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2 � T. Eiter et al.resentation Formalisms and MethodsGeneral Terms: Algorithms, Languages, Performane, TheoryAdditional Key Words and Phrases: Consisteny, objet-oriented database, probabilisti objetalgebra, probabilisti objet base, probability, query language, query optimization1. INTRODUCTIONThe onept of an objet base is gaining numerous adherents beause it allows datato be organized in an appliation spei� manner for salability, while still sup-porting a ommon query language. However, there are many appliations whereprobabilisti data needs to be stored. For instane, image interpretation programsare unertain in their identi�ation of features in images and suh image databasesare typially stored using objet databases [Grosky et al. 1997℄. Similarly, an ap-pliation traking a set of mobile objets using an objet database may only knowthat an objet is at one of a given set of points right now, but the preise loationmay be unknown. Likewise, an appliation that foreasts stok movements or theweather needs to represent unertainty in the foreast. When the appliation data(stoks, weather) is in an objet repository, methods to represent unertain aspetsof these objets need to be developed. In short, the ability to represent probabilistiinformation in an objet base, and to manipulate suh \probabilisti objet bases"(POBs for short) eÆiently is important for a variety of appliations.To date, there has been only one signi�ant attempt in the database ommunityto merge probability models with objet bases, namely that by Kornatzky andShimony [1994℄, who proposed a probabilisti objet alulus. Building upon theirinuential work, we make the following ontributions:(1) First and foremost, we propose a notion of a probabilisti shema and formallyde�ne a logial model theory for it. We de�ne what onsistent shemas are andprove that onsisteny heking is NP-omplete. We identify speial lasses ofshemas for whih onsisteny may be polynomially heked. Previous work onprobabilisti objet bases had no assoiated onept of onsisteny.(2) We then propose an algebra for probabilisti objet bases in whih the lassi-al relational algebra operators are extended to apply to probabilisti objetbases. It is well known [Lakshmanan et al. 1997℄ that the probabilities of on-juntive and disjuntive events are omputed in di�erent ways depending uponthe dependenies between the events involved. Our algebrai operators are pa-rameterized by the user's knowledge (or lak thereof) of suh dependenies |hene, the user an ask queries of the form \Find the join of : : : under igno-rane", whih desribes a join assuming no knowledge about the dependeniesbetween the events involved. Previous work on probabilisti objet bases as-sumed that all events involved were independent. To our knowledge, this is the�rst (extension of the) relational algebra for POBs(3) We then prove a host of equivalene results in our algebra. These equivaleneresults may be used as the set of rewrite rules that a database query optimizeruses for query rewriting.(4) We have implemented a distributed POB system in C++ on top of ObjetStore.This implementation allowed us to ondut experiments aross the network to



Probabilisti Objet Bases � 3evaluate the performane of our system and also to see how to rewrite queries.This paper is strutured as follows. In the next setion, we onsider a motivatingdatabase appliation. Setion 3 desribes the arhiteture of a POB system. Aftersome basi de�nitions of probability onepts in Setion 4, we develop our POBmodel in Setions 5 and 6. A query algebra is then presented in Setion 7, andequivalene results in this algebra are derived in Setion 8. We report on an imple-mentation of POBs in Setion 9, and disuss related work in Setion 10. Detailedproofs of all results may be found in [Eiter et al. 1999℄.2. A MOTIVATING EXAMPLEConsider the task of building an extensive database desribing the types of veg-etation found in the Amazon rainforest. The reation of suh a database is aformidable task. Individuals need to exhaustively examine the vegetables, herbs,and other kinds of plants growing in these forests, and provide information desrib-ing soil onditions, limati onditions, et.When desribing the plants growing in suh rainforests, there are several possibleauses of unertainty. First and foremost, some plant speies may not be uniquelyidenti�able by the surveyor in the �eld. He may lassify a partiular herb as eitherbeing Silver Thyme or Frenh Thyme (two di�erent speies of thyme), withoutbeing able to speify exatly whih speies the plant in question belongs to. Bythe same token, if he were slightly more expert, he might be able to say that heis not sure whether the herb is Silver Thyme or Frenh Thyme, but he rates theprobability that it is Silver Thyme twie as high as that it is Frenh Thyme.Figure 1 shows a very simple lass hierarhy that desribes plants as either beingperennials or annuals, and either being vegetables, herbs, or owers. Clearly, thelasses perennials and annuals are disjoint (i.e., a plant annot be both an annualand a perennial), as are the lasses vegetables, herbs, and owers. Mutually disjointlasses are onneted by a \d" in Figure 1. Note that we an ertainly have plantsthat are annuals and herbs (e.g., Basil). For now, the numbers labeling edges inFigure 1 may be ignored. They will be revisited later.In the rest of this paper, we repeatedly use this example to illustrate our de�ni-tions. By the end of this paper, we would have desribed how to build and querya POB that aptures the Plant Database of this example as a speial ase.3. ARCHITECTURE OF A PROBABILISTIC OBJECT BASEIn this setion, we desribe the overall arhiteture of a probabilisti objet base(POB) system. Figure 2 presents an arhiteture for query proessing in proba-bilisti objet bases. The arhiteture onsists of the following omponents:(1) The user expresses queries through a graphial user interfae whih generatesas output a query in a delarative probabilisti objet alulus (POB-alulus).Note that queries in this alulus are delarative queries. A pioneering attemptat suh a alulus is that of Kornatzky and Shimony [1994℄.(2) The alulus query generated will be fed into a Converter whih onverts POB-alulus queries into queries in a probabilisti objet algebra (POB-algebra).(3) The algebrai query generated by the onverter will be fed into a Query Man-ager, whih will take as input a set of rewrite rules (reeting equivalenes be-
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0.30.8 0.30.4 Fig. 1. Plant identi�ation exampletween di�erent queries in the POB-algebra) and a set of ost models to performa query optimization. Given a set of rewrite rules and a set of ost models, thetask of �nding a rewriting of a query that has minimal expeted ost (aordingto the ost models) is well-studied, and good ommerial implementations ofsuh ode exist (e.g., Graefe's CASCADES system [Graefe 1995℄ is presentlybeing used by Mirosoft).(4) The \optimized" algebra query thus produed will be physially exeuted onthe probabilisti objet base.(5) All the omponents above use libraries onsisting of: (i) A set of probabilistionjuntion, disjuntion and di�erene strategies that allow the user to expressher knowledge of the dependenies between events | this is used in queryformulation, query optimization, ost evaluation and query exeution. (ii) Aset of distribution funtions that allow a user to speify how probabilities aredistributed over a spae of possible values for an unknown attribute.Giving a detailed desription of all these omponents is learly beyond the sopeof a single paper. In previous work, Kornatzky and Shimony [1994℄ developeda probabilisti objet alulus. In this paper, we will expand the onept of aprobabilisti objet base used by them and formally de�ne a POB-algebra and provea host of query equivalene results. We will report on a prototype implementationof the POB-algebra and desribe experimental results | given a query equivaleneq1 = q2, these experimental results will identify when a query of the form q1 shouldbe rewritten to a query of the form q2 and vie versa. To our knowledge, this paperis the �rst to propose a probabilisti objet algebra, the �rst to present results onquery equivalenes in suh an algebra, and the �rst to implement suh an algebraon top of a ommerial objet database system.4. BASIC PROBABILITY DEFINITIONSIn this setion, we present some basi de�nitions used to set up a probabilistiextension of objet bases. The probabilisti onepts are divided into two parts |
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probabilistic combination strategies probabilistic distributionsFig. 2. Arhiteture of POB system(i) probabilisti ombination strategies and (ii) distribution funtions.4.1 Probabilisti Combination StrategiesSuppose we know the probabilities of events e1 and e2. For example, e1 may bethe event \The photographed plant p1 (in image I) is Frenh Thyme." Similarly,e2 may be the event \The photographed plant p2 (in image I) is Mint." Assumenow that we are interested in the probability of the omplex event (e1 ^ e2). Theprobability of (e1 ^ e2) is omputed in di�erent ways based upon our knowledge ofthe dependenies between e1 and e2.|e1 and e2 are independent. This may our if we know that the plants p1 and p2are growing in the area independently of eah other. In this ase, P(e1 ^ e2) =P(e1) �P(e2) (i.e., the probability of (e1 ^ e2) is the produt of the probabilitiesof e1 and e2).|e1 and e2 are mutually exlusive. Suppose, for example, we know that p1 and p2are the same plant. Sine the events e1 and e2 are mutually exlusive, we animmediately say that P(e1 ^ e2) = 0.|We are ignorant of the relationship between e1 and e2. This ase ours whenwe do not know anything about the relationship between the plants p1 and p2growing in the same area. As shown by Boole [1854℄, the best we an say in thisase about the probability of (e1 ^ e2) is that it lies in the interval [max(0;P(e1)+P(e2)� 1);min(P(e1);P(e2))℄.Thus, the probability of (e1 ^ e2) depends not only on the probabilities of e1 ande2, but also on the relationship between the events e1 and e2. A similar situationapplies when we onsider omplex events suh as (e1 _ e2). The above are onlythree examples of di�erent ways of evaluating probabilities of omplex events. Ingeneral, depending on exatly what is known about the dependenies between theevents involved, there is a whole plethora of suh probability omputations.In our framework, we use probability intervals instead of point probabilities fortwo reasons: (i) In many appliations, the probability of an event is often notpreisely given; (ii) as already shown by Boole [1854℄, when we do not know thedependenies between two events, all that we an say about the probability of theonjuntion /disjuntion of two events is that it belongs to an interval.



6 � T. Eiter et al.De�nition 4.1 (onsistent probabilisti intervals for two events) Supposee1 and e2 have probabilities in the intervals I1 = [L1; U1℄ and I2 = [L2; U2℄, respe-tively. Suh an assignment of probabilisti intervals is alled onsistent i� L1 � U1,L2 � U2, and the following onditions hold:|If (e1 ^ e2) is ontraditory1, then L1 + L2 � 1.|If (e1 ^ :e2) is ontraditory, then L1 � U2.|If (:e1 ^ e2) is ontraditory, then L2 � U1.|If (:e1 ^ :e2) is ontraditory, then U1 + U2 � 1.In the sequel, all assignments of probabilisti intervals are impliitly assumed tobe onsistent unless stated otherwise. Suppose I1 = [L1; U1℄ and I2 = [L2; U2℄. Weuse I1 � I2 as an abbreviation for L1 � L2 and U1 � U2, and I1 � I2 to denotethat I1 is ontained in I2, i.e., L2 � L1 and U1 � U2.As many dependenies between events annot be automatially inferred, it is im-perative that the user be able to speify, in his query, what knowledge he has aboutsuh relationships. To failitate this, Lakshmanan et al. [1997℄ have introduedgeneri probabilisti onjuntion and disjuntion strategies. Any funtion that sat-is�es the axioms listed in Table I is alled a probabilisti onjuntion or disjuntionstrategy, respetively. (Given two events e1 and e2 with probabilities in the inter-vals I1 = [L1; U1℄ and I2 = [L2; U2℄, respetively, the notations \I = I1 
 I2" and\I = I1� I2" are shorthand for \(e1^e2; I) = (e1; I1)
 (e2; I2)" and \(e1_e2; I) =(e1; I1)� (e2; I2)", respetively.)Table I. Axioms for onjuntion and disjuntion strategiesAxiom Name Conjuntion StrategyBottomline (I1
I2) � [min(L1; L2);min(U1; U2)℄Ignorane (I1
I2) � [max(0; L1 + L2 � 1);min(U1; U2)℄Identity2 (I1
 [1; 1℄) = I1Commutativity (I1
I2) = (I2
I1)Assoiativity ((I1
I2)
I3) = (I1
(I2
I3))Monotoniity (I1
I2) � (I2
I3) if I2 � I3Axiom Name Disjuntion StrategyBottomline (I1�I2) � [max(L1; L2);max(U1; U2)℄Ignorane (I1�I2) � [max(L1; L2);min(1; U1 + U2)℄Identity2 (I1� [0; 0℄) = I1Commutativity (I1�I2) = (I2�I1)Assoiativity ((I1�I2)�I3) = (I1�(I2�I3))Monotoniity (I1�I2) � (I1�I3) if I2 � I3While the notion of onjuntion and disjuntion strategies are reapitulated fromLakshmanan et al. [1997℄, the onept of di�erene strategies below is new.1Contraditory here merely means \inonsistent in lassial propositional logi."2The Identity-axioms for probabilisti onjuntion (resp., disjuntion) strategies assume thate1 ^ e2 and :e1 ^ e2 (resp., :e1 ^:e2 and e1 ^:e2) are not ontraditory.



Probabilisti Objet Bases � 7De�nition 4.2 (probabilisti di�erene strategy) Suppose e1 and e2 haveprobabilities in the intervals I1= [L1; U1℄ and I2=[L2; U2℄, respetively. A proba-bilisti di�erene strategy is a binary operation 	 that uses this information toompute a probabilisti interval I = [L;U ℄ for the event (e1^:e2). When the eventsinvolved are lear from ontext, we use \I = I1	 I2" to denote \(e1 ^:e2; I) =(e1; I1)	 (e2; I2)". Di�erene strategies satisfy the following postulates:Bottomline: (I1 	 I2) � [min(L1; 1� U2);min(U1; 1� L2)℄.Ignorane: (I1 	 I2) � [max(0; L1 � U2);min(U1; 1� L2)℄.Identity: If (:e1 ^:e2) and (e1 ^:e2) are not ontraditory3, then (I1	 [0; 0℄)= I1.Examples of probabilisti onjuntion, disjuntion, and di�erene strategies aregiven in Table II. Note that we do not assume any postulates that relate probabilis-ti onjuntion, disjuntion, and di�erene strategies to eah other (for example,postulates that express the distributivity of onjuntion and disjuntion strategies).Readers may make suh assumptions if they wish | however, the results of thispaper stand even if these assumptions are not made.Table II. Examples of probabilisti ombination strategiesStrategy OperatorsIgnorane ([L1; U1℄
ig [L2; U2℄) � [max(0; L1 + L2 � 1);min(U1; U2)℄([L1; U1℄�ig [L2; U2℄) � [max(L1; L2);min(1; U1 + U2)℄([L1; U1℄	ig [L2; U2℄) � [max(0; L1 � U2);min(U1; 1� L2)℄Independene ([L1; U1℄
in [L2; U2℄) � [L1 � L2; U1 � U2℄([L1; U1℄�in [L2; U2℄) � [L1+L2�(L1 �L2); U1+U2�(U1 �U2)℄([L1; U1℄	in [L2; U2℄) � [L1 � (1� U2); U1 � (1� L2)℄Positive Correlation ([L1; U1℄
p [L2; U2℄) � [min(L1; L2);min(U1; U2)℄(when e1 implies e2, ([L1; U1℄�p [L2; U2℄) � [max(L1; L2);max(U1; U2)℄or e2 implies e1) ([L1; U1℄	p [L2; U2℄) � [max(0; L1 � U2);max(0; U1 � L2)℄Mutual Exlusion ([L1; U1℄
me [L2; U2℄) � [0; 0℄(when e1 and e2 are ([L1; U1℄�me [L2; U2℄) � [min(1; L1 + L2);min(1; U1 + U2)℄mutually exlusive) ([L1; U1℄	me [L2; U2℄) � [L1;min(U1; 1� L2)℄4.2 Probability Distribution FuntionsProbability distribution funtions assign probabilities to elementary events in aoherent way. For example, if we are told that plant p1 is urrently at one of theloations a; b;  with probability 60-70%, then a distribution funtion allows us toassign parts of this probability mass to the events \plant p1 is at loation a," \plantp1 is at loation b," and \plant p1 is at loation ."3Note that the preondition is neessary. E.g., if I1= [0; 1℄, and :e1 ^:e2 (resp., e1 ^:e2) is on-traditory, then (I1	 [0; 0℄)= [1; 1℄ 6= I1 (resp., (I1 	 [0; 0℄)= [0; 0℄ 6= I1) by the laws of probability.



8 � T. Eiter et al.De�nition 4.3 (distribution funtion) Let X be a �nite set. A (probability)distribution funtion � over X is a mapping from X to the real interval [0; 1℄ suhthat �x2X �(x) � 1.We do not require that �x2X �(x) = 1 holds; a distribution funtion � with thisproperty is said to be omplete. The above de�nition allows to assign probabilitiesto a subset X � Y of elements, leaving the probabilities of the other elements open.An important distribution funtion whih we often enounter in pratie is theuniform distribution. For a �nite set X , it is de�ned by uX(x) = 1jXj for allx 2 X . We abbreviate uX by u, whenever X is lear from the ontext. Many otherdistribution funtions are oneivable; we do not study this further here.De�nition 4.4 (probabilisti triple) A probabilisti triple hX;�; �i onsists ofa �nite set X , a distribution funtion � over X , and a funtion � : X ! [0; 1℄mapping X to the real interval [0; 1℄ suh that (i) �(x) � �(x) for all x 2 X and(ii) Px2X �(x) � 1 hold.Informally, a probabilisti triple assigns to eah element x 2 X a probability interval[�(x); �(x)℄. This assignment is onsistent in the sense that we an assign eahelement in X a probability p(x) from [�(x); �(x)℄ suh that the sum of all p(x)adds up to 1. In the sequel, we impliitly assume that all probabilisti tripleshX;�; �i are tight, i.e., for eah x 2 X , the bounds �(x) and �(x) are the minimumand maximum, respetively, of p(x) subjet to all omplete distribution funtionsp over X suh that p(x0) 2 [�(x0); �(x0)℄ for all x0 2 X . Thus, any probabilistitriple that is entered by a user or omputed by our algebrai operations is impliitlyassumed to be transformed into its tight equivalent (whih an easily be done).5. TYPES AND PROBABILISTIC OBJECT BASE SCHEMASIn this setion, we provide some basi de�nitions underlying a probabilisti ob-jet base (POB). We �rst onsider types and values, and then the shema of aPOB. The notion of POB-shema is more omplex than in the ontext of rela-tional databases, and may lead to inonsistent spei�ations; we present eÆientalgorithms for heking shema onsisteny.5.1 Types and ValuesWe start with the de�nition of types.De�nition 5.1 (types) Let A be a set of attributes and let T be a set of atomitypes. We de�ne types indutively as follows:|Every atomi type from T is a type.|If � is a type, then f�g is a type, whih is alled the set type of � ;|If A1; : : : ; Ak are pairwise di�erent attributes from A and �1; : : : ; �k are types,then [A1 : �1; : : : ; Ak : �k℄ is a type. This type is alled a tuple type over the setof attributes fA1; : : : ; Akg. Given suh a type � = [A1 : �1; : : : ; Ak : �k℄, we use�:Ai to denote �i. We all A1; : : : ; Ak the top-level attributes of � .



Probabilisti Objet Bases � 9Example 5.1 (Plant Example: types) In the Plant Example, some atomitypes from T are integer, real, string, soiltype, and suntype. The attributes soil,sun (sun-exposure), and rain (daily water) desribe onditions needed for a plantto grow. Some other attributes are pname, size, height, and width. Some (nonatomi) types inlude: fsoiltypeg, [soil : fsoiltypeg; sun : suntype; rain : integer℄, and[pname : string; size : [height : integer; width : integer℄℄.De�nition 5.2 (values) Every atomi type � 2 T has an assoiated domaindom(�). We de�ne values by indution as follows:|For all atomi types � 2 T , every v 2 dom(�) is a value of type � .|If v1; : : : ; vk are values of type � , then fv1; : : : ; vkg is a value of type f�g.|If A1; : : : ; Ak are pairwise di�erent attributes from A and v1; : : : ; vk are values oftypes �1; : : : ; �k, then [A1 : v1; : : : ; Ak : vk℄ is a value of type [A1 : �1; : : : ; Ak : �k℄.Example 5.2 (Plant Example: values) Let us return to the types of Exam-ple 5.1. We assign the usual domains to integer, real, and string. Let soiltypeand suntype be enumerated types having the domains floamy; swampy; sandyg andfmild;medium; heavyg, respetively. The value sets assoiated with the types ofExample 5.1 are as follows:|soiltype: Any element of floamy; swampy; sandyg is a value of soiltype. For exam-ple, loamy is a value of soiltype. When assoiated with a partiular plant, thisvalue might say that the plant needs loamy soil to ourish.|fsoiltypeg: Any set of values of soiltype is a value of this type. For exam-ple, if a partiular plant an grow well in either loamy or swampy soil, thenfloamy; swampyg is an appropriate value of this type that an be assoiated withthis plant.|[soil : fsoiltypeg; sun : suntype; rain : integer℄: Any triple (v1; v2; v3) is a value of thistype, where v1 is a set of values of soiltype, v2 is a value of suntype, and v3 is avalue of integer. For example, (floamy; swampyg;mild; 3) is a value of this type.It says that the plant needs either loamy or swampy soil, mild sun, and 3 unitsof water per day to ourish.De�nition 5.3 (probabilisti tuple values) If A1; : : : ; Ak are pairwise distintattributes from A and (V1; �1; �1); : : : ; (Vk; �k; �k) are probabilisti triples whereV1; : : : ; Vk are sets of values of types �1; : : : ; �k, then the expression [A1 : (V1; �1; �1);: : : ; Ak : (Vk ; �k; �k)℄ is a probabilisti tuple value of type [A1 : �1; : : : ; Ak : �k℄ overthe set of attributes fA1; : : : ; Akg. For probabilisti tuple values ptv = [A1 : (V1; �1,�1); : : : ; Ak : (Vk ; �k; �k)℄, we use ptv :Ai to denote (Vi; �i; �i).Note that the order of the Ai : (Vi; �i; �i)'s in a probabilisti tuple value ptv =[A1 : (V1; �1; �1), : : : ; Ak : (Vk; �k; �k)℄ is not important.Example 5.3 (Plant Example: probabilisti tuple values) Assume we knowthat the soil type of a wild forest plant is loamy (presumably, as we an see, theplant is ourishing in the plae in whih it is urrently growing). Moreover, weare sure that this plant is Thyme, but unsure whether it is Frenh Thyme (frenh),



10 � T. Eiter et al.Silver Thyme (silver) or Wooly Thyme (wooly). If we are sure with 20{60% prob-ability eah that it is Frenh Thyme, Silver Thyme, and Wooly Thyme, thenwe may enode this knowledge via the following probabilisti tuple value of type[soil : soiltype; lassi�ation : string℄ over the set of attributes fsoil; lassi�ationg:[soil : hfloamyg; u; ui; lassi�ation : hffrenh; silver;woolyg; 0:6 u; 1:8 ui℄ .Note that the expressions \0:6 u" and \1:8 u" denote the distribution funtion � andthe funtion �, respetively, that are de�ned by �(x) = 0:6 �1=3 and �(x) = 1:8 �1=3for all x from ffrenh; silver;woolyg.In the above de�nition, a probabilisti triple (Vi; �i; �i) may only assign a prob-ability interval to some values v (viz. those in Vi) for the attribute Ai. Nothing isstated for the (possibly in�nitely many) other values that Ai ould have aordingto its type �i. We must �nd a lean and appealing way in whih suh inompleteknowledge about the probability assignment is handled.As in relational databases, we adopt a losed world assumption (CWA): We as-sume that every value v 2 dom(�i) � Vi has probability 0, i.e., it is impliitly as-signed the probability interval [0; 0℄. Under this onvention, \onsisteny" (whihwe will de�ne formally later) of the probability information given by (Vi; �i; �i) ispreserved in the larger ontext of dom(�i): there exists a probability funtion p overdom(�i) that is ompatible with (Vi; �i; �i) suh that all p(v) with v 2 dom(�i) sumup to 1. The probabilisti objet base algebra de�ned in Setion 7 will be based onthis CWA. Notie that an open world view is still possible for partiular values. Wemay, for instane, add v to V and set �(v) = 0, �(v) = 1; this expliitly expressesthat the probability of v is unknown.5.2 Probabilisti Objet Base ShemaInformally, a probabilisti objet base shema onsists of a hierarhy of lasses.Membership of an objet in an immediate sublass of any lass is expressed by aprobability value.De�nition 5.4 (probabilisti objet base shema) A probabilisti objet baseshema (POB-shema) is a quintuple (C; �;);me; }), where:|C is a �nite set of lasses. Intuitively, these reet the lasses assoiated withthis probabilisti objet base.|� maps eah lass from C to a tuple type. Intuitively, this mapping spei�es thedata type of eah lass.|) is a binary relation on C suh that (C;)) is a direted ayli graph (dag).Intuitively, eah node of the direted ayli graph (C;)) is a lass from C andeah edge 1 ) 2 says that the lass 1 is an immediate sublass of 2.|me maps eah lass  to a partition of the set of all immediate sublasses of .Intuitively, suppose lass  has the �ve sublasses 1; : : : ; 5 and suppose me() isgiven by the partition ff1; 2g; f3; 4; 5gg. Here, me() produes two lusters.An objet o 2  an belong to either or both lusters. However, the lasses withina luster are mutually exlusive, i.e., o annot belong to both 1 and 2 at thesame time.



Probabilisti Objet Bases � 11|} maps eah edge in (C;)) to a positive rational 4 number in the unit inter-val [0; 1℄ suh that for all lasses  and all lusters P 2 me(), it holds that�d2P}(d; ) � 1. Intuitively, if 1 ) 2, then }(1; 2) spei�es the onditionalprobability that an arbitrary objet belongs to the sublass 1 given that it be-longs to the superlass 2. The summation ondition says that the sum of theprobabilities of edges within a mutually exlusive set of sublasses must sum upto less than or equal to 1.A direted path in the direted ayli graph (C;)) is a sequene of lasses 1; 2; : : : ,k suh that 1 ) 2 ) � � � ) k and k � 1. We use )? to denote the reexiveand transitive losure of ). Note that )? indues a natural partial order � on Cby  � d i� )? d for all ; d 2 C.We use S() = fd 2 C j d ) g to denote the set of all immediate sublasses of 2 C, and S?() = fd 2 C j d )� g to denote the set of sublasses of  2 C. Alass d is a sublass of a partition luster P i� d is a sublass of some  2 P .We will represent the above struture (exluding the type assignment �) in agraphial way as shown in Figure 1, where the edges are labeled by onditionalprobabilities.Example 5.4 (Plant Example: probabilisti objet base shema) A POB-shema for the Plant Example may onsist of the following omponents:|C = fplants; annuals; perennials; vegetables; herbs; owers; annuals herbs,perennials owersg.|� is given by Table III.|(C;)) is the graph obtained from Figure 1 by ontrating the d-nodes to plantsand ignoring probabilities.|me is the partitioning of edges shown in Figure 1.|} is the probability assignment in Table IV.For example, annuals and annual herbs are sublasses of plants, and annuals is animmediate sublass of plants while annual herbs is not; annual herbs is a sublass ofthe luster fannuals, perennialsg.The POB-shemas de�ned thus far may be inonsistent, i.e. it may not alwaysbe possible to �nd a set of objets that satis�es the taxonomi and probabilistiknowledge expressed by the direted ayli graph, the partitioning of edges, andthe probability assignment. The formal de�nition of onsisteny of a POB-shemais given below.De�nition 5.5 (onsistent POB-shema) Let S = (C; �;);me; }) be a POB-shema. An interpretation of S is any mapping " from C to the set of all �nitesubsets of a set O. An interpretation " of S is alled a taxonomi model of S i�:4Note that we assume rational numbers here, sine we will adopt a probabilisti semantis oflass hierarhies that is based on relative ardinalities of sets of objets. We an easily generalizeour model to real numbers, if we assume a more general probabilisti semantis that is based onreal-valued probability funtions over a set of possible worlds. All the results of this subsetion,exept for the NP-membership result in Theorem 5.2, arry over to this more general setting.



12 � T. Eiter et al. Table III. Type assignment � �()plants [pname : string; soil : soiltype; rain : integer℄annuals [pname : string; soil : soiltype; rain : integer;sun : suntype℄perennials [pname : string; soil : soiltype; rain : integer;sun : suntype; expyears : integer℄vegetables [pname : string; soil : soiltype; rain : integer;sun : suntype; expyears : integer℄herbs [pname : string; soil : soiltype; rain : integer;sun : suntype; expyears : integer; lassi�ation : string℄owers [pname : string; soil : soiltype; rain : integer;sun : suntype; expyears : integer; lassi�ation : string℄annuals herbs [pname : string; soil : soiltype; rain : integer;sun : suntype; expyears : integer; lassi�ation : string℄perennials owers [pname : string; soil : soiltype; rain : integer;sun : suntype; expyears : integer; lassi�ation : string℄Table IV. Probability assignment }edge probabilityannuals) plants 0.6perennials) plants 0.4vegetables) plants 0.2herbs) plants 0.3owers ) plants 0.4annuals herbs) annuals 0.4annuals herbs) herbs 0.8perennials owers ) perennials 0.3perennials owers ) owers 0.3C1 "() 6= ;, for all lasses  2 C.C2 "() � "(d), for all lasses ; d 2 C with ) d.C3 "()\ "(d) = ;, for all distint lasses ; d 2 C that belong to the same lusterP 2 Sme(C).Two lasses ; d 2 C are taxonomially disjoint (t-disjoint) i� "() \ "(d) = ; forall taxonomi models " of S. " is a taxonomi and probabilisti model (or simplymodel) of S i� it is a taxonomi model of S and it satis�es the ondition:C4 j"()j = }(; d) � j"(d)j for all lasses ; d 2 C with ) d.We say S is onsistent i� it has a model.Let us illustrate this de�nition within the Plant Example.



Probabilisti Objet Bases � 13Example 5.5 (Plant Example: onsistent POB-shema) Let S = (C; �;),me; }) be the POB-shema given in Example 5.4. Let O be a set of ardinality800, whih is partitioned into pairwise disjoint subsets O1, O2, . . . , O10 havingardinalities 90, 27, 126, 45, 192, 21, 98, 35, 70, and 96, respetively. An interpre-tation " of S is given in Table V. It is easy to see that " is also a model of S. Forexample, "(plants) 6= ;, "(annuals) � "(plants), "(annuals) \ "(perennials) = ;, andj"(annuals)j = 0:6 � j"(plants)j. Hene, S is onsistent.Table V. Interpretation " of shema S "() j"()jplants O1 [ � � � [ O10 800annuals O1 [ � � � [ O5 480perennials O6 [ � � � [ O10 320vegetables O1 [ O9 160herbs O2 [ O5 [ O6 240owers O3 [ O7 [ O10 320annuals herbs O5 192perennials owers O10 96It would be nie to have an eÆient algorithm for deiding the onsisteny ofa given POB-shema. For this purpose, we need a suitable haraterization ofonsisteny. The following ondition is a natural andidate.De�nition 5.6 (pseudo-onsistent POB-shema) The POB-shema S = (C,�;);me; }) is pseudo-onsistent i� the following onditions hold:P1 For any two di�erent lasses 1; 2 2 C with 1 )? 2, the produt of the edgeprobabilities is the same on all paths from 1 up to 2.P2 For all lusters P 2Sme(C), no two distint lasses 1; 2 2P have a ommonsublass.Example 5.6 (Plant Example: pseudo-onsistent POB-shema) It is easyto see that the POB-shema S = (C; �;);me; }) shown in Example 5.4 is pseudo-onsistent:|The two paths from annuals herbs up to plants and from perennials owers up toplants have both 0.24 and 0.12, respetively, as the produt of the edge probabil-ities.|Neither annuals herbs nor perennials owers is a sublass of two t-disjoint lasses.Indeed, it is straightforward to show that pseudo-onsisteny is a neessary on-dition for onsisteny.Theorem 5.1 Every onsistent POB-shema is pseudo-onsistent.



14 � T. Eiter et al.However, pseudo-onsisteny is not a suÆient ondition for onsisteny. Evenworse, deiding the onsisteny of a pseudo-onsistent POB-shema is intratable.We have the following result.Theorem 5.2 The problem of deiding whether a given POB-shema S is onsis-tent is NP-omplete. Hardness holds even if S is pseudo-onsistent.Proof. The problem is in NP, sine it polynomially redues to the NP-ompleteproblem of deiding whether a weight formula is satis�able in a measurable proba-bility struture [Fagin et al. 1990℄. Notie that the proof of NP-membership of thelatter problem heavily relies on results from the theory of linear programming (themain idea is to prove a small model theorem, whih says that a weight formula issatis�able in a measurable probability struture i� it is satis�able in a measurableprobability struture of polynomial size, see [Fagin et al. 1990℄).More preisely, weight formulas are de�ned as Boolean ombinations of basiweight formulas, whih are expressions of the form a1 �w(�1) + � � �+ ak �w(�k) � awith integers a1; : : : ; ak; a and propositional formulas �1; : : : ; �k. A measurableprobability struture an be identi�ed with a probability funtion on the �nite setof all truth assignments to the primitive propositions, whih is extended in a naturalway to propositional formulas, basi weight formulas, and weight formulas.It an now easily be shown that a POB-shema S = (C; �;);me; }) is onsis-tent i� the onjuntion of the following weight formulas, whih apture C1{C4 inDe�nition 5.5, is satis�able:C1 :((�1) � w() � 0) for all lasses  2 C.C2 (w( ^ :d) � 0) ^ ((�1) � w( ^ :d) � 0) for all lasses ; d 2 C with ) d.C3 (w(^d) � 0)^ ((�1) �w(^d) � 0) for all distint lasses ; d 2 C of the sameluster.C4 (n �w()+(�m) �w(d) � 0)^ ((�n) �w()+m �w(d) � 0) for all lasses ; d 2 Cwith ) d, where m and n are natural numbers suh that }(; d) = mn .The proof of NP-hardness is given in [Eiter et al. 1999℄. 2Nonetheless, polynomial algorithms for deiding the onsisteny of a POB-shemain relevant speial ases may be possible. Well-strutured POB-shemas, whih weintrodue next, enjoy this property.De�nition 5.7 (well-strutured POB-shema) The POB-shema S = (C; � ,);me; }) is well-strutured i� the following onditions hold:W1 There exists a lass  2 C suh that every lass d 2 C is a sublass of  (i.e.,the graph (C;)) has a top element).W2 For every lass  2 C and distint 1; 2 2 S(), the set S := S?(1) \ S?(2)is either empty or has a unique element dm 6= 1; 2 suh that d )? dm forall d 2 S (i.e., for every lass  2 C, any two distint immediate sublasses 1and 2 of  either have no ommon sublass or a greatest ommon sublassdm, whih is di�erent from them).



Probabilisti Objet Bases � 15W3 For every lass 2C, the undireted graph GS()= (V ; E) that is de�ned byV =me() and E = ffP1;P2g2V � V j P1 6= P2; S S?(P1) \ S S?(P2) 6= ;gis ayli (i.e., for every lass  2 C, the partition lusters in me() are notylially onneted through ommon sublasses. Roughly speaking, multipleinheritane does not ylially onnet partition lusters).W4 For every lass  2 C: if the graph GS() has an edge, i.e., two distint lustersP1;P2 2 me() have a ommon sublass, then every path from a sublass of to the top element of (C;)) goes through  (i.e., multiple inheritane an beloally isolated in the graph (C;))).Informally, these onditions restrit multiple inheritane so that a model forthe shema S an be built bottom up from models of subshemas. Spei�ally,W2 and W3 ensure that a model for a subshema under a lass  2 C an beonstruted from models of smaller subshemas that are related to the partitionlusters in me(). Moreover, W4 and W1 ensure that these loal onstrutionsdo not inuene eah other, and that they yield a model for the whole shema S,respetively. We feel that well-struturedness is a reasonable restrition on multipleinheritane5. In partiular, W1 and W2 an always be satis�ed by simply addingmissing top elements to ertain sets of lasses (during the design of a POB-shema,before speifying the probability assignment }). Let us now reonsider the PlantExample.Example 5.7 (Plant Example: well-strutured POB-shema) The POB-shema S given in Example 5.4 is well-strutured:|Every lass is a sublass of plants.|The lasses annuals herbs and perennials owers are t-disjoint.|There are no ylially onneted partition lusters.|The multiple inheritane at the lasses annuals herbs and perennials owers isloally isolated under the lass plants.As far as well-strutured POB-shemas are onerned, we have the nie result thatpseudo-onsisteny is a neessary and suÆient ondition for onsisteny. However,the proof of this result is highly nontrivial, see [Eiter et al. 1999℄.Theorem 5.3 Every pseudo-onsistent and well-strutured POB-shema S is on-sistent.It is easily seen that any S = (C; �;);me; }) without multiple inheritane, i.e.,jfd 2 C j ) dgj � 1 for eah lass  2 C, satis�es W2-W4. We obtain the followingorollary to Theorem 5.3.Corollary 5.4 Every POB-shema with top element and without multiple inheri-tane is onsistent.5Note that multiple inheritane was onsidered an optional feature of objet-oriented databasesystems in the \manifesto" [Atkinson et al. 1989℄.



16 � T. Eiter et al.It now remains to show that pseudo-onsisteny and well-struturedness of aPOB-shema an be deided eÆiently. We �rst �rst show, via Algorithm 5.2(whih used Algorithm 5.1) how to hek pseudo-onsisteny.Theorem 5.5 The problem of deiding whether a given POB-shema S = (C; �;),me; }) is pseudo-onsistent an be done using Algorithm 5.2 in time O(n(e + n)),where n = jCj and e is the number of direted edges in (C;)).Proof. Algorithm 5.2 deides the pseudo-onsisteny of S. It uses Algorithm 5.1,whih omputes the reahability relation of the graph (C;)).Algorithm 5.1 works as follows. Steps 1{4 initialize the reahability relation. Insteps 5{8, for eah lass , the set S() of all its sublasses, and the number Æ() ofall its immediate superlasses are omputed. Step 9 alulates the set of all lasses with Æ()= 0. The while-loop in 10{20 then omputes the reahability relation.In detail, every time step 10 is entered, the produt of the edge probabilities isorretly omputed along all paths that involve only edges a) b with lasses b suhthat Æ(b)= 0 and b =2N . Given this, in 11{18, we take some 2N , and we orretlyompute the edge probabilities along all paths d )  )? e, where  )? e involvesonly edges a) b with lasses b suh that Æ(b)= 0 and b =2N . In step 16, we returnnil when two distint produts are omputed between two lasses d and e.In Algorithm 5.2, we �rst hek in steps 1 and 2 whether the shema S violates P1.We then hek in steps 3{5 whether a lass  exists that is a sublass of two distintlasses in the same luster, that is, whether S violates P2.We now show that Algorithm 5.1 runs in time O(n(e + n)): The initializationsteps 1{4, 5{8, and 9 run in time O(n2), O(ne), and O(n), respetively. Next, itis easy to see that the for-loop in 15{17 is performed as many times as there areedges in (C;)), and eah exeution takes O(n) time. Thus, the whole while-loopin 10{20 runs in time O(ne).Hene, also Algorithm 5.2 runs in time O(n(e + n)): The steps 1{2 run in timeO(n(e+n)). The for-loop in 4{5 runs in linear time in the input size of me (i.e, in e).Thus, the whole for-loop in 3{5 runs in time O(ne). 2We now fous on deiding well-struturedness via Algorithm 5.3.Theorem 5.6 The problem of deiding whether a pseudo-onsistent POB-shemaS = (C; �;), me; }) is well-strutured an be solved using Algorithm 5.3 in timeO(n2e), where n = jCj and e is the number of direted edges in (C;)).Proof. Algorithm 5.3 deides the well-struturedness of S. Steps 1{3 hek whetherS satis�es W1. In 4{16, it is then heked whether S satis�es W2. Moreover, theunion of all undireted graphs GS() with  2 C and the set of all lasses withmultiple inheritane at sublasses are omputed. Step 17 heks that all the graphsGS() with  2 C are ayli, i.e., that S satis�es W3. In steps 18{22, it is �nallyheked whether S satis�es W4.We now show that Algorithm 5.3 runs in time O(n2e). It is easy to see thatsteps 1{2, 3, and 4 run in time O(ne), O(n), and O(n(e+n)) = O(ne), respetively(note that W1 ensures e � n� 1). Step 10 is done one time for eah edge in (C;))and eah lass in a set of lasses limited by C. The set D there an be omputed



Probabilisti Objet Bases � 17
Algorithm 5.1: reahability(S)Input: POB-shema S = (C; �;);me; }).Output: If S does not satisfy P1, then nil is returned. Otherwise, a mapping w : C�C ! [0; 1℄is returned suh that w(; d) is the produt of the edge probabilities on all pathsfrom  up to d if suh a path exists and w(; d) is 0 otherwise.1. for eah ; d 2 C do2. if  = d then w(; d) := 13. else if ) d then w(; d) := }(; d)4. else w(; d) := 0;5. for eah  2 C do begin6. S() := fd 2 C j d) g;7. Æ() := jfd 2 C j ) dgj8. end;9. N := f 2 C j Æ() = 0g;10. while N 6= ; do begin11. take any  2 N ;12. for eah d 2 S() do begin13. Æ(d) := Æ(d) � 1;14. if Æ(d) = 0 then N := N [ fdg;15. for eah e 2 C with w(; e) > 0 do16. if w(d; e) > 0 and w(d; e) 6= w(d; ) �w(; e) then return nil17. else w(d; e) := w(d; ) �w(; e)18. end;19. N := N � fg;20. end;21. return w. Fig. 3. Algorithm 5.1
Algorithm 5.2: pseudo-onsistent(S)Input: POB-shema S = (C; �;);me; }).Output: true if S is pseudo-onsistent and false otherwise.1. w := reahability(S);2. if w = nil then return false; (S does not satisfy P1)3. for eah  2 C do4. for eah P 2 Sme(C) do5. if jfe 2 P jw(; e) > 0gj > 1 then return false; (S does not satisfy P2)6. return true. (S is pseudo-onsistent)Fig. 4. Algorithm 5.2



18 � T. Eiter et al.Algorithm 5.3: well-strutured(S)Input: Pseudo-onsistent POB-shema S = (C; �;);me; }).Output: true if S is well-strutured and false otherwise.Notation: We use top(S) to denote the top element of (C;)). For lasses  2 C, theexpression S�  denotes the POB-shema that is obtained from S by removing .max(D), where D � C, is the set of all maximal members in D w.r.t. )?.1. for eah  2 C do2. Æ() := jfd 2 C j ) dgj;3. if jf 2 C j Æ() = 0gj > 1 then return false; (S does not satisfy W1)4. w := reahability(S);5. E := ;;6. M := ;;7. for eah  2 C do8. for eah distint P1;P2 2 me() do9. for eah (1; 2) 2 P1 � P2 do begin10. D := fd 2 C j w(d; 1) > 0 and w(d; 2) > 0g;11. if jmax(D)j > 1 or D \ f1; 2g 6= ; then return false (S does not satisfy W2)12. else if jmax(D)j = 1 then begin13. E := E [ ffP1;P2gg;14. M :=M [ fg15. end16. end;17. if (Sme(C); E) ontains a yle then return false; (S does not satisfy W3)18. for eah  2M do begin19. v := reahability(S� );20. for eah d 2 C with w(d; ) > 0 do21. if v(d; top(S)) > 0 then return false; (S does not satisfy W4)22. end;23. return true. (S is well-strutured)Fig. 5. Algorithm 5.3in time O(n). The tests in steps 11 and 12 an be done, using a simple algorithm,in time O(n). Hene, steps 5{16 run in time O(n2e). In step 17, the number oflusters in Sme(C) is in the worst ase equal to e. Thus, step 17 an be performedin time O(e) using standard algorithms for heking ayliity. Finally, it is easyto see that steps 18{22 run in time O(n2e). 26. INHERITANCE AND PROBABILISTIC OBJECT BASE INSTANCESThus far, we have not addressed inheritane of attributes that may arise throughsublass relationships in a POB-shema S. For example, if  is a sublass of d,and d's type has a top-level attribute A, then lass  should inherit this attribute,unless  already has suh an attribute. The issue of inheritane has been extensivelydisussed in the literature, e.g. [Bertino and Martino 1993℄. We now inorporateinheritane in our framework, and de�ne instanes of a POB-shema.6.1 Inheritane Completion and Fully Inherited ShemasThe main idea behind the inheritane of attributes is that every lass should inheritall top-level attributes of all its superlasses. In order to handle ases in whihthe same attribute is inherited from more than one superlass, we make use ofinheritane strategies.



Probabilisti Objet Bases � 19Let us assume that any shema S = (C; �;);me; }) has an assoiated inheritanestrategy inhS that determines from whih superlass d a lass  inherits a top-levelattribute A. More formally, let A denote the set of all top-level attributes of S.For eah pair (; A) 2 C �A, let A be de�ned as follows:A = fd 2 C j )? d; A is a top-level attribute of �(d)g :We now de�ne inhS : C�A! C as a partial mapping that assigns eah pair (; A) 2C �A with A 6= ; a minimal element in A under the partial order )? (the valueof inhS(; A) is unde�ned if A = ;). In partiular, inhS(; A) =  if A is a top-levelattribute of �().This notion of inheritane strategy overs strategies (suh as an ordering onlasses) that are ommonly used to resolve multiple inheritane in pratie. Simi-larly, if we wish to use the strategy of the O2 system [Banilhon et al. 1991℄ whererenamed inheritane of the same attribute with distint origins is desired, we ouldgeneralize inhS(; A) to return all pairs (d;A0) with lasses d from whih attribute A,renamed to A0, is inherited.Applying inhS on a POB-shema S = (C; �;);me; }) indues another POB-shema S? = (C; �?;); me; }), whih only di�ers from S in its type assignment �?.More preisely, for eah  2 C, we de�ne �?() = [A1 : �(d1):A1; : : : ; Ak : �(dk):Ak ℄,where A1; : : : ; Ak are the top-level attributes that are inherited by  via inhS fromthe lasses d1; : : : ; dk, respetively. We all S? the inheritane ompletion of S. APOB-shema S is fully inherited i� S = S?.Example 6.1 (Plant Example: probabilisti objet base shema) Let usonsider the POB-shema S = (C; �;);me; }) for the Plant Example de�ned inExample 5.4. It is easily heked that for every sublass  of any lass d, eahtop-level attribute of �(d) is a top-level attribute of �(), i.e., all attributes in d arealready present in . Thus, no attributes are inherited from proper superlasses,whih means that S is fully inherited. The type assignment � in S may be onsid-ered ill-designed, however, as it does not reet natural inheritane relationships.Consider now the redesigned shema S0 = (C; � 0;);me; }) with the redesignedtype assignment � 0 shown in Table VI, and adopt an inheritane strategy inhS0 thatresolves multiple inheritane by ordering \left-to-right" in Figure 1, i.e., ordersannuals before herbs and perennials before owers.6 Then, the original shema S isgiven by the inheritane ompletion of S0.In the rest of this paper, we impliitly assume that all POB-shemas S are on-sistent (see De�nition 5.5), and that they are all fully inherited. In partiular,POB-instanes in the next subsetion, and operations in our POB-Algebra in Se-tion 7 are de�ned with respet to fully inherited POB-shemas. Note that thesede�nitions an easily be extended to POB-shemas S that are not fully inherited.6.2 Probabilisti Objet Base InstaneWe are now ready to de�ne a probabilisti objet base instane (POB-instane).The following assumption is ommon in objet-oriented databases [Kim 1990℄.6No renaming is assumed here for the same attribute with distint origins.



20 � T. Eiter et al.Table VI. Redesigned type assignment � 0 � 0()plants [pname : string; soil : soiltype; rain : integer℄annuals [sun : suntype℄perennials [sun : suntype; expyears : integer℄vegetables [sun : suntype; expyears : integer℄herbs [sun : suntype; expyears : integer; lassi�ation : string℄owers [sun : suntype; expyears : integer; lassi�ation : string℄annuals herbs [ ℄perennials owers [ ℄Assumption. In the rest of this paper, we assume that there is a (ountably)in�nite set O of objet identi�ers (oids).Eah objet, represented by an oid, is assoiated with a value. The objetspopulate a POB-instane as follows.De�nition 6.1 (probabilisti objet base instane) Let S = (C; �;);me; })be a onsistent POB-shema. A probabilisti objet base instane (POB-instane)over S is a pair (�; �), where:|� : C ! 2O maps eah lass  to a �nite subset of O, suh that �(1)\ �(2) = ;for di�erent 1; 2 2 C. That is, the lasses in C are mapped to pairwise disjointsets of oids. We use �(C) to abbreviate Sf�() j  2 Cg. We de�ne the mapping�? : C ! 2O by �?() = Sf�(0) j 0 2 C; 0 )? g.Intuitively, �() denotes the ids of all objets that are de�ned in the lass , while�?() denotes the ids of all objets that belong to the lass  (i.e., that are de�nedin  or in one of its proper sublasses).|� maps eah oid o 2 �(C) to a probabilisti tuple value of the appropriate type,i.e., type �() for the lass  suh that o 2 �().Let us provide a POB-instane for the POB-shema of Example 5.4.Example 6.2 (Plant Example: probabilisti objet base instane)A POB-instane over the POB-shema shown in Example 5.4 is given as follows:|� and �? are the mappings shown in Table VII. Clearly, this is a very simpleprobabilisti objet base (it ontains only seven distint objets).|� is the mapping shown in Table VIII.In lassial objet bases, the extent of a lass  onsists of all oids belonging to. The probabilisti extent of  spei�es the probability that an oid belongs to .De�nition 6.2 (probabilisti extent) Let I = (�; �) be a POB-instane overthe onsistent POB-shema S = (C; �;);me; }). For all lasses  2 C, the prob-abilisti extent of , denoted ext(), maps eah oid o 2 �(C) to a set of rationalnumbers in [0; 1℄ as follows:(1) If o 2 �?(), then ext()(o) = f1g.



Probabilisti Objet Bases � 21Table VII. Mappings � and �? �() �?()plants fo1g fo1; o2; o3; o4; o5; o6; o7gannuals fg fo2; o3; o5; o6; o7gperennials fg fo4gvegetables fg fgherbs fg fo2; o3; o5; o6; o7gowers fg fo4gannuals herbs fo2; o3; o5; o6; o7g fo2; o3; o5; o6; o7gperennials owers fo4g fo4gTable VIII. Value assignment �oid �(oid)o1 [pname :hfLady-Fern;Ostrih-Ferng; u; ui;soil : hfloamyg; u; ui;rain : hf25; : : : ; 30g; u;ui℄o2 [pname :hfCuban-Basil; Lemon-Basilg; u; ui;soil : hfloamy; sandyg; 0:7 u; 1:3 ui;rain : hf20; : : : ; 30g; u;ui;sun : hfmild;mediumg; 0:8 u; 1:2 ui;expyears : hf2; 3; 4g; 0:6 u; 1:8 ui;lassi�ation :hffrenh; silver;woolyg; 0:6 u; 1:8 ui℄o3 [pname : hfMintg; u; ui;soil : hfloamyg; u; ui;rain : hf20g; u; ui;sun : hfmildg; u; ui;expyears : hf2; 3; 4g; 0:6 u; 1:8 ui;lassi�ation :hffrenh; silver;woolyg; 0:6 u; 1:8 ui℄o4 [pname : hfAster; Salviag; u; ui;soil : hfloamy; sandyg; 0:6 u; 1:4 ui;rain : hf20; : : : ; 25g; u;ui;sun : hfmildg; u; ui;expyears : hf2; 3; 4g; 0:6 u; 1:8 ui;lassi�ation :hffrenh; silver;woolyg; 0:6 u; 1:8 ui℄

oid �(oid)o5 [pname : hfThymeg; u; ui;soil : hfloamyg; u; ui;rain : hf20; : : : ; 25g; u; ui;sun : hfmild;mediumg; 0:8 u; 1:2 ui;expyears : hf2; 3g; 0:8 u; 1:2 ui;lassi�ation :hffrenh; silver;woolyg; 0:6 u; 1:8 ui℄o6 [pname : hfMintg; u;ui;soil : hfloamyg; u; ui;rain : hf20g; u; ui;sun : hfmildg; u;ui;expyears : hf2; 3; 4g; 0:6 u; 1:8 ui;lassi�ation :hfapple; urlyg; 0:6 u; 1:4 ui℄o7 [pname : hfSageg; u; ui;soil : hfsandyg; u; ui;rain : hf20; 21g; u; ui;sun : hfmildg; u;ui;expyears : hf2; 3; 4g; 0:6 u; 1:8 ui;lassi�ation :hfred; triolorg; 0:6 u; 1:4 ui℄



22 � T. Eiter et al.(2) If o 2 �?(0) with a lass 0 2 C that is t-disjoint from  (i.e., for all models" of S, the sets "(0) and "() are disjoint), then ext()(o) = f0g.(3) Otherwise, ext()(o)= fp j p is the produt of the edge probabilities on apath from  up to a lass 0 2 C, where 0 is minimal with o2�?(0) and )? 0g.We return to the Plant Example to see what the extents of the various lasses are.Example 6.3 (Plant Example: probabilisti extent) In the Plant Example,the probabilisti extents of annuals herbs and perennials owers are given as follows:ext(annuals herbs)(o1) = f0:24g ext(perennials owers)(o1) = f0:12gext(annuals herbs)(o2) = f1g ext(perennials owers)(o2) = f0gext(annuals herbs)(o3) = f1g ext(perennials owers)(o3) = f0gext(annuals herbs)(o4) = f0g ext(perennials owers)(o4) = f1gext(annuals herbs)(o5) = f1g ext(perennials owers)(o5) = f0gext(annuals herbs)(o6) = f1g ext(perennials owers)(o6) = f0gext(annuals herbs)(o7) = f1g ext(perennials owers)(o7) = f0gDe�nition 6.3 (oherent POB-instane) Let I = (�; �) be a POB-instaneover the onsistent POB-shema S = (C; �;);me; }). The POB-instane I is o-herent i� for all lasses  2 C and all objets o 2 �(C), the probabilisti extentext()(o) ontains at most one element.It is easy to see that the Plant Example desribed thus far is oherent and thattesting oherene of a given POB-instane I of a onsistent shema S an be donein polynomial time.7. PROBABILISTIC OBJECT BASES: ALGEBRAIC OPERATIONSIn this setion, we formally de�ne the analogs of the lassial relational operationson POBs. All standard operations on POBs take POB-instanes as input, andprodue POB-instanes as output. Reall that all POB-shemas of input POB-instanes are impliitly assumed to be onsistent and fully inherited.The probability omputations in our POB-algebra are based on probabilistiombination strategies. As shown in [Eiter et al. 2000a℄, all ommon probabilistiombination strategies an be omputed in a onstant number of operations fromthe input intervals. Thus, under these strategies, the probability omputations inour POB-algebra are all tratable, and it is easy to see that our algebrai operationsare all omputable in polynomial time in the size of the input POB-instanes.7.1 SeletionIntuitively, given a POB-instane I over the POB-shema S, the result of a seletionoperation is another POB-instane I0 over S suh that the objets in the extents ofthe lasses in I0 all satisfy the seletion ondition of the query. Before desribingthe seletion operation, we formally de�ne the syntax and the semantis of sele-tion onditions. We start by de�ning the syntax of path expressions and seletionexpressions.



Probabilisti Objet Bases � 23De�nition 7.1 (path expression) Let � = [A1 : �1; : : : ; Ak : �k ℄ be any type. Wede�ne path expressions by indution as follows: (i) every Ai is a path expressionfor � , and (ii) if Pi is a path expression for �i, then Ai:Pi is a path expression for � ,for every i = 1; : : : ; k.We use the Plant Example to demonstrate some path expressions.Example 7.1 (Plant Example: path expression) In the Plant Example, twopath expressions for the type [pname : string; size : [height : integer; width : integer℄℄are given by pname and size:height.We now de�ne the syntax of atomi seletion expressions.De�nition 7.2 (atomi seletion expression) Let S = (C; �;);me; }) be aPOB-shema and let X be a set of objet variables. An atomi seletion expressionhas one of the following forms:|x 2 , where x is an objet variable from X , and  is a lass from C.|x:P � v, where x is an objet variable from X , P is a path expression overattributes from A, � is a binary prediate from f=; 6=;�;�; <;>;�;�;2;3g,and v is a value.|x:P1 =
 x:P2, where x is an objet variable from X , P1 and P2 are two distintpath expressions over attributes from A, and 
 is a probabilisti onjuntionstrategy.Let us onsider some examples of atomi seletion expressions.Example 7.2 (Plant Example: atomi seletion expression) In the PlantExample, some atomi seletion expressions are as follows (x is an objet variable):|Find all objets that are annuals and herbs. This seletion an be represented bythe atomi seletion expression x 2 annuals herbs.|Find all objets that require a mild sun. This seletion an be represented by theatomi seletion expression x:sun = mild.|Find all objets that require over 21 units of rain. This seletion an be repre-sented by the atomi seletion expression x:rain > 21.We now de�ne the syntax of seletion expressions.De�nition 7.3 (seletion expression) Let S be a POB-shema. We de�ne on-juntive and disjuntive seletion expressions by indution as follows:If � is an atomi seletion expression and 
 is a probabilisti onjuntion strat-egy, then � is a onjuntive seletion expression over 
. If � and  are onjuntiveseletion expressions over the same objet variable and the same probabilisti on-juntion strategy 
, then �
  is a onjuntive seletion expression over 
.If � is an atomi seletion expression and � is a probabilisti disjuntion strat-egy, then � is a disjuntive seletion expression over �. If � and  are disjuntiveseletion expressions over the same objet variable and the same probabilisti dis-juntion strategy �, then ��  is a disjuntive seletion expression over �.A seletion expression is a onjuntive or disjuntive seletion expression.



24 � T. Eiter et al.Let us illustrate this de�nition via the Plant Example.Example 7.3 (Plant Example: seletion expression) In the Plant Example,some seletion expressions are given as follows (x is an objet variable):|The atomi seletion expressions x2 annuals herbs, x:sun=mild, and x:rain> 21given in Example 7.2 are seletion expressions.|Find all objets that are annuals and herbs and that require a mild sun. Thisseletion an be represented by the seletion expression x 2 annuals herbs 
x:sun=mild, where 
 is a probabilisti onjuntion strategy.|Find all objets that require a mild sun or over 21 units of rain. This seletionan be represented by the seletion expression x:sun=mild� x:rain> 21, where� is a probabilisti disjuntion strategy.We are now ready to de�ne the syntax of seletion onditions.De�nition 7.4 (seletion ondition) Let S be a POB-shema. (i) If � is a se-letion expression and L and U are real numbers from [0; 1℄ with L � U , then(�)[L;U ℄ is a seletion ondition. (ii) If � and � are seletion onditions over thesame objet variable, then :�, (� ^ �), and (� _ �) are seletion onditions.Let us onsider some examples of seletion onditions.Example 7.4 (Plant Example: seletion ondition) In the Plant Example,some seletion onditions are given as follows (x is an objet variable):|The seletion of all objets that require both a mild sun and over 21 units of rainwith a probability of 30{50%, an be done by using the seletion ondition(x:sun=mild
 x:rain> 21)[0:3; 0:5℄ ;where 
 is a probabilisti onjuntion strategy.|The seletion of all objets that require a mild sun with a probability of at least40%, and over 21 units of rain with a probability of at least 80%, an be done byusing the following seletion ondition:(x:sun=mild)[0:4; 1℄ ^ (x:rain> 21)[0:8; 1℄ :|The seletion of all objets that do not require a mild sun with a probability of atleast 40% an be done by using the following seletion ondition::(x:sun=mild)[0:4; 1℄ .Note that a seletion expression and a seletion ondition an ontain exatly oneobjet variable.It now remains to de�ne the semantis of seletion expressions and seletiononditions. For this purpose, eah triple (S; I; o) onsisting of a POB-shemaS=(C; �;);me; }), a POB-instane I=(�; �) over S, and an oid o2�(C) in I isassoiated with a probabilisti interpretation probS;I;o, whih assigns a probabilityinterval to seletion expressions, and a truth value to seletion onditions. We �rstinterpret path expressions and seletion expressions.



Probabilisti Objet Bases � 25De�nition 7.5 (interpretation of path expressions) Suppose we are given atuple type � = [A1 : �1; : : : , Ak : �k℄. The interpretation of a path expression Pfor � under a value v = [A1 : v1; : : : ; Ak : vk℄ of type � , denoted v:P , is indutivelyde�ned by v:Ai = vi and v:Ai:Pi = vi:Pi, for every i = 1; : : : ; k.The following example shows how path expressions are interpreted.Example 7.5 (Plant Example: interpretation of path expressions) In thePlant Example, the interpretation of the path expressions pname and size:heightunder the value [pname : Thyme; size : [height : 4, width : 12℄℄ is given by the valuesThyme and 4, respetively.We next assign probabilisti intervals to atomi seletion expressions:De�nition 7.6 (interpretation of atomi seletion expressions) Supposewe are given a POB-instane I = (�; �) over the POB-shema S = (C; �;);me; }),and let o 2 �(C). The probabilisti interpretation with respet to S, I, and o,denoted probS;I;o, is the partial mapping from all atomi seletion expressions tothe set of all subintervals of [0; 1℄ that is de�ned as follows:|probS;I;o(x 2 ) = [min(ext()(o));max(ext()(o))℄. Intuitively, probS;I;o(x 2 )desribes the interval for the probability that the objet o belongs to the lass .|If �(o):A = hV; �; �i, and P = AP 0 is a path expression for the type of o, whereP 0 is either empty or of the form :P 00, then:probS;I;o(x:P � v) = 8<:[ Pu2W �(u); min(1; Pu2W �(u))℄ ; if W 6= ; ;[0; 0℄ ; otherwise,where W = fu 2 V j uP 0 � vg. Note that probS;I;o(x:P � v) is unde�ned7, ifP is unde�ned for �(o), or if uP 0 � v is unde�ned for some u 2 V . Intuitively,probS;I;o(x:AP 0 � v) desribes the interval for the probability that the objet ohas a value u in attribute A suh that uP 0 � v.|If �(o):Ai = hVi; �i; �ii, and Pi = AiPi0 is a path expression for the type of o,where Pi0 is either empty or of the form :Pi00, for i 2 f1; 2g, then:probS;I;o(x:P1 =
 x:P2) = 8<:[ Pu2W �(u); min(1; Pu2W �(u))℄ ; if W 6= ; ;[0; 0℄ ; otherwise,where W = f(u1; u2) 2 V1 � V2 j u1P10 = u2P20g, and[�(u); �(u)℄ = [�1(u1); �1(u1)℄
 [�2(u2); �2(u2)℄ for all u = (u1; u2) 2 W .Note that probS;I;o(x:P1 =
 x:P2) is unde�ned5, if P1 or P2 is unde�ned for �(o).Intuitively, probS;I;o(x:A1P10 =
 x:A2P20) desribes the interval for the probabil-ity that the objet o has a value u1 in attribute A1 and a value u2 in attribute A27As a onsequene, two seletions on I with respet to logially equivalent seletion onditions �1and �2 generally produe the same result only when probS;I;o is de�ned for every atomi seletionexpression in �1 and �2, and every objet o in I.



26 � T. Eiter et al.suh that u1P10 = u2P20. The seleted onjuntion strategy 
 reets the de-pendenies between the two attributes A1 and A2.Let us give an example to illustrate this de�nition.Example 7.6 (interpretation of atomi seletion expressions) In the PlantExample, the probabilisti interpretations probS;I;o with o 2 fo1; o2; : : : ; o7g mapthe atomi seletion expressions x2 annuals herbs, x:sun=mild, and x:rain> 21 tothe subintervals of [0; 1℄ shown in Table IX.Table IX. Interpretation of atomi seletion expressionso probS;I;o(x 2 annuals herbs) probS;I;o(x:sun = mild) probS;I;o(x:rain > 21)o1 [0:24; 0:24℄ unde�ned [1:00; 1:00℄o2 [1:00; 1:00℄ [0:40; 0:60℄ [0:82; 0:82℄o3 [1:00; 1:00℄ [1:00; 1:00℄ [0:00; 0:00℄o4 [0:00; 0:00℄ [1:00; 1:00℄ [0:67; 0:67℄o5 [1:00; 1:00℄ [0:40; 0:60℄ [0:67; 0:67℄o6 [1:00; 1:00℄ [1:00; 1:00℄ [0:00; 0:00℄o7 [1:00; 1:00℄ [1:00; 1:00℄ [0:00; 0:00℄We now assign probabilisti intervals to seletion expressions:De�nition 7.7 (interpretation of seletion expressions) Let I = (�; �) be aPOB-instane over the POB-shema S = (C; �;);me; }) and let o 2 �(C). Weextend probS;I;o to a partial mapping from the set of all seletion expressions tothe set of all losed subintervals of [0,1℄ as follows:probS;I;o(� 
  ) = probS;I;o(�) 
 probS;I;o( ):probS;I;o(� �  ) = probS;I;o(�) � probS;I;o( ):Let us illustrate this de�nition via the Plant Example.Example 7.7 (Plant Example: interpretation of seletion expressions)In the Plant Example, the two seletion expressions �st = \x 2 annuals herbs 
stx:sun = mild" and  st = \x:sun = mild 
st x:rain > 21" are assigned the subinter-vals of [0; 1℄ shown in Table X.We are now ready to assign truth values to seletion onditions:De�nition 7.8 (satisfation of seletion onditions) Let I = (�; �) be aPOB-instane over the POB-shema S = (C; �;);me; }) and let o 2 �(C). Weextend probS;I;o to seletion onditions as follows:|probS;I;o j= (�)[L;U ℄ i� probS;I;o(�) � [L;U ℄.|probS;I;o j= :� i� it is not the ase that probS;I;o j= �.|probS;I;o j= � ^  i� probS;I;o j= � and probS;I;o j=  .|probS;I;o j= � _  i� probS;I;o j= � or probS;I;o j=  .



Probabilisti Objet Bases � 27Table X. Interpretation of seletion expressionso probS;I;o(�in) probS;I;o(�ig) probS;I;o( in ) probS;I;o( ig )o1 unde�ned unde�ned unde�ned unde�nedo2 [0:40; 0:60℄ [0:40; 0:60℄ [0:33; 0:49℄ [0:22; 0:60℄o3 [1:00; 1:00℄ [1:00; 1:00℄ [0:00; 0:00℄ [0:00; 0:00℄o4 [0:00; 0:00℄ [0:00; 0:00℄ [0:67; 0:67℄ [0:67; 0:67℄o5 [0:40; 0:60℄ [0:40; 0:60℄ [0:27; 0:40℄ [0:07; 0:60℄o6 [1:00; 1:00℄ [1:00; 1:00℄ [0:00; 0:00℄ [0:00; 0:00℄o7 [1:00; 1:00℄ [1:00; 1:00℄ [0:00; 0:00℄ [0:00; 0:00℄Let us give an illustrating example.Example 7.8 (Plant Example: satisfation of seletion onditions) In thePlant Example, we have:|probS;I;o2 j= (x:sun=mild
in x:rain> 21)[0:3; 0:5℄ (see Example 7.7).|probS;I;o2 6j= (x:sun=mild
ig x:rain> 21)[0:3; 0:5℄ (see Example 7.7).|probS;I;o2 j= (x:sun=mild)[0:4; 1℄ ^ (x:rain> 21)[0:8; 1℄ (see Example 7.6).|probS;I;o3 6j= (x:sun=mild)[0:4; 1℄ ^ (x:rain> 21)[0:8; 1℄ (see Example 7.6).We are now �nally ready to de�ne the seletion operation.De�nition 7.9 (seletion on POB-instanes) Let I = (�; �) be a POB-in-stane over the POB-shema S = (C; �;);me; }) and let � be a seletion onditionover the objet variable x. The seletion on I with respet to �, denoted ��(I), isthe POB-instane (�0; �0) over S, where:|�0() = fo 2 �() j probS;I;o j= � g.|�0 = � j�0(C) (i.e., the mapping � restrited to �0(C)).The following example shows preisely what happens in the Plant Example whenwe perform seletion with respet to seletion onditions.Example 7.9 (Plant Example: seletion) In the Plant Example, the seletionon I = (�; �) with respet to the seletion ondition(x:sun=mild)[0:4; 1℄ ^ (x:rain> 21)[0:8; 1℄is the POB-instane (�0; �0) over S (see Example 7.6), where �0 and �0 are shownin Tables XI and XII, respetively. This result is also obtained by the seletion onI with respet to (x:sun=mild
in x:rain> 21)[0:3; 0:5℄ (see Example 7.7).The seletion on I with respet to (x:sun=mild
ig x:rain> 21)[0:3; 0:5℄, in on-trast, produes the empty POB-instane over S (see Example 7.7).7.2 Projetion and RenamingIn this setion, we de�ne the projetion of POB-instanes on arbitrary sets ofattributes, and the renaming of (top-level) attributes in POB-instanes. We startby de�ning projetion on POB-instanes. We �rst de�ne the projetion of POB-shemas on sets of attributes.



28 � T. Eiter et al. Table XI. �0 resulting from seletion �0()plants fgannuals fgperennials fgvegetables fgherbs fgowers fgannuals herbs fo2gperennials owers fgTable XII. �0 resulting from seletionoid �0(oid)o2 [pname : hfCuban-Basil; Lemon-Basilg; u; ui;soil : hfloamy; sandyg; 0:7 u; 1:3 ui;rain : hf20; : : : ; 30g; u; ui;sun : hfmild;mediumg; 0:8 u; 1:2 ui;expyears : hf2; 3; 4g; 0:6 u; 1:8 ui;lassi�ation : hffrenh; silver;woolyg; 0:6 u; 1:8 ui℄De�nition 7.10 (projetion of POB-shemas) Let S = (C; �;);me; }) be aPOB-shema and let A be a set of attributes. The projetion of S on A, denoted�A(S), is the POB-shema (C; � 0;);me; }), where the new type � 0() of eah lass 2 C is obtained from the old type �() = [B1 : �1; : : : ; Bk : �k℄ by deleting allBj : �j 's with Bj =2 A.Let us onsider an example to illustrate the projetion of POB-shemas.Example 7.10 (Plant Example: projetion of POB-shemas) Consider thePOB-shema S desribed in Example 5.4. Then, the projetion of S on the set ofattributes A = fpname; raing has the type assignment � 0 shown in Table XIII.Table XIII. � 0 resulting from projetion � 0()plants [pname : string; rain : integer℄annuals [pname : string; rain : integer℄perennials [pname : string; rain : integer℄vegetables [pname : string; rain : integer℄herbs [pname : string; rain : integer℄owers [pname : string; rain : integer℄annuals herbs [pname : string; rain : integer℄perennials owers [pname : string; rain : integer℄



Probabilisti Objet Bases � 29We next de�ne the projetion of probabilisti tuple values.De�nition 7.11 (projetion of probabilisti tuple values)Let ptv be a prob-abilisti tuple value of the form [B1 : (V1; �1; �1); : : : ; Bk : (Vk ; �k; �k)℄ and let A bea set of attributes. The projetion of ptv on A, denoted �A(ptv), is obtainedfrom [B1 : (V1; �1; �1); : : : ; Bk : (Vk ; �k; �k)℄ by deleting all Bj : (Vj ; �j ; �j)'s withBj =2 A.We give a small example to illustrate the projetion of probabilisti tuple values.Example 7.11 (Plant Example: projetion of probabilisti tuple values)Let the probabilisti tuple value ptv be given as follows (note that ptv is assoiatedwith the objet o2 in Example 6.2):ptv = [ pname : hfCuban-Basil; Lemon-Basilg; u; ui;soil : hfloamy; sandyg; 0:7 u; 1:3 ui;rain : hf20; : : : ; 30g; u; ui;sun : hfmild;mediumg; 0:8 u; 1:2 ui;expyears : hf2; 3; 4g; 0:6 u; 1:8 ui;lassi�ation : hffrenh; silver;woolyg; 0:6 u; 1:8 ui℄ :The projetion of ptv on the set of attributes A = fpname; raing is given as follows:�A(ptv )= [pname : hfCuban-Basil; Lemon-Basilg; u; ui; rain : hf20; : : : ; 30g; u; ui℄ :We are now ready to de�ne projetion of POB-instanes.De�nition 7.12 (projetion of POB-instanes) Let I = (�; �) be a POB-in-stane over the POB-shema S = (C; �;);me; }) and let A be a set of attributes.The projetion of I on A, denoted �A(I), is de�ned as the POB-instane (�0; �0)over the POB-shema �A(S), where:|�0() = �() for all lasses  2 C.|�0(o) = �A(�(o)) for all oids o 2 �(C).Let us illustrate this de�nition within the Plant Example.Example 7.12 (Plant Example: projetion of POB-instanes) Let us on-sider the POB-instane I = (�; �) desribed in Example 6.2. The projetion of Ion A = fpname; raing is the POB-instane (�0; �0), where �0 is the same as �, and�0 is given in Table XIV.We next de�ne the renaming of (top-level) attributes in POB-instanes. Thisoperation is espeially useful in onnetion with Cartesian produt and join (seeSetions 7.3 and 7.4). We �rst de�ne renaming expressions.De�nition 7.13 (renaming expression) Let S = (C; �;);me; }) be a POB-shema and let A be the set of all top-level attributes of S. A renaming ex-pression has the form ~B ~C, where ~B = B1; B2; : : : ; Bl is a list of distint at-tributes from A, and ~C = C1; C2; : : : ; Cl is a list of distint attributes from



30 � T. Eiter et al.Table XIV. �0 resulting from projetionoid �0(oid)o1 [pname : hfLady-Fern;Ostrih-Ferng; u; ui,rain : hf25; : : : ; 30g; u; ui℄o2 [pname : hfCuban-Basil; Lemon-Basilg; u;ui,rain : hf20; : : : ; 30g; u; ui℄o3 [pname : hfMintg; u;ui, rain : hf20g; u; ui℄o4 [pname : hfAster; Salviag; u; ui,rain : hf20; : : : ; 25g; u; ui℄o5 [pname : hfThymeg; u; ui, rain : hf20; : : : ; 25g; u; ui℄o6 [pname : hfMintg; u;ui, rain : hf20g; u; ui℄o7 [pname : hfSageg; u; ui, rain : hf20; 21g; u; ui℄A � (A � fB1; B2; : : : ; Blg) (this ondition ensures that eah attribute Ci thatbelongs to A must also our in ~B, i.e., eah suh Ci must itself be renamed).We now de�ne the renaming of attributes in POB-shemas.De�nition 7.14 (renaming in POB-shemas) Let S = (C; �;);me; }) be aPOB-shema and let N = B1; B2; : : : ; Bl C1; C2; : : : ; Cl be a renaming expres-sion. The renaming in S with respet to N , denoted ÆN (S), is the POB-shema(C; � 0;);me; }), where the new type � 0() of eah lass  2 C is obtained from theold type �() = [A1 : �1; : : : ; Ak : �k℄ by replaing eah attribute Aj with Aj = Bifor some i 2 f1; : : : ; lg by the new attribute Ci.Note. Though the above de�nition does not inlude renaming of nested at-tributes, this may be aomplished by a straightforward extension. For the sake ofsimpliity, we skip this.Let us give an example to illustrate the renaming of attributes in POB-shemas.Example 7.13 (Plant Example: renaming in POB-shemas) Let us on-sider again the POB-shema S omputed in Example 7.10. The renaming in Swith respet to the renaming expressionpname; rain  pname2; rain2has the type assignment � 0 shown in Table XV.We next de�ne the renaming of attributes in probabilisti tuple values.De�nition 7.15 (renaming in probabilisti tuple values) Let ptv be a prob-abilisti tuple value of the form [A1 : (V1; �1; �1), : : : , Ak : (Vk ; �k; �k)℄ and letN = B1; B2; : : : ; Bl  C1; C2; : : : ; Cl be a renaming expression. The renamingin ptv with respet to N , denoted ÆN (ptv), is obtained from [A1 : (V1; �1; �1), : : : ,Ak : (Vk ; �k; �k)℄ by replaing eah attribute Aj with Aj =Bi for some i2f1; : : : ; lgby the new attribute Ci.



Probabilisti Objet Bases � 31Table XV. � 0 resulting from renaming � 0()plants [pname2 : string; rain2 : integer℄annuals [pname2 : string; rain2 : integer℄perennials [pname2 : string; rain2 : integer℄vegetables [pname2 : string; rain2 : integer℄herbs [pname2 : string; rain2 : integer℄owers [pname2 : string; rain2 : integer℄annuals herbs [pname2 : string; rain2 : integer℄perennials owers [pname2 : string; rain2 : integer℄We are now ready to de�ne the renaming of attributes in POB-instanes.De�nition 7.16 (renaming in POB-instanes) Let I = (�; �) be a POB-in-stane over the POB-shema S = (C; �;);me; }) and let N be a renaming ex-pression. The renaming in I with respet to N , denoted ÆN (I), is de�ned as thePOB-instane (�0; �0) over the POB-shema ÆN (S), where:|�0() = �() for all lasses  2 C.|�0(o) = ÆN (�(o)) for all oids o 2 �(C).Let us illustrate this de�nition within the Plant Example.Example 7.14 (Plant Example: renaming in POB-instanes) Let us on-sider the POB-instane I = (�; �) omputed in Example 7.12. The renaming in Iwith respet to the renaming expression pname; rain pname2; rain2 is the POB-instane (�0; �0), where �0 is the same as �, and �0 is given in Table XVI.7.3 Cartesian ProdutIn relational databases, the Cartesian produt of two relations onsists of the set ofall tuples that an be obtained by onatenating a tuple in the �rst relation witha tuple in the seond relation. If one follows this intuition, the Cartesian produtof two POB-instanes should be obtained by onatenating the property list of anyobjet in the �rst POB-instane with the property list of any objet in the seondPOB-instane. This will be the intuition underlying our de�nition of Cartesianprodut (a similar idea stands behind Ojoin by Shaw and Zdonik [1990℄).Let us �rst ome bak to the Plant Example to show that the Cartesian produtis meaningful.Example 7.15 (Plant Example: Cartesian produt) Suppose we are inter-ested in pairs of plants that ourish with a ertain probability in the same en-vironment (for example, in pairs of plants that have the same rain requirementswith some probability). To obtain this information, we must somehow onnet theknowledge tied to eah oid with the knowledge tied to other oids.The �rst hallenge in de�ning the Cartesian produt of two POB-instanes is thefollowing. Suppose we know that the POB-shemas of our two POB-instanes are



32 � T. Eiter et al. Table XVI. �0 resulting from renamingoid �0(oid)o1 [pname2 : hfLady-Fern;Ostrih-Ferng; u; ui,rain2 : hf25; : : : ; 30g; u; ui℄o2 [pname2 : hfCuban-Basil; Lemon-Basilg; u; ui,rain2 : hf20; : : : ; 30g; u; ui℄o3 [pname2 : hfMintg; u; ui,rain2 : hf20g; u; ui℄o4 [pname2 : hfAster; Salviag; u; ui,rain2 : hf20; : : : ; 25g; u; ui℄o5 [pname2 : hfThymeg; u; ui,rain2 : hf20; : : : ; 25g; u; ui℄o6 [pname2 : hfMintg; u; ui,rain2 : hf20g; u; ui℄o7 [pname2 : hfSageg; u; ui,rain2 : hf20; 21g; u; ui℄S1 = (C1; �1;)1;me1; }1) and S2 = (C2; �2;)2;me2; }2). Let the POB-shema ofthe Cartesian produt instane be denoted by S = (C; �;);me; }). What shouldthe relationship between S1, S2, and S be?Reall �rst that in lassial relational algebra (based on attributes, and not on anumbering of the olumns in eah relation), the Cartesian produt R1 �R2 of tworelation shemas R1 and R2 is in general only de�ned if they have disjoint sets ofattributes. Thus, we de�ne the Cartesian produt only for two input shemas S1and S2 that do not have any top-level attributes in ommon.Reall next that in lassial relational algebra, R1�R2 and R2�R1 yield the sameshema. Similarly, we also desire that S1�S2 = S2�S1 holds in our POB-algebra.Suppose now that the sets of lasses of S1 � S2 and S2 � S1 are given by C1 � C2and C2�C1, respetively. Then, the desired relationship S1�S2 = S2�S1 impliesthe ondition C1�C2 = C2�C1. The latter is ahieved by the following tehnique ofassuming that every set of lasses of a POB-shema is atually a lassial relationover a lassial relation shema:Assumption. In the rest of this paper, we assume that for eah POB-shemaS = (C; �;);me; }), the set of lasses C is a lassial relation over a lassialrelation shema R(S) = fA1; : : : ; Amg assoiated with S. That is, eah lass  2 Cis onsidered as a tuple over R(S). In partiular, for eah basi POB-shema S, therelation shema R(S) onsists of a single distinguished attribute AS.Thus, as another restrition on the input shemas S1 and S2, we also assumethat R(S1) and R(S2) are disjoint. We now summarize whih POB-shemas S1and S2 an be ombined using Cartesian produt.De�nition 7.17 (Cartesian-produt-ompatible POB-shemas) The POB-shemas S1 = (C1; �1;)1, me1; }1) and S2 = (C2; �2;)2;me2; }2) are Cartesian-produt-ompatible i� S1 and S2 do not have any top-level attributes in ommon,



Probabilisti Objet Bases � 33and R(S1) and R(S2) are disjoint.Note that any two POB-shemas S1 and S2 an be made Cartesian-produt-ompatible by renaming all the ommon top-level attributes of S1 and S2, and allthe attributes in R(S1) \ R(S2).We are now ready to de�ne the Cartesian produt of two shemas S1 and S2.De�nition 7.18 (Cartesian produt of POB-shemas) Let S1 = (C1; �1;)1,me1; }1) and S2 = (C2; �2,)2;me2; }2) be two Cartesian-produt-ompatible POB-shemas, and let R1=R(S1) and R2=R(S2). The Cartesian produt of S1 and S2,denoted S1�S2, is the POB-shema S=(C; �;);me; }) suh that:|C = C1 � C2.|For all lasses  2 C, let �([R1℄; [R2℄) = [A1 : �1, : : : , Ak : �k, Ak+1 : �k+1,: : : , Ak+m : �k+m℄, where �1([R1℄) = [A1 : �1, : : : , Ak : �k℄ and �2([R2℄) =[Ak+1 : �k+1, : : : , Ak+m : �k+m℄.8|The direted ayli graph (C;)) is de�ned as follows. For all ; d 2 C:) d i� ([R1℄)1 d[R1℄^[R2℄ = d[R2℄) or ([R1℄ = d[R1℄^[R2℄)2 d[R2℄):|The partitioning me is given as follows. For all  2 C:me() = fP1�f[R2℄g j P1 2 me1([R1℄)g [ ff[R1℄g�P2 j P2 2 me2([R2℄)g:|The probability assignment } is de�ned as follows. For all ) d:}(; d) = (}1([R1℄; d[R1℄) if [R2℄ = d[R2℄}2([R2℄; d[R2℄) if [R1℄ = d[R1℄ .(Note that C = C1 � C2 impliitly de�nes that R(S) = R1 [R2.)Let us illustrate this de�nition within the Plant Example.Example 7.16 (Plant Example: Cartesian produt of POB-shemas) LetS1 be the POB-shema omputed in Example 7.10, and let S2 be the POB-shemaomputed in Example 7.13 in whih eah lass  is replaed by 0. The Cartesianprodut shema S1 � S2 = (C; �;);me; }) is given as follows:|A partial view on the set of lasses C is given in Figure 6 (note that we use pl, an,pe, ve, he, , ah, and pf as abbreviations for plants, annuals, perennials, vegetables,herbs, owers, annuals herbs, and perennials owers, respetively).|Eah lass  2 C is assigned the following type under � :�() = [pname : string; rain : integer; pname2 : string; rain2 : integer℄ :|A partial view on the direted ayli graph (C;)), the partitioning me, and theprobability assignment } is also given in Figure 6.We now de�ne the Cartesian produt of probabilisti tuple values.8As usual, [U ℄ denotes the restrition of tuple  to the attributes in U .
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Fig. 6. Some lasses in the Cartesian produt of the Plant ExampleDe�nition 7.19 (Cartesian produt of probabilisti tuple values) Let ptv 1and ptv2 be two probabilisti tuple values over the disjoint sets of attributes A1and A2, respetively. The Cartesian produt of ptv1 and ptv2, denoted ptv1�ptv2,is the probabilisti tuple value ptv over the set of attributes A1 [A2 de�ned by:|ptv :A = ptv1:A for all attributes A 2 A1 .|ptv :A = ptv2:A for all attributes A 2 A2 .Note that ptv1 � ptv2 = ptv2 � ptv1, sine by onvention the ordering of attributesin a probabilisti tuple value is immaterial.Example 7.17 (Cartesian produt of probabilisti tuple values) Considerthe following two probabilisti tuple values (taken from Examples 7.12 and 7.14,respetively):ptv 1 = [pname : hfCuban-Basil; Lemon-Basilg; u; ui; rain : hf20; : : : ; 30g; u; ui℄ptv 2 = [pname2 : hfMintg; u; ui; rain2 : hf20g; u; ui℄ :The Cartesian produt ptv1 � ptv 2 of ptv1 and ptv 2 is given as follows:[pname : hfCuban-Basil; Lemon-Basilg; u; ui; rain : hf20; : : : ; 30g; u; ui;pname2 : hfMintg; u; ui; rain2 : hf20g; u; ui℄:We are �nally ready to de�ne the Cartesian produt of two POB-instanes.Assumption. In the rest of this paper, we assume that eah oid o 2 O that oursin a POB-instane I over S is a tuple over R(S) = fA1; : : : ; Amg. Eah suh o maybe written as (o[A1℄; : : : ; o[Am℄).Roughly speaking, eah objet in the Cartesian produt instane is obtained fromtwo objets in the input instanes by �rst onatenating their two oids, and seondolleting all their attribute values. The lass in whih the new objet is de�ned isobtained by onatenating the lasses in whih the two input objets are de�ned.



Probabilisti Objet Bases � 35De�nition 7.20 (Cartesian produt of POB-instanes) Let I1 = (�1; �1)and I2 = (�2; �2) be two POB-instanes over the Cartesian-produt-ompatiblePOB-shemas S1=(C1; �1;)1;me1; }1) and S2 = (C2, �2;)2;me2; }2), respe-tively, and let R1 = R(S1) and R2 = R(S2). The Cartesian produt of I1 and I2,denoted I1 � I2, is de�ned as the POB-instane (�; �) over the POB-shema S =S1 � S2, where|�() = �1([R1℄)��2([R2℄), for all 2C (here, �()�O is assumed, for all 2C).|�(o) = �1(o[R1℄)� �2(o[R2℄), for all o 2 �(C).Let us illustrate this de�nition within the Plant Example.Example 7.18 (Plant Example: Cartesian produt of POB-instanes)Let I1 and I2 be the two POB-instanes omputed in Examples 7.12 and 7.14,respetively. The Cartesian produt of I1 and I2 is the POB-instane (�; �), wherepartial views of � and � are given in Tables XVII and XVIII, respetively.Table XVII. � resulting from Cartesian produt (partial view) �()(pl; pl) f(o1; o1)g(an; pl) fg(ah; pl) f(o2; o1); (o3; o1); (o5; o1); (o6; o1); (o7; o1)g(pf; pl) f(o4; o1)gTable XVIII. � resulting from Cartesian produt (partial view)oid �(oid)(o1; o1) [pname : hfLady-Fern;Ostrih-Ferng; u; ui,rain : hf25; : : : ; 30g; u; ui,pname2 : hfLady-Fern;Ostrih-Ferng; u; ui,rain2 : hf25; : : : ; 30g; u;ui℄(o2; o1) [pname : hfCuban-Basil; Lemon-Basilg; u; ui,rain : hf20; : : : ; 30g; u; ui,pname2 : hfLady-Fern;Ostrih-Ferng; u; ui,rain2 : hf25; : : : ; 30g; u;ui℄(o3; o1) [pname : hfMintg; u; ui,rain : hf20g; u;ui,pname2 : hfLady-Fern;Ostrih-Ferng; u; ui,rain2 : hf25; : : : ; 30g; u;ui℄7.4 JoinIn lassial relational databases, the join operator is a generalization of the Carte-sian produt. This will also be the ase for the join of POB-instanes, whih isde�ned in this setion. We start with the notion of join-ompatibility.



36 � T. Eiter et al.De�nition 7.21 (join-ompatible POB-shemas) Two POB-shemas S1 =(C1; �1, )1;me1, }1) and S2 = (C2, �2;)2;me2; }2) are join-ompatible i� R(S1)and R(S2) are disjoint and �1(1):A = �2(2):A for all lasses 1 2 C1, 2 2 C2 andattributes A de�ned for both �1(1) and �2(2).We next de�ne the join of two POB-shemas.De�nition 7.22 (join of POB-shemas) Let S1 = (C1; �1;)1;me1; }1) and S2= (C2, �2;)2, me2; }2) be two join-ompatible POB-shemas, and let R1 = R(S1)and R2 = R(S2) . The join of S1 and S2, denoted S1 ./ S2, is the POB-shemaS = (C; �;);me; }), where C, ), me, and } are as in the de�nition of S = S1�S2(see De�nition 7.18), and � is de�ned as follows:|For all  2 C, the tuple type �() = [A1 : �1; : : : ; Al : �l℄ ontains exatly all Ai : �ithat belong to either the tuple type �1([R1℄) or the tuple type �2([R2℄).For the join of two probabilisti tuple values ptv1 and ptv2, we need to ombinethe two values of a ommon attribute Ai to a single value for the result. Thisis done through onjuntion of the probabilisti triples representing these values,along the following de�nition.De�nition 7.23 (onjuntion strategies on probabilisti triples) Let pt1=(V 0; �0; �0), pt2=(V 00; �00; �00) be probabilisti triples, and let 
 be a probabilistionjuntion strategy. Then, pt1
 pt2 is the probabilisti triple pt=(V; �; �) with:|V = fv 2 V 0 \ V 00 j [�0(v); �0(v)℄
 [�00(v); �00(v)℄ 6= [0; 0℄g.|[�(v); �(v)℄ = [�0(v); �0(v)℄
 [�00(v); �00(v)℄ for all v 2 V .Note that impossible values v in V 0 \ V 00 (having probability 0) are exludedfrom V as they are impliitly represented by the CWA. The outome pt = pt1
pt2is well-de�ned only if pt is onsistent, whih requires that Pv2V �(v) � 1. Whenan inonsisteny arises, we ag an error. Moreover, note that when some inter-vals [�0(v); �0(v)℄ and [�00(v); �00(v)℄ are inonsistent under the event dependeniesassoiated with 
 (see De�nition 4.1), we also ag an error.We now de�ne the join of two probabilisti tuple values.De�nition 7.24 (join of probabilisti tuple values) Let ptv1 and ptv2 be twoprobabilisti tuple values over the sets of attributes A1 and A2, respetively, suhthat for all A 2 A1\A2, the values ptv1:A and ptv2:A are of the same type. Let 
be a probabilisti onjuntion strategy. The join of ptv1 and ptv2 under 
, denotedptv1 ./
 ptv2, is the probabilisti tuple value ptv over A1 [A2 de�ned by:|ptv :A = ptv1:A for all attributes A 2 A1 �A2 .|ptv :A = ptv2:A for all attributes A 2 A2 �A1 .|ptv :A = ptv1:A
 ptv 2:A for all attributes A 2 A1 \A2 .Note that for any probabilisti onjuntion strategy 
, ptv1 ./
 ptv2 = ptv2 ./
ptv1, i.e., the join of probabilisti tuple values is ommutative.



Probabilisti Objet Bases � 37Example 7.19 Let us onsider the following two probabilisti tuple values:ptv1 = [A : hfa; bg; 0:6 u; 1:4 ui; B : hfa; g; 0:7 u; 1:3 ui℄ ;ptv2 = [A : hfa; b; g; 0:3 u; 2:4 ui; C : hf; dg; 0:4 u; 1:6 ui℄ :The join ptv1 ./
in ptv2 of ptv1 and ptv2 under independene is given by:[A : hfa; bg; 0:06 u; 1:12 ui; B : hfa; g; 0:7 u; 1:3 ui; C : hf; dg; 0:4 u; 1:6 ui℄ :We are now ready to de�ne the join of two POB-instanes.De�nition 7.25 (join of POB-instanes) Let I1 = (�1; �1) and I2 = (�2; �2)be POB-instanes over the join-ompatible POB-shemas S1 = (C1; �1;)1;me1; }1)and S2 = (C2; �2;)2;me2; }2), respetively, and let R1 = R(S1) and R2 = R(S2).Let A1 and A2 be the sets of top-level attributes of S1 and S2, respetively. Let
 be a probabilisti onjuntion strategy. The join of I1 and I2 under 
, denotedI1 ./
 I2, is the POB-instane (�; �) over the POB-shema S1 ./ S2, where:|�() = f(o1; o2) 2 �1([R1℄)� �2([R2℄) j for all A 2 A1 \A2:if (�1(o1) ./
 �2(o2)):A= hV; �; �i, then V 6= ;g, for all 2C1�C2.|�(o) = �1(o[R1℄) ./
 �2(o[R2℄), for all o 2 �(C).We remark that the join is the only operation of our algebra in whih probabilistiattribute values of two distint objets are ombined. The seletion operation andthe intersetion operation (see next subsetion), in ontrast, just allow to ombineprobabilisti attribute values assigned to one single objet.7.5 Intersetion, Union, and Di�ereneIn this setion, we de�ne the lassial set operations of intersetion, union, anddi�erene for two POB-instanes over the same shema.The de�nition of intersetion is intuitive: ommon objets are seleted, and theirrespetive attribute values are ombined by onjuntion.De�nition 7.26 (intersetion of probabilisti tuple values) Let ptv1 andptv2 be two probabilisti tuple values over the same set of attributes A, and let 
be a probabilisti onjuntion strategy. The intersetion of ptv1 and ptv 2 under 
,denoted ptv1\
 ptv 2, is the probabilisti tuple value ptv overA de�ned by ptv :A =ptv1:A
 ptv2:A for all A 2 A.De�nition 7.27 (intersetion of POB-instanes) Let I1 = (�1; �1) and I2 =(�2; �2) be two POB-instanes over the same POB-shema S, and let 
 be a prob-abilisti onjuntion strategy. The intersetion of I1 and I2 under 
, denotedI1 \
 I2, is the POB-instane (�; �) over S, where:|�() = �1() \ �2() .|�(o) = �1(o) \
 �2(o) .The union of two POB-instanes is de�ned in the same spirit as their intersetion.



38 � T. Eiter et al.De�nition 7.28 (disjuntion strategies on probabilisti triples) Let pt1 =(V 0; �0; �0), pt2 = (V 00; �00; �00) be probabilisti triples, and let � be a probabilistidisjuntion strategy. Then, pt1�pt2 is the probabilisti triple pt=(V; �; �), where:|V = V 0 [ V 00 .|[�(v); �(v)℄ = 8><>:[�0(v); �0(v)℄ if v 2 V 0 � V 00[�00(v); �00(v)℄ if v 2 V 00 � V 0[�0(v); �0(v)℄� [�00(v); �00(v)℄ if v 2 V 0 \ V 00 .As in the ase of onjuntion, the outome pt of pt1 � pt2 is only de�ned if pt isonsistent, whih requires that Pv2V �(v) � 1. A violation of this ondition indi-ates inorret data or improper appliation of the disjuntion strategy �. Again,this is agged as an error.De�nition 7.29 (union of probabilisti tuple values) Let ptv1 and ptv2 betwo probabilisti tuple values over the same set of attributes A, and let � be aprobabilisti disjuntion strategy. The union of ptv 1 and ptv2 under �, denotedptv1[�ptv2, is the probabilisti tuple value ptv overA de�ned by ptv :A = ptv1:A�ptv2:A for all A 2 A.De�nition 7.30 (union of POB-instanes) Let I1 = (�1; �1) and I2 = (�2; �2)be two POB-instanes over the same POB-shema S suh that �1(1) \ �2(2) = ;for all pairs of distint lasses 1; 2 2 C. Let � be a probabilisti disjuntionstrategy. The union of I1 and I2 under �, denoted I1 [� I2, is de�ned as thePOB-instane (�; �) over S, where:|�() = �1() [ �2() .|�(o) = 8><>:�1(o) if o 2 �1(C)� �2(C)�2(o) if o 2 �2(C)� �1(C)�1(o) [� �2(o) if o 2 �1(C) \ �2(C) .Finally, we onsider the di�erene of two POB-instanes. For this, we use thenotion of a di�erene strategy for probabilisti tuple values.De�nition 7.31 (di�erene strategies on probabilisti triples) Let pt1 =(V 0; �0; �0), pt2 = (V 00; �00; �00) be probabilisti triples, and let 	 be a probabilistidi�erene strategy. Then, pt1 	 pt2 is the probabilisti triple pt = (V; �; �), where:|V = V 0 � fv 2 V 0 \ V 00 j [�0(v); �0(v)℄ 	 [�00(v); �00(v)℄ = [0; 0℄g .|[�(v); �(v)℄ = ([�0(v); �0(v)℄ if v 2 V � V 00[�0(v); �0(v)℄	 [�00(v); �00(v)℄ if v 2 V \ V 00 .De�nition 7.32 (di�erene of probabilisti tuple values) Let ptv1 and ptv 2be two probabilisti tuple values over the same set of attributes A, and let 	be a probabilisti di�erene strategy. The di�erene of ptv1 and ptv2 under 	,denoted ptv1�	 ptv2 is the probabilisti tuple value ptv over A de�ned by ptv :A =ptv1:A	 ptv2:A for all A 2 A.



Probabilisti Objet Bases � 39De�nition 7.33 (di�erene of POB-instanes) Let I1 = (�1; �1) and I2 =(�2; �2) be POB-instanes over the same POB-shema S, and let 	 be a proba-bilisti di�erene strategy. The di�erene of I1 and I2 under 	, denoted I1 �	 I2,is de�ned as the POB-instane (�; �) over S, where:|�() = �1() .|�(o) = (�1(o) if o 2 �1(C)� �2(C)�1(o)�	 �2(o) if o 2 �1(C) \ �2(C) .7.6 Consisteny PreservationWe now prove that all operations of our POB-algebra that produe new POB-shemas preserve onsisteny. In detail, given onsistent POB-shemas as input,the operations projetion, renaming, Cartesian produt, and join always produe aonsistent POB-shema as output. This is shown by the following theorem.Theorem 7.1 Let S, S1, and S2 be POB-shemas. Let S1 and S2 be Cartesian-produt-ompatible in () and join-ompatible in (d). Let A be a set of attributes,and let N be a renaming expression.(a) If S is onsistent, then �A(S) is onsistent.(b) If S is onsistent, then ÆN (S) is onsistent.() If S1 and S2 are onsistent, then S1 � S2 is onsistent.(d) If S1 and S2 are onsistent, then S1 ./ S2 is onsistent.It is worth noting that in the POB-algebra, users may express queries that aresometimes \internally inonsistent". For instane, a user may ask a seletion queryinvolving the seletion ondition (x:soil= loamy 
me x:soil= loamy)[0:3; 0:7℄. Here,the user is seleting objets that have loamy soil assuming mutual exlusion of twoidential seletion expressions ! Clearly, this query does not make sense. Similarly,a query involving the seletion ondition (x:rain< 10 
in x:rain> 20)[0:3; 0:7℄ doesnot make sense | one annot assume independene of rain being less than 10 andover 20 ! Determining what queries are \safe" w.r.t. suh probabilisti intuitions isa major hallenge that will be addressed in a future paper.8. POB-ALGEBRA: EQUIVALENCE RESULTSIn this setion, we derive some results on equivalenes that hold in our POB-algebra.We fous here on equivalenes similar to well-known equivalenes in the ontext oflassial relational algebra. The list of equivalenes is by no means omplete, butshows that query optimization in our POB-algebra is possible along similar linesas in lassial relational algebra [Abiteboul et al. 1995℄. Our �rst result says thatseletions may be reordered.Theorem 8.1 Let I = (�; �) be a POB-instane over the POB-shema S. Let �1and �2 be two seletion onditions. Then��1(��2 (I)) = ��2(��1 (I)) = ��1^�2(I); (1)where the last expression assumes that �1 and �2 have the same objet variable.



40 � T. Eiter et al.Our next result says two things: �rst that the projetions may be reordered andseond, that projetions may be pushed through seletions under appropriate on-ditions.Theorem 8.2 Let I be a POB-instane over the POB-shema S. Let A and B besets of attributes, and let � be a seletion ondition in whih all path expressionsstart with attributes from A. Then,�A(�B(I)) = �B(�A(I)) (2)�A(��(I)) = ��(�A(I)) : (3)Note that, for example, for A � B, Equation (2) redues to �A(�B(I)) = �A(I),sine �B(�A(I)) = �A\B(�A(I)) = �A(I) (see De�nition 7.10).The next result, whih states that seletions and projetions an be pushedthrough the renaming operator, requires some notation. For any renaming ex-pression N : ~B ~C, the inverse of N , denoted by N�1, is the renaming expression~C  ~B. Furthermore, the notation ÆN (X) stands for the result of applying therenaming spei�ed by N on the formal objet X .Theorem 8.3 Let I be a POB-instane over the POB-shema S, and let N be arenaming expression for S. Let � be a seletion ondition and let A be a set ofattributes. Then ��(ÆN (I)) = ÆN(�ÆN�1 (�)(I)) (4)�A(ÆN (I)) = ÆN(�ÆN�1 (A)(I)) : (5)The following theorem shows that joins are always assoiative and ommutative,regardless of what onjuntion strategy is used in the join. In addition, selets maybe pushed \through" a join by appropriately splitting the seletion ondition andthe same is true of projetions.Theorem 8.4 Let S1, S2, and S3 be pairwise join-ompatible POB-shemas andlet I1, I2, and I3 be POB-instanes over S1, S2, and S3, respetively. Let 
 be aprobabilisti onjuntion strategy. Let �1, �2, and �3 be seletion onditions suhthat �1 and �2 involve only attributes from A1 � A2 and A2 � A1, respetively,where A1 and A2 denote the sets of top-level attributes of S1 and S2, respetively.Let B be a set of attributes and de�ne B1 = (B[A2)\A1 and B2 = (B[A1)\A2.Then I1 ./
 I2 = I2 ./
 I1 (6)(I1 ./
 I2) ./
 I3 = I1 ./
 (I2 ./
 I3) (7)��1^�2^�3(I1 ./
 I2) = ��3(��1(I1) ./
 ��2(I2)) (8)�B(I1 ./
 I2) = �B(�B1(I1) ./
 �B2(I2)) : (9)Note that in lassial relational databases, Equivalene (8) remains true if �1 and�2 aess ommon attributes of A1 andA2. This is no longer guaranteed for POBs,



Probabilisti Objet Bases � 41as the join may hange the value of ommon attributes. As Cartesian produt is aspeial ase of join, we obtain the following orollary to Theorem 8.4.Corollary 8.5 Let S1, S2, and S3 be pairwise Cartesian-produt-ompatible POB-shemas and let I1, I2, and I3 be POB-instanes over S1, S2, and S3, respetively.Let �1, �2, and �3 be seletion onditions suh that �1 and �2 involve only attributesfrom the sets of top-level attributes A1 and A2 of S1 and S2, respetively. Let Bbe a set of attributes and let B1 = B \A1 and B2 = B \A2. ThenI1 � I2 = I2 � I1 (10)(I1 � I2)� I3 = I1 � (I2 � I3) (11)��1^�2^�3(I1 � I2) = ��3(��1(I1)� ��2(I2)) (12)�B(I1 � I2) = �B1(I1)��B2(I2) : (13)Theorem 8.6 Let I1, I2, and I3 be POB-instanes over the same POB-shema S.Let 
 /� /	 be a probabilisti onjuntion/disjuntion/di�erene strategy and letA be a set of attributes. Then,I1 \
 I2 = I2 \
 I1 (14)(I1 \
 I2) \
 I3 = I1 \
 (I2 \
 I3) (15)I1 [� I2 = I2 [� I1 (16)(I1 [� I2) [� I3 = I1 [� (I2 [� I3) (17)�A(I1 \
 I2) = �A(I1) \
 �A(I2) (18)�A(I1 [� I2) = �A(I1) [� �A(I2) (19)�A(I1 �	 I2) = �A(I1)�	 �A(I2) : (20)Note that literally taken, Equations (18) and (20) are not true for relational data-bases. The reason is that we use oids for objets in POBs, while relational databasesonly ontain values.Finally, we remark that Equations (2), (5), (10), (11), and (13) are atuallyunrelated to probabilities (sine the operations projetion, renaming, and Cartesianprodut are unrelated to probabilities).9. IMPLEMENTATIONWe have implemented a prototype distributed POB system. The server (POB-server) runs on top of ObjetStore and is implemented in SUN-C++. A thin lientfor handling database transations is implemented using GNU-C++.9.1 POB-ServerThe POB-server is a olletion manager of POB-shemas. Eah POB-shema on-sists of a set of POB-lasses and their assoiated POB-objet instanes. The POB-server manages (i) persistent shemas, whih orrespond to permanent data and(ii) temporary shemas, whih maintain intermediate shemas.



42 � T. Eiter et al.The probability interpreter ontains funtions for omputing probabilistionjuntion and disjuntion strategies. It also ontains a library of distributionfuntions for manipulating probabilisti tuple values assoiated with objets in thedatabase.The POB-shema lass maintains an inheritane probability table (the proba-bility assignment } in De�nition 5.4). The lass ontains methods to add, remove,and retrieve POB-lasses and POB-objets. In addition, given two lasses 1 and2, where 1 is a sublass of 2, there is a method that omputes the onditionalprobability that an arbitrary objet belongs to 1 given that it belongs to 2.POB-lasses are objets in the POB-shema lass. They have a name, a ol-letion of attributes (with assoiated types), and a olletion of parent POB-lassnames along with assoiated probability assignments. Methods assoiated withPOB-lasses provide abilities to establish attribute/type information, parent POB-lass/probability assignments, adding and removing POB-objets from the POB-lass, and various self-repliating funtions that are useful for query proessing.POB-objets ontain an objet name, the oid, a olletion of probabilisti tuplevalues, and a POB-lass pointer whih points to the POB-lass of whih it is aninstane. The POB-lass pointer is provided for fast aess to lass-level informa-tion: attributes, types, parents, et. Methods assoiated with POB-objets inludefuntions for setting probabilisti tuple values and various self-repliating funtionsto failitate query proessing.The POB-server handles lient requests. It ontains a pointer to an ObjetStoredatabase whih provides persistene servies. The POB-server inludes methodsfor: onneting to a database, disonneting from a database, reating and removingshemas, reating and removing lasses, reating and removing objets, omputingthe probability that an objet is a member of lass 1 given that it is a member oflass 2, omputing the probabilisti extent of a lass, heking if an objet satis�esa given seletion ondition, exeuting an arbitrary query in the probabilisti objetalgebra, and a variety of printing funtions.Note that eah method may not orrespond to a logial unit of work| in this asea request. In some instanes, several requests are handled within one method whilein other instanes, a single request is handled through a ombination of methods.9.2 ExperimentsUsing the POB-server, we have onduted a set of experiments to assess the variousequivalenes desribed in Setion 8 as well as to assess the performane of seletion.We do not desribe all the experiments we onduted (due to spae reasons), butonly a few sample experiments are listed below. The limiting fator in all exper-iments was the size of the \largest intermediate shema." This is the number ofobjets in the largest shema enountered when exeuting the query. For a sele-tion query, this is just the number of objets in the POB-instane on whih theseletion is performed. In the ase of a join/Cartesian produt, this is the produtof the sizes of the POB-instanes being joined (or whose Cartesian produt is beingomputed). In the experiments involving Equations (8), (12) and (13) desribedbelow, we varied the number of objets in the largest intermediate shema from 0to 270,000 objets and measured the times taken (on a Sun Ultra 10 workstation)for both the left side and the right side of the rewrite rules in question. The idea



Probabilisti Objet Bases � 43was to see whether the left side of a rule should be rewritten to the right side orthe other way round.E�etiveness of Equation (8). Our �rst experiment evaluated the e�etivenessof pushing seletions into joins (Theorem 8.4). Figure 7 (a) shows what happensif the seletivity is varied using independene. It is easy to see that the right sideof this equation pays o� in a huge way and that as the seletivity dereases (i.e.,fewer and fewer objets are seleted), more and more objets an be eÆientlyhanded. For instane, with 20% seletivity, 270,000 objets in the largest interme-diate shema an be omputed in about 30 seonds.Figure 7 (b) shows the e�et of evaluating the right side of Equation (8) withdi�erent probabilisti strategies. We see that preisely whih strategy is used hasvery little impat on the omputation time.E�etiveness of Equation (12). We onduted experiments similar to thosedesribed above with Equation (12). Figure 7 () shows the result of testing | itshows that pushing seletions into a Cartesian produt may save up to 80{90% ofthe time and this saving inreases as the number of objets inreases.E�etiveness of Equation (13). We onduted experiments similar to thosedesribed above with Equation (13). Figure 8 (a) shows the result of testing | itshows that pushing projetions into a Cartesian produt does not help very muh.The reason for this is beause projetion does not redue the number of objets.E�etiveness of Seletion. We also onduted some experiments on the e�e-tiveness of seletion on POB-shemas of sizes between 3000 and 10000 objets. Inthe experiment, we exeuted queries of the form \Selet x from shema e wherex:D > val". Figure 8 (b) shows the result when two di�erent seletivities are used| 50% (i.e., half the objets satisfy the seletion ondition) and 30% (i.e., 30% ofthe objets satisfy the seletion ondition). We also tested what happens when weonsider membership seletion queries of the form \Selet x from shema e where(x is a member of lass C)". Figure 8 () shows the result of this query with twodi�erent seletivities. Note that the queries generally exhibit linear behavior w.r.t.the number of objets. In addition, membership queries are omputationally moreexpensive than simple inequality queries.We are part way towards developing a POB query optimizer. While the equiva-lene results of Setion 8 readily serve as rewrite rules, the problem of developinga ost model is a hallenge that we are urrently working on. One ost models forPOBs are developed, a CASCADES [Graefe 1995℄ style framework may be readilyused for query optimization. We are urrently working on this problem.10. RELATED WORKOur work has been inspired by the prior work of Kornatzky and Shimony [1994℄ whodesribe a probabilisti objet-oriented data model in whih, like in our approah,unertainty in the values of attributes and in the lass graph may be representedby probabilities. The main di�erenes between [Kornatzky and Shimony 1994℄ andour approah an be briey summarized as follows:(1) Kornatzky and Shimony introdue an objet alulus for extrating objetsfrom probabilisti objet-oriented databases. This alulus an thus be om-pared to our seletion operation. It is more restritive in the sense that it only
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46 � T. Eiter et al.handles probabilities on atomi formulas (whih always evaluate to either trueor false), while our seletion operation also handles probabilities on onjun-tions and disjuntions of atomi formulas, using probabilisti onjuntion anddisjuntion strategies. Spei�ally, we make no independene assumption (asKornatzky and Shimony do). On the other hand, their objet alulus hasquanti�ers, whih our seletion operation does not inlude. However, it ouldbe easily extended in this diretion.(2) We also disuss, in detail, the algebrai operations of projetion, renaming,Cartesian produt, join, seletion, union, intersetion, and di�erene. As theywere developing a alulus, Kornatzky and Shimony do not deal with this.(3) We introdue, for the �rst time, results on query equivalenes in probabilistiobjet bases, and to our knowledge, our system is the �rst implementation ofa probabilisti objet base.(4) Kornatzky and Shimony assume that the lass graph is a direted tree withoutmultiple inheritane. Moreover, inomparable lasses are always disjoint. Inontrast, in our approah, the lass graph may be any direted ayli graph,thus allowing multiple inheritane. Furthermore, the disjointness of lasses anbe expressed in a exible way by grouping them into partition lusters. Theonsisteny of shema delarations is guaranteed for a large sublass extendingdireted trees.(5) Kornatzky and Shimony assume a preise probability distribution on the setof all possible values of an attribute (inluding a null value ? that representsthe inappliability of an attribute). Our approah, in ontrast, just requires aninterval range for probability distributions. Furthermore, objets ourring asattribute values are given speial treatment in [Kornatzky and Shimony 1994℄;our model an be extended in this respet.(6) In [Kornatzky and Shimony 1994℄, the probabilisti extent of a lass is derivedfrom statistial and subjetive probabilities. Sine, in general, inonsistenymay arise, the notion of utsets of lasses is introdued there. The probabilistiextent of a lass is then given by statistial probabilities in the lass hierarhyand by subjetive probabilities with respet to a utset. Our probabilistiextent, in ontrast, is just derived from statistial probabilities and lassiallass membership. We thus avoid all the problems that ome along with mixingup statistial and subjetive probabilities.Sadri [1994℄ desribes how to extend objet-oriented databases by using the in-formation soure traking method, in whih every piee of information is assigneda vetor of on�rming information soures. The formalism is based on a non-probabilisti lattie struture, but Sadri mentions a possible extension by numerialand espeially probabilisti unertainty. He models unertainty on the attribute,objet, and lass level, whih roughly relates to our probabilisti attributes, to ourinterpretation of seletion expressions, and to our probabilisti extents, respetively.In the area of unertainty in AI, there is related work on objet-oriented Bayesiannetworks by Koller and Pfe�er [1997℄ and by Laskey and Mahoney [1997℄, andon onstruting Bayesian networks from �rst-order probabilisti knowledge basesby Haddawy [1994℄. The main idea behind objet-oriented Bayesian networks isto use methods from objet-oriented programming languages in order to enable



Probabilisti Objet Bases � 47exible and large-sale knowledge representation with Bayesian networks. Theobjets in this framework are given by Bayesian network fragments. Objets thatshare ommon features are grouped together into lasses, whih are organized alonginheritane hierarhies. Query proessing in objet-oriented Bayesian networks isessentially redued to a form of Bayesian network inferene that exploits someloality aspets of the objet-oriented modeling for inreased eÆieny. Haddawy[1994℄ aims at a �rst-order generalization of Bayesian networks. More preisely, hedesribes how queries to �rst-order probabilisti knowledge bases satisfying ertainonstraints an be translated into Bayesian network inferene problems.A step towards the model proposed in the present paper is an extension of therelational model allowing omplex values [Eiter et al. 2000a; 2000b℄ with probabil-ities. However, the model in [Eiter et al. 2000a; 2000b℄ has no lass hierarhy and,in partiular, inheritane is not addressed. Thus, it has no features of an objetoriented system, and is essentially in the group of probabilisti relational databasemodels, whih we disuss next.ProbView [Lakshmanan et al. 1997℄ is a probabilisti relational database modelwhih generalizes various approahes (like, for example, [Barbara et al. 1992; Cav-allo and Pittarelli 1987℄). Cavallo and Pittarelli's important paper [1987℄ viewsrelations in a (at) relational database as probability distribution funtions, wheretuples in the same relation are viewed as pairwise disjoint events whose proba-bilities sum up to 1. Drawbaks of this approah have been pointed out in [Deyand Sarkar 1996℄. An extension of the model using probability intervals, whih areviewed as onstraints on the probabilities, is reviewed in [Pittarelli 1994℄. Barbar�aet al. [1992℄ onsider a probabilisti extension to the relational model, in whih im-preise attributes are modeled as probability distributions over �nite sets of values.No probabilities an be assigned to outmost tuples. Their approah assumes thatkey attributes are deterministi (have probability 1) and that non-key attributes indi�erent relations are independent. As pointed out in [Barbara et al. 1992℄, \lossy"joins are possible in this model.Another important probabilisti database model is that of Dey and Sarkar [1996℄,whih assigns eah tuple in a (at) relational database a probability value in a spe-ial attribute. Based on [Dey and Sarkar 1996℄, a probabilisti extension to SQL isdeveloped in [Dey and Sarkar 1998℄. The lassial relational operations are de�nedin [Dey and Sarkar 1996℄ adopting di�erent assumptions on the relationship betweentuples; in partiular, join assumes independene; union and di�erene assume pos-itive orrelation; and ompation assumes disjointness or positive orrelation. Ourmodel is far more general.Fuhr and R�olleke [1996℄ onsider a probabilisti version of NF2 relations, extend-ing their approah for at tuples [1997℄, and de�ne a relational algebra for thismodel. Probabilities are assigned to tuples and to values of nested tuples (i.e.,set-valued attributes), whih are viewed as events that have an assoiated eventexpression. The algebrai operators manipulate tuples by ombining value andevent expressions appropriately. An intensional semantis is developed in [Fuhrand R�olleke 1996℄ in whih probabilities are de�ned through possible worlds. Theevaluation method assumes that in nondeterministi relations (i.e., relations withunertain tuples), joint ourrene of two di�erent values is either always indepen-dent or impossible|this is ertainly restritive.



48 � T. Eiter et al.Dyreson and Snodgrass [1998℄ provide a version of SQL to handle temporal in-determinay, where there is unertainty about when an event ours. They use arelational framework and fous on the important ase where the spae of valuesover whih unertainty exists is huge.Kie�ling and his group [1992℄ developed a framework alled DUCK for reasoningwith unertainty. They provide an elegant, logial, axiomati theory for uner-tain reasoning in the presene of rules. In ontrast, in our framework, rules arenot present; rather, our interest is in extending objet database models to handleunertainty in an algebrai setting.In an important paper, Lakshmanan and Sadri [1994b℄ show how seleted prob-abilisti strategies an be used to extend the previous probabilisti models. Lak-shmanan and Shiri [1996℄ show how dedutive databases may be parameterizedthrough the use of onjuntion and disjuntion strategies, an approah also fol-lowed by Dekhtyar and Subrahmanian [1997℄. We have built in this paper uponthe important onept of probabilisti onjuntion and disjuntion strategies, butin an objet oriented instead of a logi programming setting.11. CONCLUSIONIn this paper, we proposed an extension of the relational algebra to handle proba-bilisti modes of unertainty in objet oriented database systems. More preisely,the main ontributions of this paper an be briey summarized as follows:(1) We presented a formal de�nition of a probabilisti objet base, whih extendsprevious de�nitions given by Kornatzky and Shimony [1994℄.(2) We gave a formal model theoreti basis for disussing the onsisteny of POBs,and showed that onsisteny heking is NP-omplete in general. We thende�ned lasses of POBs for whih onsisteny an be heked in polynomialtime, and provided eÆient algorithms for this task.(3) We developed an algebra that extends the relational algebra to probabilistiobjet bases. Spei�ally, this algebra reognizes that probabilities of om-plex events depend on existing knowledge about dependenies between events,and hene, it allows users to express algebrai queries under appropriate on-juntion, disjuntion, and di�erene strategies (whih enode suh dependeneinformation).(4) We presented a number of equivalene results that may form a set of rewriterules to be used in query optimization.(5) Our POB framework has been implemented on top of ObjetStore in C++.(6) Finally, we onduted a set of experiments on the eÆay of our equivaleneresults for query rewriting (and hene for query optimization).Several tasks remain for further work. One is the enhanement of the urrentprototype by a sophistiated POB-algebra query manager, whih optimizes queriesby using ost models and rewrite rules as shown in Figure 2. For the front endof the system, it would be well worth developing a probabilisti version of SQL(similar to, for example, Dey and Sarkar's language PSQL [1998℄).Another important task for further work is to develop a model-theoreti semantisfor probabilisti attribute values. Spei�ally, we are planning to map the proba-
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