A(I)) = �A\B(�A(I)) = �A(I) (see De�nition 7.10).The next result, whi
h states that sele
tions and proje
tions 
an be pushedthrough the renaming operator, requires some notation. For any renaming ex-pression N : ~B ~C, the inverse of N , denoted by N�1, is the renaming expression~C  ~B. Furthermore, the notation ÆN (X) stands for the result of applying therenaming spe
i�ed by N on the formal obje
t X .Theorem 8.3 Let I be a POB-instan
e over the POB-s
hema S, and let N be arenaming expression for S. Let � be a sele
tion 
ondition and let A be a set ofattributes. Then ��(ÆN (I)) = ÆN(�ÆN�1 (�)(I)) (4)�A(ÆN (I)) = ÆN(�ÆN�1 (A)(I)) : (5)The following theorem shows that joins are always asso
iative and 
ommutative,regardless of what 
onjun
tion strategy is used in the join. In addition, sele
ts maybe pushed \through" a join by appropriately splitting the sele
tion 
ondition andthe same is true of proje
tions.Theorem 8.4 Let S1, S2, and S3 be pairwise join-
ompatible POB-s
hemas andlet I1, I2, and I3 be POB-instan
es over S1, S2, and S3, respe
tively. Let 
 be aprobabilisti
 
onjun
tion strategy. Let �1, �2, and �3 be sele
tion 
onditions su
hthat �1 and �2 involve only attributes from A1 � A2 and A2 � A1, respe
tively,where A1 and A2 denote the sets of top-level attributes of S1 and S2, respe
tively.Let B be a set of attributes and de�ne B1 = (B[A2)\A1 and B2 = (B[A1)\A2.Then I1 ./
 I2 = I2 ./
 I1 (6)(I1 ./
 I2) ./
 I3 = I1 ./
 (I2 ./
 I3) (7)��1^�2^�3(I1 ./
 I2) = ��3(��1(I1) ./
 ��2(I2)) (8)�B(I1 ./
 I2) = �B(�B1(I1) ./
 �B2(I2)) : (9)Note that in 
lassi
al relational databases, Equivalen
e (8) remains true if �1 and�2 a

ess 
ommon attributes of A1 andA2. This is no longer guaranteed for POBs,
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t Bases � 41as the join may 
hange the value of 
ommon attributes. As Cartesian produ
t is aspe
ial 
ase of join, we obtain the following 
orollary to Theorem 8.4.Corollary 8.5 Let S1, S2, and S3 be pairwise Cartesian-produ
t-
ompatible POB-s
hemas and let I1, I2, and I3 be POB-instan
es over S1, S2, and S3, respe
tively.Let �1, �2, and �3 be sele
tion 
onditions su
h that �1 and �2 involve only attributesfrom the sets of top-level attributes A1 and A2 of S1 and S2, respe
tively. Let Bbe a set of attributes and let B1 = B \A1 and B2 = B \A2. ThenI1 � I2 = I2 � I1 (10)(I1 � I2)� I3 = I1 � (I2 � I3) (11)��1^�2^�3(I1 � I2) = ��3(��1(I1)� ��2(I2)) (12)�B(I1 � I2) = �B1(I1)��B2(I2) : (13)Theorem 8.6 Let I1, I2, and I3 be POB-instan
es over the same POB-s
hema S.Let 
 /� /	 be a probabilisti
 
onjun
tion/disjun
tion/di�eren
e strategy and letA be a set of attributes. Then,I1 \
 I2 = I2 \
 I1 (14)(I1 \
 I2) \
 I3 = I1 \
 (I2 \
 I3) (15)I1 [� I2 = I2 [� I1 (16)(I1 [� I2) [� I3 = I1 [� (I2 [� I3) (17)�A(I1 \
 I2) = �A(I1) \
 �A(I2) (18)�A(I1 [� I2) = �A(I1) [� �A(I2) (19)�A(I1 �	 I2) = �A(I1)�	 �A(I2) : (20)Note that literally taken, Equations (18) and (20) are not true for relational data-bases. The reason is that we use oids for obje
ts in POBs, while relational databasesonly 
ontain values.Finally, we remark that Equations (2), (5), (10), (11), and (13) are a
tuallyunrelated to probabilities (sin
e the operations proje
tion, renaming, and Cartesianprodu
t are unrelated to probabilities).9. IMPLEMENTATIONWe have implemented a prototype distributed POB system. The server (POB-server) runs on top of Obje
tStore and is implemented in SUN-C++. A thin 
lientfor handling database transa
tions is implemented using GNU-C++.9.1 POB-ServerThe POB-server is a 
olle
tion manager of POB-s
hemas. Ea
h POB-s
hema 
on-sists of a set of POB-
lasses and their asso
iated POB-obje
t instan
es. The POB-server manages (i) persistent s
hemas, whi
h 
orrespond to permanent data and(ii) temporary s
hemas, whi
h maintain intermediate s
hemas.
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ontains fun
tions for 
omputing probabilisti

onjun
tion and disjun
tion strategies. It also 
ontains a library of distributionfun
tions for manipulating probabilisti
 tuple values asso
iated with obje
ts in thedatabase.The POB-s
hema 
lass maintains an inheritan
e probability table (the proba-bility assignment } in De�nition 5.4). The 
lass 
ontains methods to add, remove,and retrieve POB-
lasses and POB-obje
ts. In addition, given two 
lasses 
1 and
2, where 
1 is a sub
lass of 
2, there is a method that 
omputes the 
onditionalprobability that an arbitrary obje
t belongs to 
1 given that it belongs to 
2.POB-
lasses are obje
ts in the POB-s
hema 
lass. They have a name, a 
ol-le
tion of attributes (with asso
iated types), and a 
olle
tion of parent POB-
lassnames along with asso
iated probability assignments. Methods asso
iated withPOB-
lasses provide abilities to establish attribute/type information, parent POB-
lass/probability assignments, adding and removing POB-obje
ts from the POB-
lass, and various self-repli
ating fun
tions that are useful for query pro
essing.POB-obje
ts 
ontain an obje
t name, the oid, a 
olle
tion of probabilisti
 tuplevalues, and a POB-
lass pointer whi
h points to the POB-
lass of whi
h it is aninstan
e. The POB-
lass pointer is provided for fast a

ess to 
lass-level informa-tion: attributes, types, parents, et
. Methods asso
iated with POB-obje
ts in
ludefun
tions for setting probabilisti
 tuple values and various self-repli
ating fun
tionsto fa
ilitate query pro
essing.The POB-server handles 
lient requests. It 
ontains a pointer to an Obje
tStoredatabase whi
h provides persisten
e servi
es. The POB-server in
ludes methodsfor: 
onne
ting to a database, dis
onne
ting from a database, 
reating and removings
hemas, 
reating and removing 
lasses, 
reating and removing obje
ts, 
omputingthe probability that an obje
t is a member of 
lass 
1 given that it is a member of
lass 
2, 
omputing the probabilisti
 extent of a 
lass, 
he
king if an obje
t satis�esa given sele
tion 
ondition, exe
uting an arbitrary query in the probabilisti
 obje
talgebra, and a variety of printing fun
tions.Note that ea
h method may not 
orrespond to a logi
al unit of work| in this 
asea request. In some instan
es, several requests are handled within one method whilein other instan
es, a single request is handled through a 
ombination of methods.9.2 ExperimentsUsing the POB-server, we have 
ondu
ted a set of experiments to assess the variousequivalen
es des
ribed in Se
tion 8 as well as to assess the performan
e of sele
tion.We do not des
ribe all the experiments we 
ondu
ted (due to spa
e reasons), butonly a few sample experiments are listed below. The limiting fa
tor in all exper-iments was the size of the \largest intermediate s
hema." This is the number ofobje
ts in the largest s
hema en
ountered when exe
uting the query. For a sele
-tion query, this is just the number of obje
ts in the POB-instan
e on whi
h thesele
tion is performed. In the 
ase of a join/Cartesian produ
t, this is the produ
tof the sizes of the POB-instan
es being joined (or whose Cartesian produ
t is being
omputed). In the experiments involving Equations (8), (12) and (13) des
ribedbelow, we varied the number of obje
ts in the largest intermediate s
hema from 0to 270,000 obje
ts and measured the times taken (on a Sun Ultra 10 workstation)for both the left side and the right side of the rewrite rules in question. The idea
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t Bases � 43was to see whether the left side of a rule should be rewritten to the right side orthe other way round.E�e
tiveness of Equation (8). Our �rst experiment evaluated the e�e
tivenessof pushing sele
tions into joins (Theorem 8.4). Figure 7 (a) shows what happensif the sele
tivity is varied using independen
e. It is easy to see that the right sideof this equation pays o� in a huge way and that as the sele
tivity de
reases (i.e.,fewer and fewer obje
ts are sele
ted), more and more obje
ts 
an be eÆ
ientlyhanded. For instan
e, with 20% sele
tivity, 270,000 obje
ts in the largest interme-diate s
hema 
an be 
omputed in about 30 se
onds.Figure 7 (b) shows the e�e
t of evaluating the right side of Equation (8) withdi�erent probabilisti
 strategies. We see that pre
isely whi
h strategy is used hasvery little impa
t on the 
omputation time.E�e
tiveness of Equation (12). We 
ondu
ted experiments similar to thosedes
ribed above with Equation (12). Figure 7 (
) shows the result of testing | itshows that pushing sele
tions into a Cartesian produ
t may save up to 80{90% ofthe time and this saving in
reases as the number of obje
ts in
reases.E�e
tiveness of Equation (13). We 
ondu
ted experiments similar to thosedes
ribed above with Equation (13). Figure 8 (a) shows the result of testing | itshows that pushing proje
tions into a Cartesian produ
t does not help very mu
h.The reason for this is be
ause proje
tion does not redu
e the number of obje
ts.E�e
tiveness of Sele
tion. We also 
ondu
ted some experiments on the e�e
-tiveness of sele
tion on POB-s
hemas of sizes between 3000 and 10000 obje
ts. Inthe experiment, we exe
uted queries of the form \Sele
t x from s
hema e wherex:D > val". Figure 8 (b) shows the result when two di�erent sele
tivities are used| 50% (i.e., half the obje
ts satisfy the sele
tion 
ondition) and 30% (i.e., 30% ofthe obje
ts satisfy the sele
tion 
ondition). We also tested what happens when we
onsider membership sele
tion queries of the form \Sele
t x from s
hema e where(x is a member of 
lass C)". Figure 8 (
) shows the result of this query with twodi�erent sele
tivities. Note that the queries generally exhibit linear behavior w.r.t.the number of obje
ts. In addition, membership queries are 
omputationally moreexpensive than simple inequality queries.We are part way towards developing a POB query optimizer. While the equiva-len
e results of Se
tion 8 readily serve as rewrite rules, the problem of developinga 
ost model is a 
hallenge that we are 
urrently working on. On
e 
ost models forPOBs are developed, a CASCADES [Graefe 1995℄ style framework may be readilyused for query optimization. We are 
urrently working on this problem.10. RELATED WORKOur work has been inspired by the prior work of Kornatzky and Shimony [1994℄ whodes
ribe a probabilisti
 obje
t-oriented data model in whi
h, like in our approa
h,un
ertainty in the values of attributes and in the 
lass graph may be representedby probabilities. The main di�eren
es between [Kornatzky and Shimony 1994℄ andour approa
h 
an be brie
y summarized as follows:(1) Kornatzky and Shimony introdu
e an obje
t 
al
ulus for extra
ting obje
tsfrom probabilisti
 obje
t-oriented databases. This 
al
ulus 
an thus be 
om-pared to our sele
tion operation. It is more restri
tive in the sense that it only
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46 � T. Eiter et al.handles probabilities on atomi
 formulas (whi
h always evaluate to either trueor false), while our sele
tion operation also handles probabilities on 
onjun
-tions and disjun
tions of atomi
 formulas, using probabilisti
 
onjun
tion anddisjun
tion strategies. Spe
i�
ally, we make no independen
e assumption (asKornatzky and Shimony do). On the other hand, their obje
t 
al
ulus hasquanti�ers, whi
h our sele
tion operation does not in
lude. However, it 
ouldbe easily extended in this dire
tion.(2) We also dis
uss, in detail, the algebrai
 operations of proje
tion, renaming,Cartesian produ
t, join, sele
tion, union, interse
tion, and di�eren
e. As theywere developing a 
al
ulus, Kornatzky and Shimony do not deal with this.(3) We introdu
e, for the �rst time, results on query equivalen
es in probabilisti
obje
t bases, and to our knowledge, our system is the �rst implementation ofa probabilisti
 obje
t base.(4) Kornatzky and Shimony assume that the 
lass graph is a dire
ted tree withoutmultiple inheritan
e. Moreover, in
omparable 
lasses are always disjoint. In
ontrast, in our approa
h, the 
lass graph may be any dire
ted a
y
li
 graph,thus allowing multiple inheritan
e. Furthermore, the disjointness of 
lasses 
anbe expressed in a 
exible way by grouping them into partition 
lusters. The
onsisten
y of s
hema de
larations is guaranteed for a large sub
lass extendingdire
ted trees.(5) Kornatzky and Shimony assume a pre
ise probability distribution on the setof all possible values of an attribute (in
luding a null value ? that representsthe inappli
ability of an attribute). Our approa
h, in 
ontrast, just requires aninterval range for probability distributions. Furthermore, obje
ts o

urring asattribute values are given spe
ial treatment in [Kornatzky and Shimony 1994℄;our model 
an be extended in this respe
t.(6) In [Kornatzky and Shimony 1994℄, the probabilisti
 extent of a 
lass is derivedfrom statisti
al and subje
tive probabilities. Sin
e, in general, in
onsisten
ymay arise, the notion of 
utsets of 
lasses is introdu
ed there. The probabilisti
extent of a 
lass is then given by statisti
al probabilities in the 
lass hierar
hyand by subje
tive probabilities with respe
t to a 
utset. Our probabilisti
extent, in 
ontrast, is just derived from statisti
al probabilities and 
lassi
al
lass membership. We thus avoid all the problems that 
ome along with mixingup statisti
al and subje
tive probabilities.Sadri [1994℄ des
ribes how to extend obje
t-oriented databases by using the in-formation sour
e tra
king method, in whi
h every pie
e of information is assigneda ve
tor of 
on�rming information sour
es. The formalism is based on a non-probabilisti
 latti
e stru
ture, but Sadri mentions a possible extension by numeri
aland espe
ially probabilisti
 un
ertainty. He models un
ertainty on the attribute,obje
t, and 
lass level, whi
h roughly relates to our probabilisti
 attributes, to ourinterpretation of sele
tion expressions, and to our probabilisti
 extents, respe
tively.In the area of un
ertainty in AI, there is related work on obje
t-oriented Bayesiannetworks by Koller and Pfe�er [1997℄ and by Laskey and Mahoney [1997℄, andon 
onstru
ting Bayesian networks from �rst-order probabilisti
 knowledge basesby Haddawy [1994℄. The main idea behind obje
t-oriented Bayesian networks isto use methods from obje
t-oriented programming languages in order to enable



Probabilisti
 Obje
t Bases � 47
exible and large-s
ale knowledge representation with Bayesian networks. Theobje
ts in this framework are given by Bayesian network fragments. Obje
ts thatshare 
ommon features are grouped together into 
lasses, whi
h are organized alonginheritan
e hierar
hies. Query pro
essing in obje
t-oriented Bayesian networks isessentially redu
ed to a form of Bayesian network inferen
e that exploits somelo
ality aspe
ts of the obje
t-oriented modeling for in
reased eÆ
ien
y. Haddawy[1994℄ aims at a �rst-order generalization of Bayesian networks. More pre
isely, hedes
ribes how queries to �rst-order probabilisti
 knowledge bases satisfying 
ertain
onstraints 
an be translated into Bayesian network inferen
e problems.A step towards the model proposed in the present paper is an extension of therelational model allowing 
omplex values [Eiter et al. 2000a; 2000b℄ with probabil-ities. However, the model in [Eiter et al. 2000a; 2000b℄ has no 
lass hierar
hy and,in parti
ular, inheritan
e is not addressed. Thus, it has no features of an obje
toriented system, and is essentially in the group of probabilisti
 relational databasemodels, whi
h we dis
uss next.ProbView [Lakshmanan et al. 1997℄ is a probabilisti
 relational database modelwhi
h generalizes various approa
hes (like, for example, [Barbara et al. 1992; Cav-allo and Pittarelli 1987℄). Cavallo and Pittarelli's important paper [1987℄ viewsrelations in a (
at) relational database as probability distribution fun
tions, wheretuples in the same relation are viewed as pairwise disjoint events whose proba-bilities sum up to 1. Drawba
ks of this approa
h have been pointed out in [Deyand Sarkar 1996℄. An extension of the model using probability intervals, whi
h areviewed as 
onstraints on the probabilities, is reviewed in [Pittarelli 1994℄. Barbar�aet al. [1992℄ 
onsider a probabilisti
 extension to the relational model, in whi
h im-pre
ise attributes are modeled as probability distributions over �nite sets of values.No probabilities 
an be assigned to outmost tuples. Their approa
h assumes thatkey attributes are deterministi
 (have probability 1) and that non-key attributes indi�erent relations are independent. As pointed out in [Barbara et al. 1992℄, \lossy"joins are possible in this model.Another important probabilisti
 database model is that of Dey and Sarkar [1996℄,whi
h assigns ea
h tuple in a (
at) relational database a probability value in a spe-
ial attribute. Based on [Dey and Sarkar 1996℄, a probabilisti
 extension to SQL isdeveloped in [Dey and Sarkar 1998℄. The 
lassi
al relational operations are de�nedin [Dey and Sarkar 1996℄ adopting di�erent assumptions on the relationship betweentuples; in parti
ular, join assumes independen
e; union and di�eren
e assume pos-itive 
orrelation; and 
ompa
tion assumes disjointness or positive 
orrelation. Ourmodel is far more general.Fuhr and R�olleke [1996℄ 
onsider a probabilisti
 version of NF2 relations, extend-ing their approa
h for 
at tuples [1997℄, and de�ne a relational algebra for thismodel. Probabilities are assigned to tuples and to values of nested tuples (i.e.,set-valued attributes), whi
h are viewed as events that have an asso
iated eventexpression. The algebrai
 operators manipulate tuples by 
ombining value andevent expressions appropriately. An intensional semanti
s is developed in [Fuhrand R�olleke 1996℄ in whi
h probabilities are de�ned through possible worlds. Theevaluation method assumes that in nondeterministi
 relations (i.e., relations withun
ertain tuples), joint o

urren
e of two di�erent values is either always indepen-dent or impossible|this is 
ertainly restri
tive.



48 � T. Eiter et al.Dyreson and Snodgrass [1998℄ provide a version of SQL to handle temporal in-determina
y, where there is un
ertainty about when an event o

urs. They use arelational framework and fo
us on the important 
ase where the spa
e of valuesover whi
h un
ertainty exists is huge.Kie�ling and his group [1992℄ developed a framework 
alled DUCK for reasoningwith un
ertainty. They provide an elegant, logi
al, axiomati
 theory for un
er-tain reasoning in the presen
e of rules. In 
ontrast, in our framework, rules arenot present; rather, our interest is in extending obje
t database models to handleun
ertainty in an algebrai
 setting.In an important paper, Lakshmanan and Sadri [1994b℄ show how sele
ted prob-abilisti
 strategies 
an be used to extend the previous probabilisti
 models. Lak-shmanan and Shiri [1996℄ show how dedu
tive databases may be parameterizedthrough the use of 
onjun
tion and disjun
tion strategies, an approa
h also fol-lowed by Dekhtyar and Subrahmanian [1997℄. We have built in this paper uponthe important 
on
ept of probabilisti
 
onjun
tion and disjun
tion strategies, butin an obje
t oriented instead of a logi
 programming setting.11. CONCLUSIONIn this paper, we proposed an extension of the relational algebra to handle proba-bilisti
 modes of un
ertainty in obje
t oriented database systems. More pre
isely,the main 
ontributions of this paper 
an be brie
y summarized as follows:(1) We presented a formal de�nition of a probabilisti
 obje
t base, whi
h extendsprevious de�nitions given by Kornatzky and Shimony [1994℄.(2) We gave a formal model theoreti
 basis for dis
ussing the 
onsisten
y of POBs,and showed that 
onsisten
y 
he
king is NP-
omplete in general. We thende�ned 
lasses of POBs for whi
h 
onsisten
y 
an be 
he
ked in polynomialtime, and provided eÆ
ient algorithms for this task.(3) We developed an algebra that extends the relational algebra to probabilisti
obje
t bases. Spe
i�
ally, this algebra re
ognizes that probabilities of 
om-plex events depend on existing knowledge about dependen
ies between events,and hen
e, it allows users to express algebrai
 queries under appropriate 
on-jun
tion, disjun
tion, and di�eren
e strategies (whi
h en
ode su
h dependen
einformation).(4) We presented a number of equivalen
e results that may form a set of rewriterules to be used in query optimization.(5) Our POB framework has been implemented on top of Obje
tStore in C++.(6) Finally, we 
ondu
ted a set of experiments on the eÆ
a
y of our equivalen
eresults for query rewriting (and hen
e for query optimization).Several tasks remain for further work. One is the enhan
ement of the 
urrentprototype by a sophisti
ated POB-algebra query manager, whi
h optimizes queriesby using 
ost models and rewrite rules as shown in Figure 2. For the front endof the system, it would be well worth developing a probabilisti
 version of SQL(similar to, for example, Dey and Sarkar's language PSQL [1998℄).Another important task for further work is to develop a model-theoreti
 semanti
sfor probabilisti
 attribute values. Spe
i�
ally, we are planning to map the proba-
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 knowledge in top-level attributes into a language in probabilisti
 logi
, whi
h
an be interpreted by probability distributions over a set of possible worlds.A further topi
 of future resear
h is to generalize our model. For example, one
ould think about allowing arbitrary sets of probability distributions [Kyburg, Jr.and Pittarelli 1996℄ as values of top-level attributes (and not just 
onvex sets ofdistributions that are spe
i�ed by probabilisti
 triples), or about allowing negationsbesides in sele
tion 
onditions also, at a lower level, in sele
tion expressions. Itwould also be interesting to allow obje
ts as attribute values.Finally, another important topi
 is to explore how to perform updates on prob-abilisti
 attribute values of existing obje
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