Probabilistic Object Bases

THOMAS EITER
Technische Universitat Wien
JAMES J. LU

Bucknell University
THOMAS LUKASIEWICZ
Technische Universitat Wien
and

V. S. SUBRAHMANIAN
University of Maryland

Though there are many applications where an object oriented data model is a good way of rep-
resenting and querying data, current object database systems are unable to handle objects whose
attributes are uncertain. In this paper, we extend previous pioneering work by Kornatzky and
Shimony to develop an algebra to handle object bases with uncertainty. We propose concepts
of consistency for such object bases, together with an NP-completeness result, and classes of
probabilistic object bases for which consistency is polynomially checkable. In addition, as certain
operations involve conjunctions and disjunctions of events, and as the probability of conjunctive
and disjunctive events depends both on the probabilities of the primitive events involved as well
as on what is known (if anything) about the relationship between the events, we show how all our
algebraic operations may be performed under arbitrary probabilistic conjunction and disjunction
strategies. We also develop a host of equivalence results in our algebra, which may be used as
rewrite rules for query optimization. Last but not least, we have developed a prototype proba-
bilistic object base server on top of ObjectStore. We describe experiments to assess the efficiency
of different possible rewrite rules.

Categories and Subject Descriptors: H.2.1 [Database Management|: Logical Design—Data
models; H.2.3 [Database Management|: Languages Query languages; H.2.4 [Database Man-
agement|: Systems— Object-oriented databases; 1.2.4 [Artificial Intelligence]: Knowledge Rep-

This work was supported by a TASC/DARPA grant J09301598061, by the Army Research Labo-
ratory under contract number DAALQ01-97-K0135, by an NSF Young Investigator award IRI-93-
57756, by an NSF grant CCR9731893, by a DFG grant, and by the Austrian Science Fund under
project N Z29-INF.

Authors’ addresses: T. Eiter and T. Lukasiewicz, Institut und Ludwig Wittgenstein Labor fir
Informationssysteme, Technische Universitdt Wien, Favoritenstrafie 9-11, A-1040 Wien, Austria;
email: {eiter,lukasiew}@kr.tuwien.ac.at; J. J. Lu, Department of Computer Science, Bucknell Uni-
versity, Lewisburg, PA 17837, USA; email: jameslu@bucknell.edu; V. S. Subrahmanian, Institute
for Advanced Computer Studies, Institute for Systems Research and Department of Computer
Science, University of Maryland, College Park, Maryland 20742; email: vs@cs.umd.edu.

This is a preliminary release of an article accepted by ACM Transactions on Database Systems.
The definitive version is currently in production at ACM and, when released, will supersede this
version.

Copyright 2001 by the Association for Computing Machinery, Inc. Permission to make digital
or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this
work owned by others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, to republish, to Post on servers, or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212)
869-0481, or permissions@acm.org.

2 . T. Eiter et al.

resentation Formalisms and Methods
General Terms: Algorithms, Languages, Performance, Theory

Additional Key Words and Phrases: Consistency, object-oriented database, probabilistic object
algebra, probabilistic object base, probability, query language, query optimization

1. INTRODUCTION

The concept of an object base is gaining numerous adherents because it allows data
to be organized in an application specific manner for scalability, while still sup-
porting a common query language. However, there are many applications where
probabilistic data needs to be stored. For instance, image interpretation programs
are uncertain in their identification of features in images and such image databases
are typically stored using object databases [Grosky et al. 1997]. Similarly, an ap-
plication tracking a set of mobile objects using an object database may only know
that an object is at one of a given set of points right now, but the precise location
may be unknown. Likewise, an application that forecasts stock movements or the
weather needs to represent uncertainty in the forecast. When the application data
(stocks, weather) is in an object repository, methods to represent uncertain aspects
of these objects need to be developed. In short, the ability to represent probabilistic
information in an object base, and to manipulate such “probabilistic object bases”
(POBs for short) efficiently is important for a variety of applications.

To date, there has been only one significant attempt in the database community
to merge probability models with object bases, namely that by Kornatzky and
Shimony [1994], who proposed a probabilistic object calculus. Building upon their
influential work, we make the following contributions:

(1) First and foremost, we propose a notion of a probabilistic schema and formally
define a logical model theory for it. We define what consistent schemas are and
prove that consistency checking is NP-complete. We identify special classes of
schemas for which consistency may be polynomially checked. Previous work on
probabilistic object bases had no associated concept of consistency.

(2) We then propose an algebra for probabilistic object bases in which the classi-
cal relational algebra operators are extended to apply to probabilistic object
bases. It is well known [Lakshmanan et al. 1997] that the probabilities of con-
junctive and disjunctive events are computed in different ways depending upon
the dependencies between the events involved. Our algebraic operators are pa-
rameterized by the user’s knowledge (or lack thereof) of such dependencies —
hence, the user can ask queries of the form “Find the join of ... under igno-
rance”, which describes a join assuming no knowledge about the dependencies
between the events involved. Previous work on probabilistic object bases as-
sumed that all events involved were independent. To our knowledge, this is the
first (extension of the) relational algebra for POBs

(3) We then prove a host of equivalence results in our algebra. These equivalence
results may be used as the set of rewrite rules that a database query optimizer
uses for query rewriting.

(4) We have implemented a distributed POB system in C++ on top of ObjectStore.
This implementation allowed us to conduct experiments across the network to

Probabilistic Object Bases : 3

evaluate the performance of our system and also to see how to rewrite queries.

This paper is structured as follows. In the next section, we consider a motivating
database application. Section 3 describes the architecture of a POB system. After
some basic definitions of probability concepts in Section 4, we develop our POB
model in Sections 5 and 6. A query algebra is then presented in Section 7, and
equivalence results in this algebra are derived in Section 8. We report on an imple-
mentation of POBs in Section 9, and discuss related work in Section 10. Detailed
proofs of all results may be found in [Eiter et al. 1999].

2. A MOTIVATING EXAMPLE

Consider the task of building an extensive database describing the types of veg-
etation found in the Amazon rainforest. The creation of such a database is a
formidable task. Individuals need to exhaustively examine the vegetables, herbs,
and other kinds of plants growing in these forests, and provide information describ-
ing soil conditions, climactic conditions, etc.

When describing the plants growing in such rainforests, there are several possible
causes of uncertainty. First and foremost, some plant species may not be uniquely
identifiable by the surveyor in the field. He may classify a particular herb as either
being Silver Thyme or French Thyme (two different species of thyme), without
being able to specify exactly which species the plant in question belongs to. By
the same token, if he were slightly more expert, he might be able to say that he
is not sure whether the herb is Silver Thyme or French Thyme, but he rates the
probability that it is Silver Thyme twice as high as that it is French Thyme.

Figure 1 shows a very simple class hierarchy that describes plants as either being
perennials or annuals, and either being vegetables, herbs, or flowers. Clearly, the
classes perennials and annuals are disjoint (i.e., a plant cannot be both an annual
and a perennial), as are the classes vegetables, herbs, and flowers. Mutually disjoint
classes are connected by a “d” in Figure 1. Note that we can certainly have plants
that are annuals and herbs (e.g., Basil). For now, the numbers labeling edges in
Figure 1 may be ignored. They will be revisited later.

In the rest of this paper, we repeatedly use this example to illustrate our defini-
tions. By the end of this paper, we would have described how to build and query
a POB that captures the Plant Database of this example as a special case.

3. ARCHITECTURE OF A PROBABILISTIC OBJECT BASE

In this section, we describe the overall architecture of a probabilistic object base
(POB) system. Figure 2 presents an architecture for query processing in proba-
bilistic object bases. The architecture consists of the following components:

(1) The user expresses queries through a graphical user interface which generates
as output a query in a declarative probabilistic object calculus (POB-calculus).
Note that queries in this calculus are declarative queries. A pioneering attempt
at such a calculus is that of Kornatzky and Shimony [1994].

(2) The calculus query generated will be fed into a Converter which converts POB-
calculus queries into queries in a probabilistic object algebra (POB-algebra).

(3) The algebraic query generated by the converter will be fed into a Query Man-
ager, which will take as input a set of rewrite rules (reflecting equivalences be-

4 . T. Eiter et al.

(@) ()

‘ annuals ‘ ‘ perennials‘ ‘vegetables‘ ‘ herbs ‘ ‘ flowers ‘

annuals_herbs ‘ ‘ perennials_flowers

Fig. 1. Plant identification example

tween different queries in the POB-algebra) and a set of cost models to perform
a query optimization. Given a set of rewrite rules and a set of cost models, the
task of finding a rewriting of a query that has minimal expected cost (according
to the cost models) is well-studied, and good commercial implementations of
such code exist (e.g., Graefe’s CASCADES system [Graefe 1995] is presently
being used by Microsoft).

(4) The “optimized” algebra query thus produced will be physically executed on
the probabilistic object base.

(5) All the components above use libraries consisting of: (i) A set of probabilistic
conjunction, disjunction and difference strategies that allow the user to express
her knowledge of the dependencies between events — this is used in query
formulation, query optimization, cost evaluation and query execution. (ii) A
set of distribution functions that allow a user to specify how probabilities are
distributed over a space of possible values for an unknown attribute.

Giving a detailed description of all these components is clearly beyond the scope
of a single paper. In previous work, Kornatzky and Shimony [1994] developed
a probabilistic object calculus. In this paper, we will expand the concept of a
probabilistic object base used by them and formally define a POB-algebra and prove
a host of query equivalence results. We will report on a prototype implementation
of the POB-algebra and describe experimental results — given a query equivalence
q1 = @2, these experimental results will identify when a query of the form ¢; should
be rewritten to a query of the form ¢» and vice versa. To our knowledge, this paper
is the first to propose a probabilistic object algebra, the first to present results on
query equivalences in such an algebra, and the first to implement such an algebra
on top of a commercial object database system.

4. BASIC PROBABILITY DEFINITIONS

In this section, we present some basic definitions used to set up a probabilistic
extension of object bases. The probabilistic concepts are divided into two parts —

Probabilistic Object Bases : 5

POB-Calculus/ Algebra :
Converter Rewrite Rules Cost Models
POB-Calculus POB-Algebra
Query Query
POB-Algebra
USER GUI POB-Algebra Query POB-Algebra POB

Query Manager |— ™| Execution Engine

T ' 7

probabilistic combination strategies probabilistic distributions

Fig. 2. Architecture of POB system

(i) probabilistic combination strategies and (ii) distribution functions.

4.1 Probabilistic Combination Strategies

Suppose we know the probabilities of events e; and es. For example, e; may be
the event “The photographed plant p; (in image I) is French Thyme.” Similarly,
e2 may be the event “The photographed plant ps (in image I) is Mint.” Assume
now that we are interested in the probability of the complex event (e; A ez). The
probability of (e; A es) is computed in different ways based upon our knowledge of
the dependencies between e; and es.

e1 and es are independent. This may occur if we know that the plants p; and ps
are growing in the area independently of each other. In this case, P(e; A e2) =
P(e1) -P(es) (i.e., the probability of (e; A es) is the product of the probabilities
of e; and ey).

—e1 and ey are mutually exclusive. Suppose, for example, we know that p; and ps
are the same plant. Since the events e; and es are mutually exclusive, we can
immediately say that P(e; A ez) = 0.

We are ignorant of the relationship between e; and e;. This case occurs when
we do not know anything about the relationship between the plants p; and p»
growing in the same area. As shown by Boole [1854], the best we can say in this
case about the probability of (e; A e2) is that it lies in the interval [max(0, P(e1)+
P(e2) — 1), min(P(eq), P(e2))].

Thus, the probability of (e; A es) depends not only on the probabilities of e; and
€2, but also on the relationship between the events e; and e;. A similar situation
applies when we consider complex events such as (e; V e2). The above are only
three ezamples of different ways of evaluating probabilities of complex events. In
general, depending on exactly what is known about the dependencies between the
events involved, there is a whole plethora of such probability computations.

In our framework, we use probability intervals instead of point probabilities for
two reasons: (i) In many applications, the probability of an event is often not
precisely given; (ii) as already shown by Boole [1854], when we do not know the
dependencies between two events, all that we can say about the probability of the
conjunction / disjunction of two events is that it belongs to an interval.

6 . T. Eiter et al.

Definition 4.1 (consistent probabilistic intervals for two events) Suppose
e1 and ey have probabilities in the intervals Iy = [Ly, U] and Iy = [Lo, Us], respec-
tively. Such an assignment of probabilistic intervals is called consistent iff Ly < Uy,
Ly < U,, and the following conditions hold:

If (e1 A eg) is contradictory!, then L + Ly < 1.
If (e; A —ey) is contradictory, then Ly < Us.
—If (—e; A ey) is contradictory, then Ly < Uj.

—If (—e; A —ey) is contradictory, then Uy + Uy > 1.

In the sequel, all assignments of probabilistic intervals are implicitly assumed to
be consistent unless stated otherwise. Suppose Iy = [Lq1,U;] and I = [Ly, Us]. We
use I; < I, as an abbreviation for L; < Ly and U; < Us, and I; C I, to denote
that I is contained in Iy, i.e., Ly < Ly and U; < U,.

As many dependencies between events cannot be automatically inferred, it is im-
perative that the user be able to specify, in his query, what knowledge he has about
such relationships. To facilitate this, Lakshmanan et al. [1997] have introduced
generic probabilistic conjunction and disjunction strategies. Any function that sat-
isfies the axioms listed in Table I is called a probabilistic conjunction or disjunction
strategy, respectively. (Given two events e; and ey with probabilities in the inter-
vals I = [Ly,U;] and Iy = [Lo, Us], respectively, the notations “I = I} ® I,” and
“I = I, ® I,” are shorthand for “(e; Aes, I) = (e1,[1)® (e2,15)” and “(e1 Veq,I) =
(e1, 1) & (ea, I2)”, respectively.)

Table I. Axioms for conjunction and disjunction strategies

Axiom Name Conjunction Strategy
(I1®I2) < [min(L1, La2), min(U1, Uz)]
Ignorance (I1®1I2) C [max(0, L1 + Ly — 1), min(U1, Us)]
Identity” (Lh®[1,1) =1L
Commutativity (Il ®Ig) = (Ig@]l)

(

(

Bottomline

Associativity
Monotonicity

(L®L)®I13) = (LRU[:®13))
Li®D) < (I.®l3)if I, < I3

Axiom Name Disjunction Strategy
(I1®12) > [max(Li1, L2), max(Ur, Us)]

Ignorance (I1®1I>) C [max(Li1, L), min(1, Uy + Us)]

Identity? (Ii&[0,0]) = I
(
(
(

Bottomline

Ligh) = (1)
(heh)®ls) = (L& (e13))
LBL) < (Li®l3)if I, < I3

Commutativity
Associativity
Monotonicity

While the notion of conjunction and disjunction strategies are recapitulated from
Lakshmanan et al. [1997], the concept of difference strategies below is new.

TContradictory here merely means “inconsistent in classical propositional logic.”
2The Identity-axioms for probabilistic conjunction (resp., disjunction) strategies assume that
e1 A ey and —ep Aeg (resp., —mep A —ez and e A —ez) are not contradictory.

Probabilistic Object Bases : 7

Definition 4.2 (probabilistic difference strategy) Suppose e; and e, have
probabilities in the intervals Iy = [Ly, U] and I, =[Lo, Us], respectively. A proba-
bilistic difference strategy is a binary operation & that uses this information to
compute a probabilistic interval I = [L, U] for the event (e; A—ez). When the events
involved are clear from context, we use “I=1; © ;" to denote “(e; A—ey, I) =
(e1,11) © (ea, I2)”. Difference strategies satisty the following postulates:

Bottomline: (11 © Iz) S [mll’l(L] s 1-— UQ), min(Ul, 1-— Lz)]
Ignorance: (I} & I,) C [max(0, Ly — Us), min(U;,1 — Ly)].
Identity: If (meq A —es) and (e; A —es) are not contradictory?, then (I ©[0,0]) =1I;.

Examples of probabilistic conjunction, disjunction, and difference strategies are
given in Table II. Note that we do not assume any postulates that relate probabilis-
tic conjunction, disjunction, and difference strategies to each other (for example,
postulates that express the distributivity of conjunction and disjunction strategies).
Readers may make such assumptions if they wish — however, the results of this
paper stand even if these assumptions are not made.

Table II. Examples of probabilistic combination strategies

Strategy Operators
Ignorance ([L1,U1] ®4g [L2, Us]) = [max(0, L1 + Ly — 1), min(Ui, Us)]
([L1,Uh] ®ig [L2,Us]) = [max(L1, La), min(1, U1 + Us)]
([L1,U1] Sig [L2, Uz]) = [max(0, L1 U,), min(U1,1 — Ly)]
Independence ([L1, Ur] ®in [L2,Us]) = [L1 - L2, Uy - Us]
([L1, Ur] ®in [L2,Us]) = [Li+La— (L1 - Ly), U1 +Us—(Uy - Us)]
(L1, U] ©in [L2,Ua]) = [Ln - (1 = U2),Ur - (1 = L2)]
Positive Correlation ([L1, U1] ®pc [L2, Uz2]) = [min(L1, L2), min(U, Us)]
(when ey implies e2, ([L1, U1] ®pe [L2, U2]) = [max(L1, L2), max(Us, Uz)]
or ey implies e1) ([L1,U1] Spe [L2, Us]) = [max(0, Ly — Usz), max(0,U; — Ly)]
Mutual Exclusion ([L1, U1] ®me [L2, Us]) = [0, 0]
(when e; and ey are ([L1, U1] ®me [L2, Uz]) = [min(1, L1 + L), min(1, Uy + U,)]
mutually exclusive) ([L1,U1] ©me [L2, Us2]) = [L1,min(U1,1 — L))

4.2 Probability Distribution Functions

Probability distribution functions assign probabilities to elementary events in a
coherent way. For example, if we are told that plant p; is currently at one of the
locations a, b, ¢ with probability 60-70%, then a distribution function allows us to
assign parts of this probability mass to the events “plant p; is at location a,” “plant
p1 is at location b,” and “plant p; is at location ¢.”

3Note that the precondition is necessary. E.g., if I1 =[0, 1], and —e; A —es (resp., e A —=e2) is con-
tradictory, then (11 ©[0,0]) =[1,1] # I1 (resp., (I1 ©[0,0]) =[0, 0] # I1) by the laws of probability.

8 . T. Eiter et al.

Definition 4.3 (distribution function) Let X be a finite set. A (probability)
distribution function a over X is a mapping from X to the real interval [0, 1] such
that ¥,ex a(z) < 1.

We do not require that ¥,cx a(x) = 1 holds; a distribution function a with this
property is said to be complete. The above definition allows to assign probabilities
to a subset X C Y of elements, leaving the probabilities of the other elements open.
An important distribution function which we often encounter in practice is the
uniform distribution. For a finite set X, it is defined by ux(z) = ﬁ for all
x € X. We abbreviate ux by u, whenever X is clear from the context. Many other
distribution functions are conceivable; we do not study this further here.

Definition 4.4 (probabilistic triple) A probabilistic triple (X, a,) consists of
a finite set X, a distribution function a over X, and a function § : X — [0,1]
mapping X to the real interval [0, 1] such that (i) a(z) < g(z) for all z € X and

(i) 3, cx B(z) > 1 hold,

Informally, a probabilistic triple assigns to each element = € X a probability interval
[a(z), B(x)]. This assignment is consistent in the sense that we can assign each
element in X a probability p(z) from [a(z), 5(z)] such that the sum of all p(z)
adds up to 1. In the sequel, we implicitly assume that all probabilistic triples
(X, a, B) are tight, i.e., for each x € X, the bounds «(z) and §(z) are the minimum
and maximum, respectively, of p(z) subject to all complete distribution functions
p over X such that p(z') € [a(z'), B(z")] for all ' € X. Thus, any probabilistic
triple that is entered by a user or computed by our algebraic operations is implicitly
assumed to be transformed into its tight equivalent (which can easily be done).

5. TYPES AND PROBABILISTIC OBJECT BASE SCHEMAS

In this section, we provide some basic definitions underlying a probabilistic ob-
ject base (POB). We first consider types and values, and then the schema of a
POB. The notion of POB-schema is more complex than in the context of rela-
tional databases, and may lead to inconsistent specifications; we present efficient
algorithms for checking schema consistency.

5.1 Types and Values
We start with the definition of types.

Definition 5.1 (types) Let A be a set of attributes and let T be a set of atomic
types. We define types inductively as follows:

Every atomic type from 7 is a type.
—If 7 is a type, then {7} is a type, which is called the set type of T;

If Ay,..., Ay are pairwise different attributes from A and 7q,...,7; are types,
then [Ay: 71,..., Ag: 7] is a type. This type is called a tuple type over the set

of attributes {A44,..., Ax}. Given such a type 7 = [Ay: 71,..., Ay 73], we use
7.A; to denote ;. We call A4, ..., Ay, the top-level attributes of 7.

Probabilistic Object Bases : 9

Example 5.1 (Plant Example: types) In the Plant Example, some atomic
types from 7T are integer, real, string, soiltype, and suntype. The attributes soil,
sun (sun-exposure), and rain (daily water) describe conditions needed for a plant
to grow. Some other attributes are pname, size, height, and width. Some (non
atomic) types include: {soiltype}, [soil: {soiltype}, sun: suntype, rain: integer], and
[pname: string, size: [height: integer, width: integer]].

Definition 5.2 (values) Every atomic type 7 € T has an associated domain
dom(7). We define values by induction as follows:

For all atomic types 7 € T, every v € dom(7) is a value of type 7.
—If vq,..., v are values of type 7, then {vq,..., vg } is a value of type {7}.

—If Aq,..., Ay are pairwise different attributes from A and vy, ..., v, are values of

types 71, ..., Tk, then [Ay: v1,..., Ap: vg] is a value of type [Ay: 7, ..., Ag: 73]
Example 5.2 (Plant Example: values) Let us return to the types of Exam-
ple 5.1. We assign the usual domains to integer, real, and string. Let soiltype
and suntype be enumerated types having the domains {loamy, swampy, sandy} and
{mild, medium, heavy}, respectively. The value sets associated with the types of
Example 5.1 are as follows:

soiltype: Any element of {loamy,swampy, sandy} is a value of soiltype. For exam-
ple, loamy is a value of soiltype. When associated with a particular plant, this
value might say that the plant needs loamy soil to flourish.

—{soiltype}: Any set of values of soiltype is a value of this type. For exam-

ple, if a particular plant can grow well in either loamy or swampy soil, then
{loamy, swampy} is an appropriate value of this type that can be associated with
this plant.
[soil: {soiltype}, sun: suntype, rain: integer]: Any triple (v, v, v3) is a value of this
type, where vy is a set of values of soiltype, v, is a value of suntype, and v3 is a
value of integer. For example, ({loamy, swampy}, mild, 3) is a value of this type.
It says that the plant needs either loamy or swampy soil, mild sun, and 3 units
of water per day to flourish.

Definition 5.3 (probabilistic tuple values) If 4,,..., Ay, are pairwise distinct

attributes from A and (Vi,1,061),. .., (Vi, o, Bx) are probabilistic triples where
Vi,..., Vi are sets of values of types 7, ..., T, then the expression [4A;: (Vi, a1, f1),
ooy Ag s (Vi, ag, Br)] is a probabilistic tuple value of type [Ay: 71, ..., Ag: 7] over

the set of attributes {4, ..., Ay }. For probabilistic tuple values ptv = [Ay: (V1, a1,

Note that the order of the A4;: (V;,a;,8;)’s in a probabilistic tuple value ptv =
[A1: Vi,a1,B1), -y Ak (Vi, o, Br)] is not important.

Example 5.3 (Plant Example: probabilistic tuple values) Assume we know
that the soil type of a wild forest plant is loamy (presumably, as we can see, the
plant is flourishing in the place in which it is currently growing). Moreover, we
are sure that this plant is Thyme, but unsure whether it is French Thyme (french),

10 . T. Eiter et al.

Silver Thyme (silver) or Wooly Thyme (wooly). If we are sure with 20-60% prob-
ability each that it is French Thyme, Silver Thyme, and Wooly Thyme, then
we may encode this knowledge via the following probabilistic tuple value of type
[soil: soiltype, classification: string] over the set of attributes {soil, classification}:

[soil: ({loamy},u,u), classification: ({french,silver,wooly},0.6u, 1.8 u)].

Note that the expressions “0.6 u” and “1.8 u” denote the distribution function o and
the function g, respectively, that are defined by a(z) = 0.6-1/3 and f(z) = 1.8-1/3
for all z from {french, silver, wooly}.

In the above definition, a probabilistic triple (V;, «;, 8;) may only assign a prob-
ability interval to some values v (viz. those in V;) for the attribute A;. Nothing is
stated for the (possibly infinitely many) other values that A; could have according
to its type 7;. We must find a clean and appealing way in which such incomplete
knowledge about the probability assignment is handled.

As in relational databases, we adopt a closed world assumption (CWA): We as-
sume that every value v € dom(r;) — V; has probability 0, i.e., it is implicitly as-
signed the probability interval [0,0]. Under this convention, “consistency” (which
we will define formally later) of the probability information given by (V;, ay, 5;) is
preserved in the larger context of dom(7;): there exists a probability function p over
dom(7;) that is compatible with (V;, a;, ;) such that all p(v) with v € dom(7;) sum
up to 1. The probabilistic object base algebra defined in Section 7 will be based on
this CWA. Notice that an open world view is still possible for particular values. We
may, for instance, add v to V and set a(v) = 0, S(v) = 1; this explicitly expresses
that the probability of v is unknown.

5.2 Probabilistic Object Base Schema

Informally, a probabilistic object base schema consists of a hierarchy of classes.
Membership of an object in an immediate subclass of any class is expressed by a
probability value.

Definition 5.4 (probabilistic object base schema) A probabilistic object base
schema (POB-schema) is a quintuple (C, T, =, me, p), where:

C is a finite set of classes. Intuitively, these reflect the classes associated with
this probabilistic object base.

—71 maps each class from C to a tuple type. Intuitively, this mapping specifies the
data type of each class.

= is a binary relation on C such that (C,=) is a directed acyclic graph (dag).
Intuitively, each node of the directed acyclic graph (C,=) is a class from C and
each edge ¢; = ¢y says that the class ¢; is an immediate subclass of c,.

—me maps each class ¢ to a partition of the set of all immediate subclasses of c.
Intuitively, suppose class ¢ has the five subclasses ¢y, . .., ¢5 and suppose me(c) is
given by the partition {{ci, 2}, {c3,ca,c¢5}}. Here, me(c) produces two clusters.
An object o € ¢ can belong to either or both clusters. However, the classes within
a cluster are mutually exclusive, i.e., o cannot belong to both ¢; and ¢y at the
same time.

Probabilistic Object Bases : 11

—¢ maps each edge in (C,=>) to a positive rational® number in the unit inter-
val [0,1] such that for all classes ¢ and all clusters P € me(c), it holds that
Yaepp(d,c) < 1. Intuitively, if ¢; = ¢, then p(cq,c2) specifies the conditional
probability that an arbitrary object belongs to the subclass ¢; given that it be-
longs to the superclass ¢,. The summation condition says that the sum of the
probabilities of edges within a mutually exclusive set of subclasses must sum up
to less than or equal to 1.

A directed path in the directed acyclic graph (C, =) is a sequence of classes ¢y, ¢, . . .,
cr such that ¢; = ¢o = -+ = ¢, and k > 1. We use =* to denote the reflexive
and transitive closure of =. Note that =* induces a natural partial order < on C
by ¢ < diff c =* d for all ¢,d € C.

We use S(¢) = {d € C | d = ¢} to denote the set of all immediate subclasses of
ceC,and S*(¢) = {d € C | d =* ¢} to denote the set of subclasses of ¢ € C. A

class d is a subclass of a partition cluster P iff d is a subclass of some ¢ € P.

We will represent the above structure (excluding the type assignment 7) in a
graphical way as shown in Figure 1, where the edges are labeled by conditional
probabilities.

Example 5.4 (Plant Example: probabilistic object base schema) A POB-
schema for the Plant Example may consist of the following components:

—C = {plants, annuals, perennials, vegetables, herbs, flowers, annuals_herbs,
perennials_flowers}.

—1 is given by Table III.
(C,=) is the graph obtained from Figure 1 by contracting the d-nodes to plants
and ignoring probabilities.

—me is the partitioning of edges shown in Figure 1.
¢ is the probability assignment in Table IV.

For example, annuals and annual_herbs are subclasses of plants, and annuals is an
immediate subclass of plants while annual_herbs is not; annual_herbs is a subclass of
the cluster {annuals, perennials}.

The POB-schemas defined thus far may be inconsistent, i.e. it may not always
be possible to find a set of objects that satisfies the taxonomic and probabilistic
knowledge expressed by the directed acyclic graph, the partitioning of edges, and
the probability assignment. The formal definition of consistency of a POB-schema
is given below.

Definition 5.5 (consistent POB-schema) Let S = (C,7,=,me, p) be a POB-
schema. An interpretation of S is any mapping £ from C to the set of all finite
subsets of a set . An interpretation € of S is called a tazonomic model of S iff:

4Note that we assume rational numbers here, since we will adopt a probabilistic semantics of
class hierarchies that is based on relative cardinalities of sets of objects. We can easily generalize
our model to real numbers, if we assume a more general probabilistic semantics that is based on
real-valued probability functions over a set of possible worlds. All the results of this subsection,
except for the NP-membership result in Theorem 5.2, carry over to this more general setting.

12 . T. Eiter et al.

Table I1I. Type assignment 7

¢ 7(c)
plants [pname: string, soil: soiltype, rain: integer]
annuals [pname: string, soil: soiltype, rain: integer,

sun: suntype]
perennials [pname: string, soil: soiltype, rain: integer,

sun: suntype, expyears: integer]
vegetables [pname: string, soil: soiltype, rain: integer,

sun: suntype, expyears: integer]
herbs [pname: string, soil: soiltype, rain: integer,

sun: suntype, expyears: integer, classification: string]
flowers [pname: string, soil: soiltype, rain: integer,

sun: suntype, expyears: integer, classification: string]
annuals_herbs [pname: string, soil : soiltype, rain: integer,

sun: suntype, expyears: integer, classification: string]

perennials_flowers [pname: string, soil: soiltype, rain: integer,
sun: suntype, expyears: integer, classification: string]

Table IV. Probability assignment gp

edge probability
annuals = plants 0.6
perennials = plants 0.4
vegetables = plants 0.2
herbs = plants 0.3
flowers = plants 0.4
annuals_herbs = annuals 0.4
annuals_herbs = herbs 0.8
perennials_flowers = perennials 0.3
perennials_flowers = flowers 0.3

C1 e(e) # 0, for all classes ¢ € C.

C2 ¢(c) Ce(d), for all classes ¢,d € C with ¢ = d.

C3 £(c)ne(d) = 0, for all distinct classes ¢,d € C that belong to the same cluster
P e Jme(C).

Two classes ¢,d € C are tazonomically disjoint (t-disjoint) iff €(c) Ne(d) = @ for
all taxonomic models € of S. ¢ is a tazonomic and probabilistic model (or simply
model) of S iff it is a taxonomic model of S and it satisfies the condition:

C4 |e(o)| = p(e,d) - |e(d)]| for all classes ¢,d € C with ¢ = d.

We say S is consistent iff it has a model.

Let us illustrate this definition within the Plant Example.

Probabilistic Object Bases : 13

Example 5.5 (Plant Example: consistent POB-schema) Let S = (C, 7, =,
me,) be the POB-schema given in Example 5.4. Let O be a set of cardinality
800, which is partitioned into pairwise disjoint subsets Oy, O, ..., O19 having
cardinalities 90, 27, 126, 45, 192, 21, 98, 35, 70, and 96, respectively. An interpre-
tation € of S is given in Table V. It is easy to see that ¢ is also a model of S. For
example, e(plants) # 0, e(annuals) C e(plants), e(annuals) N e(perennials) =), and
le(annuals)| = 0.6 - |e(plants)|. Hence, S is consistent.

Table V. Interpretation € of schema S

c =) (0]
pIants O1U---UO 800
annuals O1U---UOs 480
perennials O U---UO0 320
vegetables 01U Oy 160
herbs 02 U 05 U Og 240
flowers O3 UO7;U O 320
annuals_herbs Os 192
perennials_flowers Oig 96

It would be nice to have an efficient algorithm for deciding the consistency of
a given POB-schema. For this purpose, we need a suitable characterization of
consistency. The following condition is a natural candidate.

Definition 5.6 (pseudo-consistent POB-schema) The POB-schema S = (C,
T, =,me, p) is pseudo-consistent iff the following conditions hold:

P1 For any two different classes c¢1,cy € C with ¢; =* ¢o, the product of the edge
probabilities is the same on all paths from ¢; up to ¢».

P2 For all clusters P € |Jme(C), no two distinct classes ¢, ca € P have a common
subclass.

Example 5.6 (Plant Example: pseudo-consistent POB-schema) It is easy
to see that the POB-schema S = (C, 7, =, me, p) shown in Example 5.4 is pseudo-
consistent:

The two paths from annuals_herbs up to plants and from perennials_flowers up to
plants have both 0.24 and 0.12, respectively, as the product of the edge probabil-
ities.

Neither annuals_herbs nor perennials_flowers is a subclass of two t-disjoint classes.

Indeed, it is straightforward to show that pseudo-consistency is a necessary con-
dition for consistency.

Theorem 5.1 FEvery consistent POB-schema is pseudo-consistent.

14 . T. Eiter et al.

However, pseudo-consistency is not a sufficient condition for consistency. FEven
worse, deciding the consistency of a pseudo-consistent POB-schema is intractable.
We have the following result.

Theorem 5.2 The problem of deciding whether a given POB-schema S is consis-
tent is NP-complete. Hardness holds even if S is pseudo-consistent.

Proof. The problem is in NP, since it polynomially reduces to the NP-complete
problem of deciding whether a weight formula is satisfiable in a measurable proba-
bility structure [Fagin et al. 1990]. Notice that the proof of NP-membership of the
latter problem heavily relies on results from the theory of linear programming (the
main idea is to prove a small model theorem, which says that a weight formula is
satisfiable in a measurable probability structure iff it is satisfiable in a measurable
probability structure of polynomial size, see [Fagin et al. 1990]).

More precisely, weight formulas are defined as Boolean combinations of basic
weight formulas, which are expressions of the form ay - w(¢1) + -+ ap - w(dr) > a
with integers ay,...,a,a and propositional formulas ¢q,...,¢r. A measurable
probability structure can be identified with a probability function on the finite set
of all truth assignments to the primitive propositions, which is extended in a natural
way to propositional formulas, basic weight formulas, and weight formulas.

It can now easily be shown that a POB-schema S = (C,7,=,me,) is consis-
tent iff the conjunction of the following weight formulas, which capture C1-C4 in
Definition 5.5, is satisfiable:

C1 —=((=1) -w(ec) > 0) for all classes ¢ € C.

C2 (w(cA=d)>0)A((=1) - w(eA—d) >0) for all classes ¢,d € C with ¢ = d.

C3 (w(cAd) > 0)A((=1)-w(cAd) > 0) for all distinct classes ¢,d € C of the same
cluster.

C4 (n-w(c)+(—m)-w(d) > 0)A((—n)-w(c)+m-w(d) > 0) for all classes ¢,d € C

with ¢ = d, where m and n are natural numbers such that p(c,d) = 2.

The proof of NP-hardness is given in [Eiter et al. 1999]. O

Nonetheless, polynomial algorithms for deciding the consistency of a POB-schema
in relevant special cases may be possible. Well-structured POB-schemas, which we
introduce next, enjoy this property.

Definition 5.7 (well-structured POB-schema) The POB-schema S = (C,,
=, me, p) is well-structured iff the following conditions hold:

W1 There exists a class ¢ € C such that every class d € C is a subclass of ¢ (i.e.,
the graph (C, =) has a top element).

W2 For every class ¢ € C and distinct ¢1,c5 € S(c), the set S := S*(¢1) N S*(¢2)
is either empty or has a unique element d,,, # c¢1, ¢y such that d =* d,, for
all d € S (i.e., for every class ¢ € C, any two distinct immediate subclasses ¢;
and ¢y of ¢ either have no common subclass or a greatest common subclass
dpm, which is different from them).

Probabilistic Object Bases : 15

W3 For every class ¢ € C, the undirected graph Gs(c)=(V, &) that is defined by
V:me(c) and £ = {{P1Pg} eV xV | P1 7é Ps, US*(Pl) n US*(Pz) 7é @}
is acyclic (i.e., for every class ¢ € C, the partition clusters in me(c) are not
cyclically connected through common subclasses. Roughly speaking, multiple
inheritance does not cyclically connect partition clusters).

W4 For every class ¢ € C: if the graph Gig(c) has an edge, i.e., two distinct clusters
P1, P2 € me(c) have a common subclass, then every path from a subclass of ¢
to the top element of (C, =) goes through ¢ (i.e., multiple inheritance can be
locally isolated in the graph (C,=)).

Informally, these conditions restrict multiple inheritance so that a model for
the schema S can be built bottom up from models of subschemas. Specifically,
W2 and W3 ensure that a model for a subschema under a class ¢ € C can be
constructed from models of smaller subschemas that are related to the partition
clusters in me(c). Moreover, W4 and W1 ensure that these local constructions
do not influence each other, and that they yield a model for the whole schema S,
respectively. We feel that well-structuredness is a reasonable restriction on multiple
inheritance®. In particular, W1 and W2 can always be satisfied by simply adding
missing top elements to certain sets of classes (during the design of a POB-schema,
before specifying the probability assignment). Let us now reconsider the Plant
Example.

Example 5.7 (Plant Example: well-structured POB-schema) The POB-
schema S given in Example 5.4 is well-structured:

Every class is a subclass of plants.
—The classes annuals_herbs and perennials_flowers are t-disjoint.
There are no cyclically connected partition clusters.

—The multiple inheritance at the classes annuals_herbs and perennials_flowers is
locally isolated under the class plants.

As far as well-structured POB-schemas are concerned, we have the nice result that
pseudo-consistency is a necessary and sufficient condition for consistency. However,
the proof of this result is highly nontrivial, see [Eiter et al. 1999].

Theorem 5.3 FEvery pseudo-consistent and well-structured POB-schema S is con-
sistent.

It is easily seen that any S = (C, 7, =, me, p) without multiple inheritance, i.e.,
{d € C | ¢ = d}| <1 for each class ¢ € C, satisfies W2-W4. We obtain the following
corollary to Theorem 5.3.

Corollary 5.4 Every POB-schema with top element and without multiple inheri-
tance s consistent.

5Note that multiple inheritance was considered an optional feature of object-oriented database
systems in the “manifesto” [Atkinson et al. 1989].

16 . T. Eiter et al.

It now remains to show that pseudo-consistency and well-structuredness of a
POB-schema can be decided efficiently. We first first show, via Algorithm 5.2
(which used Algorithm 5.1) how to check pseudo-consistency.

Theorem 5.5 The problem of deciding whether a given POB-schema S = (C, 7, =,
me, ©) is pseudo-consistent can be done using Algorithm 5.2 in time O(n(e + n)),
where n = |C| and e is the number of directed edges in (C,=>).

Proof. Algorithm 5.2 decides the pseudo-consistency of S. It uses Algorithm 5.1,
which computes the reachability relation of the graph (C,=).

Algorithm 5.1 works as follows. Steps 1-4 initialize the reachability relation. In
steps 58, for each class ¢, the set S(c) of all its subclasses, and the number §(c) of
all its immediate superclasses are computed. Step 9 calculates the set of all classes ¢
with d(¢) =0. The while-loop in 10 20 then computes the reachability relation.
In detail, every time step 10 is entered, the product of the edge probabilities is
correctly computed along all paths that involve only edges a = b with classes b such
that §(b) =0 and b ¢ N. Given this, in 11-18, we take some ¢ € N, and we correctly
compute the edge probabilities along all paths d = ¢ =* e, where ¢ =* e involves
only edges a = b with classes b such that 6(b) =0 and b¢ N. In step 16, we return
nil when two distinct products are computed between two classes d and e.

In Algorithm 5.2, we first check in steps 1 and 2 whether the schema S violates P1.
We then check in steps 3-5 whether a class ¢ exists that is a subclass of two distinct
classes in the same cluster, that is, whether S violates P2.

We now show that Algorithm 5.1 runs in time O(n(e + n)): The initialization
steps 1 4, 5 8, and 9 run in time O(n?), O(ne), and O(n), respectively. Next, it
is easy to see that the for-loop in 15 17 is performed as many times as there are
edges in (C, =), and each execution takes O(n) time. Thus, the whole while-loop
in 10-20 runs in time O(ne).

Hence, also Algorithm 5.2 runs in time O(n(e + n)): The steps 1-2 run in time
O(n(e+n)). The for-loop in 4 5 runs in linear time in the input size of me (i.e, in e).
Thus, the whole for-loop in 3 5 runs in time O(ne). O

We now focus on deciding well-structuredness via Algorithm 5.3.

Theorem 5.6 The problem of deciding whether a pseudo-consistent POB-schema
S = (C,7,=, me,p) is well-structured can be solved using Algorithm 5.8 in time
O(n?e), where n = |C| and e is the number of directed edges in (C,=).

Proof. Algorithm 5.3 decides the well-structuredness of S. Steps 1 3 check whether
S satisfies W1. In 4 16, it is then checked whether S satisfies W2. Moreover, the
union of all undirected graphs Gg(c) with ¢ € C and the set of all classes with
multiple inheritance at subclasses are computed. Step 17 checks that all the graphs
Gs(c) with ¢ € C are acyclic, i.e., that S satisfies W3. In steps 18-22, it is finally
checked whether S satisfies W4.

We now show that Algorithm 5.3 runs in time O(n?e). It is easy to see that
steps 1 2, 3, and 4 run in time O(ne), O(n), and O(n(e+n)) = O(ne), respectively
(note that W1 ensures e > n —1). Step 10 is done one time for each edge in (C, =)
and each class in a set of classes limited by C. The set D there can be computed

Probabilistic Object Bases

17

Algorithm 5.1: reachability(S)

Input: POB-schema S = (C, 7, =, me, p).
Output: If S does not satisfy P1, then nil is returned. Otherwise, a mapping w: C xC — [0, 1]

N N = = e e e e e e e
— O W00~ Ul WN = O ©

00~ O U = W N~

is returned such that w(e,d) is the product of the edge probabilities on all paths
from ¢ up to d if such a path exists and w(c,d) is 0 otherwise.

for each ¢,d € C do
if ¢ = d then w(e,d) =1
else if ¢ = d then w(c,d) := p(c, d)
else w(c,d) := 0;
for each ¢ € C do begin
S(c):={deCld=c};
d(c):={d eC|c = d}
end;
N :={ceC|d(c) =0};
while N # () do begin
take any c € N;
for each d € S(c) do begin
0(d) :=6(d) — 1;
if 5(d) = 0 then N := N U {d};
for each e € C with w(c,e) > 0 do
if w(d,e) > 0 and w(d,e) # w(d,c) - w(c,e) then return nil
else w(d, e) := w(d,c) - w(c,e)
end;
N := N — {c};
end;
return w.

Fig. 3. Algorithm 5.1

Algorithm 5.2: pseudo-consistent(S)

Input: POB-schema S = (C, 7, =, me, p).
Output: true if S is pseudo-consistent and false otherwise.

=W N

w := reachability(S);
if w = nil then return false; (S does not satisfy P1)
for each c € C do
for each P € |Jme(C) do
if [{e € P|w(c,e) > 0}| > 1 then return false; (S does not satisfy P2)
return true. (S is pseudo-consistent)

Fig. 4. Algorithm 5.2

18 . T. Eiter et al.

Algorithm 5.3: well-structured(S)

Input: Pseudo-consistent POB-schema S = (C, 7,=,me, p).

Output: true if S is well-structured and false otherwise.

Notation: We use top(S) to denote the top element of (C,=>). For classes ¢ € C, the
expression S — ¢ denotes the POB-schema that is obtained from S by removing c.
max(D), where D C C, is the set of all maximal members in D w.r.t. =*.

1. for each c € C do

2. d(c):=|{deC|ec=d}|;

3. if [{c € C|d(c) = 0}| > 1 then return false; (S does not satisfy W1)
4. w := reachability(S);

5. &:=0;

6. M :=0;

7. for each c € C do

8. for each distinct P1,P2 € me(c) do

9. for each (c1,c¢2) € P1 x P2 do begin

10. D:={deC|w(d,c1)>0 and w(d,c2) > 0};

11. if |max(D)| > 1 or DN {c1,c2} # 0 then return false (S does not satisfy W2)

12. else if |[max(D)| = 1 then begin

13. E:=EU{{P1,P2}};

14. M := MU {c}

15. end

16. end;

17. if ((Jme(C), E) contains a cycle then return false; (S does not satisfy W3)

18. for each c € M do begin

19. v := reachability(S — c);

20. for each d € C with w(d,c) > 0 do

21. if v(d, top(S)) > 0 then return false; (S does not satisfy W4)

22. end;

23. return true. (S is well-structured)

Fig. 5. Algorithm 5.3

in time O(n). The tests in steps 11 and 12 can be done, using a simple algorithm,
in time O(n). Hence, steps 5 16 run in time O(n’e). In step 17, the number of
clusters in | Jme(C) is in the worst case equal to e. Thus, step 17 can be performed
in time O(e) using standard algorithms for checking acyclicity. Finally, it is easy
to see that steps 18-22 run in time O(n?%e). O

6. INHERITANCE AND PROBABILISTIC OBJECT BASE INSTANCES

Thus far, we have not addressed inheritance of attributes that may arise through
subclass relationships in a POB-schema S. For example, if ¢ is a subclass of d,
and d’s type has a top-level attribute A, then class ¢ should inherit this attribute,
unless ¢ already has such an attribute. The issue of inheritance has been extensively
discussed in the literature, e.g. [Bertino and Martino 1993]. We now incorporate
inheritance in our framework, and define instances of a POB-schema.

6.1 Inheritance Completion and Fully Inherited Schemas

The main idea behind the inheritance of attributes is that every class should inherit
all top-level attributes of all its superclasses. In order to handle cases in which
the same attribute is inherited from more than one superclass, we make use of
inheritance strategies.

Probabilistic Object Bases : 19

Let us assume that any schema S = (C, 7, =, me, p) has an associated inheritance
strategy inhg that determines from which superclass d a class ¢ inherits a top-level
attribute A. More formally, let A denote the set of all top-level attributes of S.
For each pair (¢, A) € C x A, let ¢4 be defined as follows:

ca = {deClc=*d, A is a top-level attribute of 7(d)} .

We now define inhg: C X A — C as a partial mapping that assigns each pair (¢, A) €
C x A with ¢4 # () a minimal element in ¢4 under the partial order =* (the value
of inhg(c, A) is undefined if ¢4 = §)). In particular, inhg(c, A) = ¢ if A is a top-level
attribute of 7(c).

This notion of inheritance strategy covers strategies (such as an ordering on
classes) that are commonly used to resolve multiple inheritance in practice. Simi-
larly, if we wish to use the strategy of the O, system [Bancilhon et al. 1991] where
renamed inheritance of the same attribute with distinct origins is desired, we could
generalize inhg (¢, A) to return all pairs (d, A") with classes d from which attribute A,
renamed to A’, is inherited.

Applying inhg on a POB-schema S = (C,7,=,me, p) induces another POB-
schema S* = (C, 7*,=, me, p), which ouly differs from S in its type assignment 7*.
More precisely, for each ¢ € C, we define 7*(¢) = [Ay: 7(d1). A1, ..., Ap: 7(dr). Ax],
where Ay, ..., Ay are the top-level attributes that are inherited by ¢ via inhg from
the classes dy, ..., dy, respectively. We call S* the inheritance completion of S. A
POB-schema S is fully inherited iff S = S*.

Example 6.1 (Plant Example: probabilistic object base schema) Let us
consider the POB-schema S = (C, 7, =, me, p) for the Plant Example defined in
Example 5.4. It is easily checked that for every subclass ¢ of any class d, each
top-level attribute of 7(d) is a top-level attribute of 7(c), i.e., all attributes in d are
already present in ¢. Thus, no attributes are inherited from proper superclasses,
which means that S is fully inherited. The type assignment 7 in S may be consid-
ered ill-designed, however, as it does not reflect natural inheritance relationships.

Consider now the redesigned schema S’ = (C, 7', =, me, p) with the redesigned
type assignment 7’ shown in Table VI, and adopt an inheritance strategy inhs/ that
resolves multiple inheritance by ordering “left-to-right” in Figure 1, i.e., orders
annuals before herbs and perennials before flowers. Then, the original schema S is
given by the inheritance completion of S’.

In the rest of this paper, we implicitly assume that all POB-schemas S are con-
sistent (see Definition 5.5), and that they are all fully inherited. In particular,
POB-instances in the next subsection, and operations in our POB-Algebra in Sec-
tion 7 are defined with respect to fully inherited POB-schemas. Note that these
definitions can easily be extended to POB-schemas S that are not fully inherited.

6.2 Probabilistic Object Base Instance

We are now ready to define a probabilistic object base instance (POB-instance).
The following assumption is common in object-oriented databases [Kim 1990].

6No renaming is assumed here for the same attribute with distinct origins.

20 . T. Eiter et al.

Table VI. Redesigned type assignment 7’

¢ 7'(c)

plants [pname: string, soil: soiltype, rain: integer]

annuals [sun: suntype]

perennials [sun: suntype, expyears: integer]

vegetables [sun: suntype, expyears: integer]

herbs [sun: suntype, expyears: integer, classification: string]
flowers [sun: suntype, expyears: integer, classification: string]

annuals_herbs []
perennials_flowers []

Assumption. In the rest of this paper, we assume that there is a (countably)
infinite set O of object identifiers (oids).

Each object, represented by an oid, is associated with a value. The objects
populate a POB-instance as follows.

Definition 6.1 (probabilistic object base instance) Let S = (C,7,=, me, p)
be a consistent POB-schema. A probabilistic object base instance (POB-instance)
over S is a pair (7, v), where:

—7 : C — 29 maps each class c to a finite subset of O, such that 7(c;) Nw(co) = 0
for different ¢1,cy € C. That is, the classes in C are mapped to pairwise disjoint
sets of oids. We use 7(C) to abbreviate J{m(c)|c € C}. We define the mapping
7% :C — 29 by n*(c) = {n(c") | ¢ €C, ¢ =* ¢}

Intuitively, 7(c¢) denotes the ids of all objects that are defined in the class ¢, while
7*(c) denotes the ids of all objects that belong to the class ¢ (i.e., that are defined
in ¢ or in one of its proper subclasses).

—v maps each oid 0 € 7(C) to a probabilistic tuple value of the appropriate type,
i.e., type 7(c¢) for the class ¢ such that o € w(c).

Let us provide a POB-instance for the POB-schema of Example 5.4.

Example 6.2 (Plant Example: probabilistic object base instance)
A POB-instance over the POB-schema shown in Example 5.4 is given as follows:

m and 7* are the mappings shown in Table VII. Clearly, this is a very simple
probabilistic object base (it contains only seven distinct objects).
—v is the mapping shown in Table VIII.

In classical object bases, the extent of a class ¢ consists of all oids belonging to
¢. The probabilistic extent of ¢ specifies the probability that an oid belongs to c.

Definition 6.2 (probabilistic extent) Let I = (7, v) be a POB-instance over
the consistent POB-schema S = (C,7,=,me, p). For all classes ¢ € C, the prob-
abilistic extent of ¢, denoted ext(c), maps each oid 0o € w(C) to a set of rational
numbers in [0, 1] as follows:

(1) If o € 7*(c), then ext(c)(o) = {1}.

Probabilistic Object Bases

Table VII. Mappings 7 and 7*
c m(c) 7" (c)
plants {o1} {01,02,03,04,05,06,07}
annuals {} {02, 03,05, 06,07}
perennials {} {04}
vegetables {} {
herbs {} {02, 03,05, 06,07}
flowers {} {oa}

annuals_herbs
perennials_flowers {04}

{02103105106107}

{02103105106107}

{o4}

21

Table VIII. Value assignment v
oid v(oid) v(oid)
01 [pname: [pname: ({Thyme}, u,u),
({Lady-Fern, Ostrich-Fern}, u, u), soil: ({loamy}, u,u),
soil: ({loamy}, u,u), rain: ({20,...,25}, u,u),
rain: ({25,...,30}, u, u)] sun: ({mild, medium}, 0.8 u, 1.2 u),
expyears: ({2,3},0.8u,1.2u),
o2 [pname: . . classification::
({Cuban-Basil, Lemon-Basil}, u, u), ({french, silver, wooly}, 0.6 u, 1.8 u)]
soil: ({loamy, sandy}, 0.7 u,1.3 u),
rain: ({20,...,30}, u, u), [pname: ({Mint}, u, u),
sun: ({mild, medium},0.8u, 1.2 u), soil: ({loamy}, u,u),
expyears: ({2,3,4},0.6u,1.8u), rain: ({20}, u, u),
classification: sun: ({mild}, u, u),
({french, silver, wooly}, 0.6 u, 1.8 u)] expyears: ({2,3,4},0.6u,1.8u),
) classification:
03 [pname: ({Mint}, u, u), ({apple, curly}, 0.6 u, 1.4 u)]
soil: ({loamy}, u,u),
rain: ({20}, u, u), [pname: ({Sage}, u,u),
sun: ({mild},u,u), soil: ({sandy}, u,u),
expyears: ({2,3,4},0.6u,1.8u), rain: ({20, 21}, u,u),
classification: sun: ({mild}, u, u),
({french, silver, wooly}, 0.6 u, 1.8 u)] expyears: ({2,3,4},0.6u,1.8u),
classification:
o4 [pname: ({Aster, Salvia}, u, u),

soil: ({loamy,sandy}, 0.6 u, 1.4 u),

rain: ({20,...,25}, u, u),

sun: ({mild},u,u),

expyears: ({2,3,4},0.6u,1.8u),
classification:

({french, silver, wooly}, 0.6 u, 1.8 u)]

({red, tricolor}, 0.6 u, 1.4 u)]

22 . T. Eiter et al.

(2) If o € 7*(¢') with a class ¢ € C that is t-disjoint from ¢ (i.e., for all models
e of S, the sets e(¢’) and e(c) are disjoint), then ext(c)(o) = {0}.

(3) Otherwise, ext(c)(o) ={p | p is the product of the edge probabilities on a
path from c up to a class ¢’ € C, where ¢’ is minimal with o € 7*(¢') and ¢ =* ¢'}.

We return to the Plant Example to see what the extents of the various classes are.

Example 6.3 (Plant Example: probabilistic extent) In the Plant Example,
the probabilistic extents of annuals_herbs and perennials_flowers are given as follows:

ext(annuals_herbs)(o;) = {0.24} ext(perennials_flowers)(0;) = {0.12}
ext(annuals_herbs)(02) = {1} ext(perennials_flowers)(0,) = {0}
ext(annuals_herbs)(o3) = {1} ext(perennials_flowers)(o3) = {0}
ext(annuals_herbs)(o4) = {0} ext(perennials_flowers)(o4) = {1}
ext(annuals_herbs)(o05) = {1} ext(perennials_flowers)(o5) = {0}
ext(annuals_herbs)(0g) = {1} ext(perennials_flowers)(0og) = {0}
ext(annuals_herbs)(o7) = {1} ext(perennials_flowers)(o7) = {0}

Definition 6.3 (coherent POB-instance) Let I = (7,v) be a POB-instance
over the consistent POB-schema S = (C,7,=,me, p). The POB-instance I is co-
herent iff for all classes ¢ € C and all objects 0o € 7(C), the probabilistic extent
ext(c)(o) contains at most one element.

It is easy to see that the Plant Example described thus far is coherent and that
testing coherence of a given POB-instance I of a consistent schema S can be done
in polynomial time.

7. PROBABILISTIC OBJECT BASES: ALGEBRAIC OPERATIONS

In this section, we formally define the analogs of the classical relational operations
on POBs. All standard operations on POBs take POB-instances as input, and
produce POB-instances as output. Recall that all POB-schemas of input POB-
instances are implicitly assumed to be consistent and fully inherited.

The probability computations in our POB-algebra are based on probabilistic
combination strategies. As shown in [Eiter et al. 2000a], all common probabilistic
combination strategies can be computed in a constant number of operations from
the input intervals. Thus, under these strategies, the probability computations in
our POB-algebra are all tractable, and it is easy to see that our algebraic operations
are all computable in polynomial time in the size of the input POB-instances.

7.1 Selection

Intuitively, given a POB-instance I over the POB-schema S, the result of a selection
operation is another POB-instance I’ over S such that the objects in the extents of
the classes in I’ all satisfy the selection condition of the query. Before describing
the selection operation, we formally define the syntax and the semantics of selec-
tion conditions. We start by defining the syntax of path expressions and selection
expressions.

Probabilistic Object Bases : 23

Definition 7.1 (path expression) Let 7 = [A;: 7y,..., A : 7] be any type. We
define path ezpressions by induction as follows: (i) every A; is a path expression
for 7, and (ii) if P; is a path expression for 7, then A;.P; is a path expression for T,

foreveryi =1,...,k.

We use the Plant Example to demonstrate some path expressions.

Example 7.1 (Plant Example: path expression) In the Plant Example, two
path expressions for the type [pname: string, size: [height: integer, width: integer]]
are given by pname and size.height.

We now define the syntax of atomic selection expressions.

Definition 7.2 (atomic selection expression) Let S = (C,7,=,me, p) be a
POB-schema and let X be a set of object variables. An atomic selection expression
has one of the following forms:

x € ¢, where z is an object variable from X', and ¢ is a class from C.

—=x.P 0 v, where z is an object variable from X, P is a path expression over
attributes from A, 6 is a binary predicate from {=,#,<,>,<,>,C,D,€,3},
and v is a value.

—ux.P) =g x.P», where z is an object variable from X', P, and P, are two distinct
path expressions over attributes from A, and ® is a probabilistic conjunction
strategy.

Let us consider some examples of atomic selection expressions.

Example 7.2 (Plant Example: atomic selection expression) In the Plant
Example, some atomic selection expressions are as follows (x is an object variable):

—Find all objects that are annuals and herbs. This selection can be represented by
the atomic selection expression x € annuals_herbs.
Find all objects that require a mild sun. This selection can be represented by the
atomic selection expression z.sun = mild.
Find all objects that require over 21 units of rain. This selection can be repre-
sented by the atomic selection expression z.rain > 21.

We now define the syntax of selection expressions.

Definition 7.3 (selection expression) Let S be a POB-schema. We define con-
junctive and disjunctive selection expressions by induction as follows:

If ¢ is an atomic selection expression and ® is a probabilistic conjunction strat-
egy, then ¢ is a conjunctive selection expression over ®. If ¢ and ¢ are conjunctive
selection expressions over the same object variable and the same probabilistic con-
junction strategy ®, then ¢ ® 1 is a conjunctive selection expression over ®.

If ¢ is an atomic selection expression and @ is a probabilistic disjunction strat-
egy, then ¢ is a disjunctive selection expression over &. If ¢ and v are disjunctive
selection expressions over the same object variable and the same probabilistic dis-
junction strategy &, then ¢ @ v is a disjunctive selection expression over .

A selection expression is a conjunctive or disjunctive selection expression.

24 . T. Eiter et al.

Let us illustrate this definition via the Plant Example.

Example 7.3 (Plant Example: selection expression) In the Plant Example,
some selection expressions are given as follows (z is an object variable):

—The atomic selection expressions x € annuals_herbs, z.sun =mild, and z.rain > 21
given in Example 7.2 are selection expressions.

Find all objects that are annuals and herbs and that require a mild sun. This
selection can be represented by the selection expression z € annuals_herbs ®
x.sun=mild, where ® is a probabilistic conjunction strategy.

Find all objects that require a mild sun or over 21 units of rain. This selection
can be represented by the selection expression z.sun = mild ® z.rain > 21, where
@ is a probabilistic disjunction strategy.

We are now ready to define the syntax of selection conditions.

Definition 7.4 (selection condition) Let S be a POB-schema. (i) If ¢ is a se-
lection expression and L and U are real numbers from [0,1] with L < U, then
(¢)[L,U] is a selection condition. (ii) If @ and S are selection conditions over the
same object variable, then —a, (a A), and (a V) are selection conditions.

Let us consider some examples of selection conditions.

Example 7.4 (Plant Example: selection condition) In the Plant Example,
some selection conditions are given as follows (z is an object variable):

—The selection of all objects that require both a mild sun and over 21 units of rain
with a probability of 30 50%, can be done by using the selection condition

(z.sun=mild ® z.rain > 21)[0.3,0.5]

where ® is a probabilistic conjunction strategy.

The selection of all objects that require a mild sun with a probability of at least
40%, and over 21 units of rain with a probability of at least 80%, can be done by
using the following selection condition:

(z.sun =mild)[0.4, 1] A (z.rain > 21)[0.8,1] .

—The selection of all objects that do not require a mild sun with a probability of at
least 40% can be done by using the following selection condition:

—(z.sun=mild)[0.4,1].

Note that a selection expression and a selection condition can contain exactly one
object variable.

It now remains to define the semantics of selection expressions and selection
conditions. For this purpose, each triple (S,I,0) consisting of a POB-schema
S=(C,7,=,me, p), a POB-instance I = (7, v) over S, and an oid o€ 7(C) in I is
associated with a probabilistic interpretation probg ,, which assigns a probability
interval to selection expressions, and a truth value to selection conditions. We first
interpret path expressions and selection expressions.

Probabilistic Object Bases : 25

Definition 7.5 (interpretation of path expressions) Suppose we are given a
tuple type 7 = [Ay: 71,..., Ag: 7¢]. The interpretation of a path expression P
for 7 under a value v = [A;1: vq,..., Ap: v] of type 7, denoted v.P, is inductively

defined by v.A; = v; and v.A;.P; = v;.P;, for every i = 1,... k.

The following example shows how path expressions are interpreted.

Example 7.5 (Plant Example: interpretation of path expressions) In the
Plant Example, the interpretation of the path expressions pname and size.height
under the value [pname: Thyme, size: [height: 4, width: 12]] is given by the values
Thyme and 4, respectively.

We next assign probabilistic intervals to atomic selection expressions:

Definition 7.6 (interpretation of atomic selection expressions) Suppose
we are given a POB-instance I = (7, v) over the POB-schema S = (C, 7, =, me, p),
and let o € ©(C). The probabilistic interpretation with respect to S, I, and o,
denoted probgp ,, is the partial mapping from all atomic selection expressions to
the set of all subintervals of [0, 1] that is defined as follows:

—probg (7 € ¢) = [min(ext(c)(0)), max(ext(c)(0))]. Intuitively, probg ,(z € ¢)
describes the interval for the probability that the object o belongs to the class c.
If v(o).A = (V,a,8), and P = AP’ is a path expression for the type of o, where

3

P’ is either empty or of the form .P", then:

[2 a(u), min(l, 3 B(u))], if W#D;
probg g ,(z.Pfv) = ¢ ueEW ueW
0,0

otherwise,

where W = {u € V | uP'fv}. Note that probgy,(z.Pfv) is undefined”, if
P is undefined for v (o), or if uP'fv is undefined for some u € V. Intuitively,
probgy ,(z.AP"v) describes the interval for the probability that the object o
has a value u in attribute A such that uP’fv.

If v(o).A; = (Vi,a;, 3;), and P; = A;P;' is a path expression for the type of o,
where P;' is either empty or of the form .P;", for i € {1,2}, then:

[> a(u), min(l, 3 B(u)], if W#0;
prob S7I70(.’,E.P1 = ® ZEPz) = ueWw ueW
0,0)

otherwise,

where W = {(uy,uz) € Vi x Vo | u1 P’ = ua '}, and
[a(u), B(w)] = [ai(ur), B1(u1)] & [as(us), B2(usz)] for all u = (uy,us) € W.

Note that probg y ,(z.Py =g z.P,) is undefined®, if P or P, is undefined for v(o).
Intuitively, probg y , (2.4 P =g 1.A5P,") describes the interval for the probabil-
ity that the object o has a value u; in attribute A; and a value us in attribute A,

7As a consequence, two selections on I with respect to logically equivalent selection conditions ¢;
and ¢» generally produce the same result only when probg ; , is defined for every atomic selection
expression in ¢1 and ¢2, and every object o in I.

26 . T. Eiter et al.

such that u; P,' = uy P'. The selected conjunction strategy ® reflects the de-
pendencies between the two attributes 4; and A,.

Let us give an example to illustrate this definition.

Example 7.6 (interpretation of atomic selection expressions) In the Plant
Example, the probabilistic interpretations probg, with o € {01,09,...,07} map
the atomic selection expressions x € annuals_herbs, x.sun = mild, and z.rain > 21 to
the subintervals of [0, 1] shown in Table IX.

Table IX. Interpretation of atomic selection expressions

o probg;,(z € annuals_herbs) probg; ,(z.sun=mild) probg (z.rain > 21)

01 [0.24,0.24] undefined [1.00, 1.00]
02 [1.00, 1.00] [0.40, 0.60] [0.82, 0.82]
03 [1.00, 1.00] [1.00, 1.00] [0.00, 0.00]
o4 [0.00, 0.00] [1.00, 1.00] [0.67, 0.67]
05 [1.00, 1.00] [0.40, 0.60] [0.67, 0.67]
06 [1.00, 1.00] [1.00, 1.00] [0.00, 0.00]
or [1.00, 1.00] [1.00, 1.00] [0.00, 0.00]

We now assign probabilistic intervals to selection expressions:

Definition 7.7 (interpretation of selection expressions) Let I = (7,v) be a
POB-instance over the POB-schema S = (C,7,=,me, p) and let 0o € n(C). We
extend probgy, to a partial mapping from the set of all selection expressions to
the set of all closed subintervals of [0,1] as follows:

probg y (¢ @) = probg,(¢) @ probgy,(¢).
probg 1 ,(¢ @) = probgy,(¢) @ probgy,(¢).

Let us illustrate this definition via the Plant Example.

Example 7.7 (Plant Example: interpretation of selection expressions)
In the Plant Example, the two selection expressions ¢y = “a € annuals_herbs ®;
z.sun = mild” and ¥g = “z.sun = mild ®4 x.rain > 21”7 are assigned the subinter-
vals of [0, 1] shown in Table X.

We are now ready to assign truth values to selection conditions:

Definition 7.8 (satisfaction of selection conditions) Let I = (w,v) be a
POB-instance over the POB-schema S = (C,7,=,me, p) and let 0o € 7n(C). We
extend probg 1, to selection conditions as follows:

7pr0bS,I,o ‘: (¢)[LU] iff prObS7I7o(¢) g [LaU]

—probg, [= =4 iff it is not the case that probg; , |= ¢.

—probg, = ¢ A iff prob S10 = ¢ and prob S10 = .

—probg, F ¢V iff probgy, |= ¢ or probgy, 1.

Probabilistic Object Bases : 27

Table X. Interpretation of selection expressions

o prObS,I,o(¢m) Pr0b5,1,0(¢1g) prObS,I,o(win) PrObs,I,o(%g)

01 undefined undefined undefined undefined
02 [0.40, 0.60] [0.40, 0.60] [0.33,0.49] [0.22,0.60]
03 [1.00, 1.00] [1.00,1.00] [0.00, 0.00] [0.00, 0.00]
04 [0.00, 0.00] [0.00, 0.00] [0.67,0.67] [0.67,0.67]
05 [0.40, 0.60] [0.40, 0.60] [0.27,0.40] [0.07,0.60]
06 [1.00, 1.00] [1.00,1.00] [0.00, 0.00] [0.00, 0.00]
o7 [1.00, 1.00] [1.00, 1.00] [0.00, 0.00] [0.00, 0.00]

Let us give an illustrating example.

Example 7.8 (Plant Example: satisfaction of selection conditions) In the
Plant Example, we have:

—probg,, = (z.sun=mild ®;, z.rain >21)[0.3,0.5] (see Example 7.7).

—probg,, # (z.sun=mild ®;, z.rain >21)[0.3,0.5] (see Example 7.7).
probgy,, = (z.sun=mild)[0.4,1] A (x.rain >21)[0.8, 1] (see Example 7.6).
probg 1, # (z.sun=mild)[0.4,1] A (z.rain >21)[0.8, 1] (see Example 7.6).

We are now finally ready to define the selection operation.

Definition 7.9 (selection on POB-instances) Let I = (7,v) be a POB-in-
stance over the POB-schema S = (C, 7, =, me, p) and let ¢ be a selection condition
over the object variable . The selection on I with respect to ¢, denoted o4(I), is
the POB-instance (', v') over S, where:

m'(c) ={o€m(c) | probgy, F ¢}
v =v|n'(C) (i.e., the mapping v restricted to 7'(C)).

The following example shows precisely what happens in the Plant Example when
we perform selection with respect to selection conditions.

Example 7.9 (Plant Example: selection) In the Plant Example, the selection
on I = (7, v) with respect to the selection condition

(z.sun=mild)[0.4, 1] A (x.rain > 21)[0.8, 1]

is the POB-instance (n',v') over S (see Example 7.6), where 7' and v’ are shown
in Tables XI and XII, respectively. This result is also obtained by the selection on
I with respect to (z.sun=mild ®;, z.rain >21)[0.3,0.5] (see Example 7.7).

The selection on I with respect to (z.sun=mild ®;, z.rain > 21)[0.3,0.5], in con-
trast, produces the empty POB-instance over S (see Example 7.7).

7.2 Projection and Renaming

In this section, we define the projection of POB-instances on arbitrary sets of
attributes, and the renaming of (top-level) attributes in POB-instances. We start
by defining projection on POB-instances. We first define the projection of POB-
schemas on sets of attributes.

28 . T. Eiter et al.

Table XI. 7’ resulting from selection

c 7' (c)
plants {}
annuals {}
perennials {}
vegetables {}
herbs {}
flowers {}
annuals_herbs {02}

perennials_flowers {}

Table XII. ¢ resulting from selection
oid v'(oid)
02 [pname: ({Cuban-Basil, Lemon-Basil}, u, u),
soil: ({loamy,sandy}, 0.7 u, 1.3 u),
rain: ({20,...,30},u,u),
sun: ({mild, medium}, 0.8 u,1.2 u),
expyears: ({2,3,4},0.6u,1.8u),
classification: ({french, silver, wooly}, 0.6 u, 1.8 u}]

Definition 7.10 (projection of POB-schemas) Let S = (C,7,=,me, p) be a
POB-schema and let A be a set of attributes. The projection of S on A, denoted
ITA(S), is the POB-schema (C, 7', =, me, p), where the new type 7/(¢) of each class
¢ € C is obtained from the old type 7(¢) = [By: 11,...,Bi: 71] by deleting all
B]'Z Tj’S with B]' ¢ A.

Let us consider an example to illustrate the projection of POB-schemas.
Example 7.10 (Plant Example: projection of POB-schemas) Consider the

POB-schema S described in Example 5.4. Then, the projection of S on the set of
attributes A = {pname, rain} has the type assignment 7' shown in Table XIII.

Table XTIT. 7' resulting from projection

¢ 7'(c)
plants [pname: string, rain: integer]
annuals [pname: string, rain: integer]
perennials [pname: string, rain: integer]
vegetables [pname: string, rain: integer]
herbs [pname: string, rain: integer]
flowers [pname: string, rain: integer]
annuals_herbs [pname: string, rain: integer]
]

perennials_flowers [pname: string, rain: integer

Probabilistic Object Bases : 29

We next define the projection of probabilistic tuple values.

Definition 7.11 (projection of probabilistic tuple values) Let ptv be a prob-
abilistic tuple value of the form [B;: (Vi,a1,01),...,Br: (Vi,ar, Br)] and let A be
a set of attributes. The projection of ptv on A, denoted Ila (ptv), is obtained
from [By: (Vi,a1,51),...,Br: (Vi,ax, Be)] by deleting all B;: (Vj,a;,3;)’s with
B ¢ A.

We give a small example to illustrate the projection of probabilistic tuple values.

Example 7.11 (Plant Example: projection of probabilistic tuple values)
Let the probabilistic tuple value ptv be given as follows (note that ptv is associated
with the object 09 in Example 6.2):

ptv = [pname: ({Cuban-Basil, Lemon-Basil}, u, u),
soil: ({loamy,sandy},0.7u,1.3u),
rain: ({20,...,30},u,u),
sun: ({mild, medium},0.8 u, 1.2 u),
expyears: ({2,3,4},0.6 u, 1.8 u),
classification: ({french,silver, wooly}, 0.6 u, 1.8 u)].

The projection of ptv on the set of attributes A = {pname, rain} is given as follows:

ITA (ptv) = [pname: ({Cuban-Basil, Lemon-Basil}, u,u), rain: ({20,...,30},u,u)].

3

We are now ready to define projection of POB-instances.

Definition 7.12 (projection of POB-instances) Let I = (7,v) be a POB-in-
stance over the POB-schema S = (C, 7, =, me, p) and let A be a set of attributes.
The projection of 1 on A, denoted T1a (I), is defined as the POB-instance (7', ")
over the POB-schema IIa (S), where:

—'(¢) = 7w(c) for all classes ¢ € C.
—'(0) = a(v(0)) for all oids o € 7(C).

Let us illustrate this definition within the Plant Example.

Example 7.12 (Plant Example: projection of POB-instances) Let us con-
sider the POB-instance I = (,v) described in Example 6.2. The projection of I
on A = {pname,rain} is the POB-instance (7', v"), where 7’ is the same as 7, and
V' is given in Table XIV.

We next define the renaming of (top-level) attributes in POB-instances. This
operation is especially useful in connection with Cartesian product and join (see
Sections 7.3 and 7.4). We first define renaming expressions.

Definition 7.13 (renaming expression) Let S = (C,7,=,me, p) be a POB-
schema and let A be the set of all top-level attributes of S. A renaming ex-
pression has the form]§<—é, where B = By, By, ..., B is a list of distinct at-
tributes from A, and ¢ = C1,Cy,...,C) is a list of distinct attributes from

30 . T. Eiter et al.

Table XTV. ¢/ resulting from projection

oid v'(oid)

01 [pname: ({Lady-Fern, Ostrich-Fern}, u,u),
rain: ({25,...,30}, u, u)]

02 [pname: ({Cuban-Basil, Lemon-Basil}, u,u),
rain: ({20,...,30}, u, u)]

03 [pname: ({Mint}, u,u), rain: ({20}, u, u)]

04 [pname: ({Aster, Salvia}, u,u),
rain: ({20,...,25}, u,u)]

o5 [pname: ({Thyme}, u,u), rain: ({20,...,25}, u,u)]

o6 [pname: ({Mint}, u,u), rain: ({20}, u, u)]

o7 [pname: ({Sage}, u,u), rain: ({20,21}, u, u)]

A— (A —{By,Bs,...,B;}) (this condition ensures that each attribute C; that

belongs to A must also occur in B, i.e., each such C; must itself be renamed).

We now define the renaming of attributes in POB-schemas.

Definition 7.14 (renaming in POB-schemas) Let S = (C,7,=,me, p) be a
POB-schema and let N = By, Bs,...,B;+ Cy,(C5,...,C; be a renaming expres-
sion. The renaming in S with respect to N, denoted dn(S), is the POB-schema
(C,7",=,me, p), where the new type 7'(c) of each class ¢ € C is obtained from the
old type 7(c) = [A1: 71,..., Ap: 7] by replacing each attribute A; with A; = B;
for some i € {1,...,1} by the new attribute C;.

Note. Though the above definition does not include renaming of nested at-
tributes, this may be accomplished by a straightforward extension. For the sake of
simplicity, we skip this.

Let us give an example to illustrate the renaming of attributes in POB-schemas.

Example 7.13 (Plant Example: renaming in POB-schemas) Let us con-
sider again the POB-schema S computed in Example 7.10. The renaming in S
with respect to the renaming expression

pname, rain <~ pname2,rain2

has the type assignment 7’ shown in Table XV.

We next define the renaming of attributes in probabilistic tuple values.

Definition 7.15 (renaming in probabilistic tuple values) Let ptv be a prob-
abilistic tuple value of the form [A;: (Vi,aq,01), -.., Ar: (Vi,ax,Br)] and let
N = By,B,,...,B; + (C1,C5,...,C; be a renaming expression. The renaming
in ptv with respect to N, denoted dn (ptv), is obtained from [Ay: (Vi,@1,61), ...,
Ao (Vi, ag, Br)] by replacing each attribute A; with A; = B; for some i e {1,...,1}
by the new attribute C;.

Probabilistic Object Bases : 31

Table XV. 7/ resulting from renaming

c 7' (c)

plants pname2: string, rain2: integer|

annuals pname2: string, rain2: integer|
perennials pname2: string, rain2: integer|
herbs pname2: string, rain2: integer|
flowers pname2: string, rain2: integer|

annuals_herbs

[
[
[
vegetables [pname2: string, rain2: integer]
[
[
[pname2: string, rain2: integer]
[

perennials_flowers [pname2: string, rain2: integer]

We are now ready to define the renaming of attributes in POB-instances.

Definition 7.16 (renaming in POB-instances) Let I = (7,v) be a POB-in-
stance over the POB-schema S = (C,7,=,me, p) and let N be a renaming ex-
pression. The renaming in 1 with respect to N, denoted dn(I), is defined as the
POB-instance (7', v') over the POB-schema dx(S), where:

—'(¢) = w(c) for all classes ¢ € C.
V' (0) = dn(v(0)) for all oids o € 7(C).

Let us illustrate this definition within the Plant Example.

Example 7.14 (Plant Example: renaming in POB-instances) Let us con-
sider the POB-instance I = (7,) computed in Example 7.12. The renaming in I
with respect to the renaming expression pname,rain <— pname2,; rain2 is the POB-
instance (7',7'), where 7’ is the same as m, and v’ is given in Table XVI.

7.3 Cartesian Product

In relational databases, the Cartesian product of two relations consists of the set of
all tuples that can be obtained by concatenating a tuple in the first relation with
a tuple in the second relation. If one follows this intuition, the Cartesian product
of two POB-instances should be obtained by concatenating the property list of any
object in the first POB-instance with the property list of any object in the second
POB-instance. This will be the intuition underlying our definition of Cartesian
product (a similar idea stands behind Ojoin by Shaw and Zdonik [1990]).

Let us first come back to the Plant Example to show that the Cartesian product
is meaningful.

Example 7.15 (Plant Example: Cartesian product) Suppose we are inter-
ested in pairs of plants that flourish with a certain probability in the same en-
vironment (for example, in pairs of plants that have the same rain requirements
with some probability). To obtain this information, we must somehow connect the
knowledge tied to each oid with the knowledge tied to other oids.

The first challenge in defining the Cartesian product of two POB-instances is the
following. Suppose we know that the POB-schemas of our two POB-instances are

32 . T. Eiter et al.

Table XVI. ' resulting from renaming

oid v'(0id)
01 [pname2: ({Lady-Fern, Ostrich-Fern}, u, u),
rain2: ({25,...,30}, u, u)]
02 [pname2: ({Cuban-Basil, Lemon-Basil}, u, u),
rain2: ({20, ...,30}, u,u)]
o3 [pname2: ({Mint},u,u),
rain2: ({20}, u, u)]
04 [pname2: ({Aster,Salvia}, u, u),
rain2: ({20,...,25}, u, u)]
o5 [pname2: ({Thyme}, u,u),
rain2: ({20,...,25}, u,u)]
o6 [pname2: ({Mint},u,u),
rain2: ({20}, u, u)]
o7 [pname2: ({Sage}, u,u),
rain2: ({20, 21}, u, u)]

S, = (Cl,Tl, =1,meyp, pl) and S, = (Cz, Ty, =9, 1NE9, pg) Let the POB-schema of
the Cartesian product instance be denoted by S = (C,7,=,me, p). What should
the relationship between Sq, S», and S be?

Recall first that in classical relational algebra (based on attributes, and not on a
numbering of the columns in each relation), the Cartesian product Ry x R. of two
relation schemas R; and R, is in general only defined if they have disjoint sets of
attributes. Thus, we define the Cartesian product only for two input schemas S;
and S» that do not have any top-level attributes in common.

Recall next that in classical relational algebra, Ry x Ry and Ro x R, yield the same
schema. Similarly, we also desire that S; x Sy = Sy x S; holds in our POB-algebra.
Suppose now that the sets of classes of S; x Sy and S; x Sy are given by C; x C,
and Cy x Cq, respectively. Then, the desired relationship S; x So = So x Sy implies
the condition C; x Co = Co x Cy. The latter is achieved by the following technique of
assuming that every set of classes of a POB-schema is actually a classical relation
over a classical relation schema:

Assumption. In the rest of this paper, we assume that for each POB-schema
S = (C,7,=,me, p), the set of classes C is a classical relation over a classical
relation schema R(S) = {4;,..., A} associated with S. That is, each class ¢ € C
is considered as a tuple over R(S). In particular, for each basic POB-schema S, the
relation schema R(S) consists of a single distinguished attribute Ag.

Thus, as another restriction on the input schemas S; and S,, we also assume
that R(S;) and R(S3) are disjoint. We now summarize which POB-schemas S;
and Sy can be combined using Cartesian product.

Definition 7.17 (Cartesian-product-compatible POB-schemas) The POB-
schemas Sy = (C1,71,=1, meq, p1) and Sy = (Ca, T2, =2, mey, po) are Cartesian-
product-compatible iff S; and S, do not have any top-level attributes in common,

Probabilistic Object Bases : 33

and R(S;) and R(S2) are disjoint.

Note that any two POB-schemas S; and S, can be made Cartesian-product-
compatible by renaming all the common top-level attributes of S; and S», and all
the attributes in R(S1) N R(S,).

We are now ready to define the Cartesian product of two schemas S; and S,.

Definition 7.18 (Cartesian product of POB-schemas) Let S1 = (C1, 71, =1,
meq, p1) and Sy = (Ca, T2, =2, mey, p2) be two Cartesian-product-compatible POB-
schemas, and let Ry = R(S;) and Ry = R(S2). The Cartesian product of S; and Sq,
denoted S;xSs, is the POB-schema S = (C, 7, =, me,) such that:

C= C1 X Cz.

For all classes ¢ € C, let 7(c[R1],c[R2]) = [A1: 711, -y Ak Ty Akg1: Tht,
cooy Aktm: Tektm], where 7 (c[R1]) = [A1: 11, ..., Ag: 7] and 7o(c[Rs]) =
[Ak—H P ThH1s -e e Ak+m5 Tk+m].8

The directed acyclic graph (C, =) is defined as follows. For all ¢,d € C:

c=>d iff (c[Ri1] =1 d[Ri]Ac[Rs] = d[Rs]) or (¢c[R1] = d[Ri] Ac[R2] =2 d[Rs]).
—The partitioning me is given as follows. For all ¢ € C:

me(c) = {Prx{c[R]} | P1 € mey(c[R1])} U {{c[R1]} x P2 | P2 € mes(c[R2])}.
The probability assignment g is defined as follows. For all ¢ = d:
oled) — {so (elFa). d[F1]) - if c[Rs] = [,
p2(c[Ra], d[R2]) if ¢[R1] = d[Ry].

(Note that C = C; x Cy implicitly defines that R(S) = Ry U R5.)

Let us illustrate this definition within the Plant Example.

Example 7.16 (Plant Example: Cartesian product of POB-schemas) Let
S1 be the POB-schema computed in Example 7.10, and let S; be the POB-schema
computed in Example 7.13 in which each class ¢ is replaced by ¢’. The Cartesian
product schema Sy x Sy = (C, 7, =, me, p) is given as follows:

—A partial view on the set of classes C is given in Figure 6 (note that we use pl, an,
pe, ve, he, fl, ah, and pf as abbreviations for plants, annuals, perennials, vegetables,
herbs, flowers, annuals_herbs, and perennials_flowers, respectively).

—FEach class ¢ € C is assigned the following type under 7:
7(¢) = [pname: string, rain: integer, pname2: string, rain2: integer] .

A partial view on the directed acyclic graph (C, =), the partitioning me, and the
probability assignment ¢ is also given in Figure 6.

We now define the Cartesian product of probabilistic tuple values.

8 As usual, ¢[U] denotes the restriction of tuple ¢ to the attributes in U.

34 . T. Eiter et al.

0.6 0.4

/\

‘(an,he)‘ ‘(pe,he)‘ ‘(ve,he)‘ ‘(he,he)‘ ‘(ﬂ,he)‘ ‘(ah,pl)‘ ‘(pf,pl)‘

Fig. 6. Some classes in the Cartesian product of the Plant Example

Definition 7.19 (Cartesian product of probabilistic tuple values) Let ptv,
and ptv, be two probabilistic tuple values over the disjoint sets of attributes A;
and Ay, respectively. The Cartesian product of ptv, and ptv,, denoted ptv; x ptu,,
is the probabilistic tuple value ptv over the set of attributes A; U A, defined by:
—ptv. A = ptv,.A for all attributes A € A; .

ptv. A = ptv,. A for all attributes A € A, .

Note that ptv, x ptv, = ptv, x ptv, since by convention the ordering of attributes
in a probabilistic tuple value is immaterial.

Example 7.17 (Cartesian product of probabilistic tuple values) Consider
the following two probabilistic tuple values (taken from Examples 7.12 and 7.14,
respectively):
ptv; = [pname: ({Cuban-Basil, Lemon-Basil}, u,u), rain: ({20,...,30},u,u)]
ptv, = [pname2: ({Mint},u,u), rain2: ({20}, u,u)].

The Cartesian product ptv, X ptv, of ptv, and ptv, is given as follows:

[pname: ({Cuban-Basil, Lemon-Basil}, u, u), rain: ({20,...,30},u,u),
pname2: ({Mint},u,u),rain2: ({20}, u,u)].

We are finally ready to define the Cartesian product of two POB-instances.

Assumption. In the rest of this paper, we assume that each oid 0 € O that occurs
in a POB-instance I over S is a tuple over R(S) = {4,..., A, }. Each such o may
be written as (o[A1],...,0[An]).

Roughly speaking, each object in the Cartesian product instance is obtained from
two objects in the input instances by first concatenating their two oids, and second
collecting all their attribute values. The class in which the new object is defined is
obtained by concatenating the classes in which the two input objects are defined.

Probabilistic Object Bases : 35

Definition 7.20 (Cartesian product of POB-instances) Let I; = (m,v)
and I, = (m,v2) be two POB-instances over the Cartesian-product-compatible
POB-schemas S1 = (C1,71,=1,meq,p1) and Sy = (Ca, T2, =9, mey, @2), respec-
tively, and let Ry = R(S1) and Ry = R(S2). The Cartesian product of I; and I,
denoted Iy x I, is defined as the POB-instance (m,v) over the POB-schema S =
Sl X SQ, where

—(c) = m (c[R1]) xma(c[Rs)), for all c€ C (here, 7(c) C O is assumed, for all c € C).
v(0) = v1(0[R1]) x v2(0|Rs]), for all o € 7(C).

Let us illustrate this definition within the Plant Example.

Example 7.18 (Plant Example: Cartesian product of POB-instances)
Let I and I, be the two POB-instances computed in Examples 7.12 and 7.14,
respectively. The Cartesian product of Iy and I, is the POB-instance (m,v), where
partial views of m and v are given in Tables XVII and XVIII, respectively.

Table XVII. = resulting from Cartesian product (partial view)

c m(c)
(plpl) {(01,01)}
(an,pl) {}
(

(

ah: p|) {(02101)1 (03101)1 (05701)7 (06701)7 (071 01)}
pf,pl) {(04,01)}

Table XVIII. v resulting from Cartesian product (partial view)

oid v(oid)

(01,01) [pname: ({Lady-Fern, Ostrich-Fern},u,u),
rain: ({25,...,30},u,u),
pname2: ({Lady-Fern, Ostrich-Fern}, u, u),
rain2: ({25,...,30}, u,u)]

(02,01) [pname: ({Cuban-Basil, Lemon-Basil}, u, u),
rain: ({20,...,30},u,u),
pname2: ({Lady-Fern, Ostrich-Fern}, u, u),
rain2: ({25,...,30}, u,u)]

(03,01) [pname: ({Mint}, u,u),
rain: ({20}, u,u),
pname2: ({Lady-Fern, Ostrich-Fern}, u, u),
rain2: ({25,...,30}, u,u)]

7.4 Join

In classical relational databases, the join operator is a generalization of the Carte-
sian product. This will also be the case for the join of POB-instances, which is
defined in this section. We start with the notion of join-compatibility.

36 . T. Eiter et al.

Definition 7.21 (join-compatible POB-schemas) Two POB-schemas S; =
(C1,71, =1, meq, p1) and Sy = (Ca, T2, =9, mey, po) are join-compatible iff R(S)
and R(S.) are disjoint and 71 (c1).A = 12(c2).A for all classes ¢1 € Cq, ¢o € Cy and
attributes A defined for both 7 (c;) and 7 (c2).

We next define the join of two POB-schemas.

Definition 7.22 (join of POB-schemas) Let S; = (C1, 71, =1, meq, p1) and Sy
= (C3, T2, =2, mes, p2) be two join-compatible POB-schemas, and let Ry = R(S;)
and Ry = R(S2) . The join of S; and S,, denoted S; < Sy, is the POB-schema
S = (C,7,=,me, p), where C, =, me, and g are as in the definition of S = S; x S»
(see Definition 7.18), and 7 is defined as follows:

—For all ¢ € C, the tuple type 7(c) = [41: 71,..., 4;: 7;] contains exactly all A4;:7;
that belong to either the tuple type 71 (¢[R1]) or the tuple type 72 (c[Ra]).

For the join of two probabilistic tuple values ptv, and ptv,, we need to combine
the two values of a common attribute A; to a single value for the result. This
is done through conjunction of the probabilistic triples representing these values,
along the following definition.

Definition 7.23 (conjunction strategies on probabilistic triples) Let pt; =
(V' o, "), pta = (V",a", ") be probabilistic triples, and let ® be a probabilistic
conjunction strategy. Then, pt; ® pts is the probabilistic triple pt = (V, «, 8) with:

V={oe V' nv"|[a'®),8)] @ [a"(v), 8" ©)] # [0,0]}.
[a(v), B(0)] = [0 (v), B'(0)] © [a" (v), 8" (v)] for all v € V.

Note that impossible values v in V' N V" (having probability 0) are excluded
from V as they are implicitly represented by the CWA. The outcome pt = pt; ® pty
is well-defined only if pt is consistent, which requires that ., B(v) > 1. When
an inconsistency arises, we flag an error. Moreover, note that when some inter-
vals [@'(v), B'(v)] and [@" (v), " (v)] are inconsistent under the event dependencies
associated with ® (see Definition 4.1), we also flag an error.

We now define the join of two probabilistic tuple values.

Definition 7.24 (join of probabilistic tuple values) Let ptv, and ptv, be two
probabilistic tuple values over the sets of attributes A, and A,, respectively, such
that for all A € A; N A,, the values ptv,.A and ptv,.A are of the same type. Let ®
be a probabilistic conjunction strategy. The join of ptv, and ptv, under ®, denoted
ptuy Mg ptu,, is the probabilistic tuple value ptv over A; U Ay defined by:

ptv. A = ptv,.A for all attributes A € A; — A
—ptv. A = ptv,.A for all attributes A € Ay, — A, .
ptv. A = ptv, . A ® ptv,.A for all attributes A € A1 N As.

Note that for any probabilistic conjunction strategy @, ptv; Xg ptv, = ptvg Mg
ptvy, i.e., the join of probabilistic tuple values is commutative.

Probabilistic Object Bases : 37

Example 7.19 Let us consider the following two probabilistic tuple values:

ptv, = [A: ({a,b},0.6u,1.4u), B: ({a,c},0.7u,1.3u)],
ptv, = [A: ({a,b,c},0.3u,2.4u), C: ({¢,d},0.4u,1.6u)].

The join ptv, M, ptv, of ptv, and ptv, under independence is given by:

[A: ({a,b},0.06u,1.12u), B: ({a,c},0.7u,1.3u), C: ({c,d},0.4u,1.6u)].

We are now ready to define the join of two POB-instances.

Definition 7.25 (join of POB-instances) Let I; = (7y,v1) and I, = (m,vs)
be POB-instances over the join-compatible POB-schemas S; = (Cy, 71, =1, me1, p1)
and Sy = (Co, T2, =2, mey, o), respectively, and let Ry = R(S;) and Ry = R(S2).
Let A; and A, be the sets of top-level attributes of S; and S,, respectively. Let
® be a probabilistic conjunction strategy. The join of I} and I, under ®, denoted
I g Iy, is the POB-instance (7, v) over the POB-schema S; 1 S, where:

7T(C) = {(01702) € m (C[Rl]) X 7T2(C[R2]) | for all A € A1 n AQZ
if (v1(01) g v2(02)). A=(V,,), then V#0}, for all c€Cy x Ca.

—v(0) = v1(o[R1]) g v2(0[R2]), for all o € 7(C).

We remark that the join is the only operation of our algebra in which probabilistic
attribute values of two distinct objects are combined. The selection operation and
the intersection operation (see next subsection), in contrast, just allow to combine
probabilistic attribute values assigned to one single object.

7.5 Intersection, Union, and Difference

In this section, we define the classical set operations of intersection, union, and
difference for two POB-instances over the same schema.

The definition of intersection is intuitive: common objects are selected, and their
respective attribute values are combined by conjunction.

Definition 7.26 (intersection of probabilistic tuple values) Let ptv, and
ptv, be two probabilistic tuple values over the same set of attributes A, and let ®
be a probabilistic conjunction strategy. The intersection of ptv, and ptv, under ®,
denoted ptv, Ng ptv,, is the probabilistic tuple value ptv over A defined by ptv.A =
ptv, A ® ptv,.A for all A € A.

Definition 7.27 (intersection of POB-instances) Let I} = (m,11) and I, =
(m2,v2) be two POB-instances over the same POB-schema S, and let ® be a prob-
abilistic conjunction strategy. The intersection of I; and I, under ®, denoted
I, Ng I, is the POB-instance (7, v) over S, where:

m(c) = m(c) Nma(c).

v(0) = v1(0) Ng va(0) .

The union of two POB-instances is defined in the same spirit as their intersection.

38 . T. Eiter et al.

Definition 7.28 (disjunction strategies on probabilistic triples) Let pt; =
(V' o, "), pta = (V",a", ") be probabilistic triples, and let & be a probabilistic
disjunction strategy. Then, pt; & pt, is the probabilistic triple pt = (V, «,), where:

V=v'uv".
[(v), B (v)] iftvoevV' —v"
[a(v), B(v)] = < [a" (v), 8" (v)] ifoeV" -V’
ol (0), B'(0)] @ [a"(v), B"(v)] ifv eV NV,

As in the case of conjunction, the outcome pt of pt; & pts is only defined if pt is
consistent, which requires that) _, a(v) < 1. A violation of this condition indi-
cates incorrect data or improper application of the disjunction strategy @®. Again,
this is flagged as an error.

Definition 7.29 (union of probabilistic tuple values) Let ptv, and ptv, be
two probabilistic tuple values over the same set of attributes A, and let & be a
probabilistic disjunction strategy. The union of ptv, and ptv, under &, denoted
ptv, Ug ptu,, is the probabilistic tuple value ptv over A defined by ptv.A = ptv, . AS
ptu,. A for all A € A.

Definition 7.30 (union of POB-instances) Let I} = (7, v1) and Iy = (m,vs)
be two POB-instances over the same POB-schema S such that m (¢;) Nma(ca) = 0
for all pairs of distinct classes ¢1,¢o € C. Let & be a probabilistic disjunction
strategy. The union of I and I, under &, denoted I Ug Io, is defined as the
POB-instance (m,v) over S, where:

) if o € m(C) — ma(C)
0) if o € ma(C) — m (C)
v1(0) Ug va(0) if o € m(C) Nma(C).

Finally, we consider the difference of two POB-instances. For this, we use the
notion of a difference strategy for probabilistic tuple values.

Definition 7.31 (difference strategies on probabilistic triples) Let pt; =
(V.o B, pta = (V",a", B") be probabilistic triples, and let © be a probabilistic
difference strategy. Then, pt; © pto is the probabilistic triple pt = (V, «,), where:

V=V {0 e VNV | [(v). B'(W)] © [a" (v), " (v)] = [0,0]}.

—[a(v), B(v)] = {[a’(v)7ﬁl(v)] foelV 1"

[a'(v), B (v)] & [a"(v), B" (v)] ifweV V"

Definition 7.32 (difference of probabilistic tuple values) Let ptv, and ptv,
be two probabilistic tuple values over the same set of attributes A, and let &
be a probabilistic difference strategy. The difference of ptv, and ptv, under &,
denoted ptv, —g ptv, is the probabilistic tuple value ptv over A defined by ptv.A =
ptv, A © ptv,. A for all A € A.

Probabilistic Object Bases : 39

Definition 7.33 (difference of POB-instances) Let Iy = (m,r1) and I, =
(ma,v2) be POB-instances over the same POB-schema S, and let & be a proba-
bilistic difference strategy. The difference of I; and I, under &, denoted Iy —g I,
is defined as the POB-instance (7, v) over S, where:

m(c) = mi(c).
V(o) = {1/1(0) if 0 € m (C) — m2(C)
v1(0) —g va(0) ifoem(C)Nm(C).

7.6 Consistency Preservation

We now prove that all operations of our POB-algebra that produce new POB-
schemas preserve consistency. In detail, given consistent POB-schemas as input,
the operations projection, renaming, Cartesian product, and join always produce a
consistent POB-schema as output. This is shown by the following theorem.

Theorem 7.1 Let S, Sy, and Sy be POB-schemas. Let Sy and Ss be Cartesian-
product-compatible in (¢) and join-compatible in (d). Let A be a set of attributes,
and let N be a renaming erpression.

(a) If S is consistent, then I1a(S) is consistent.
(b) If S is consistent, then dn(S) is consistent.
(c) If Sy and Sy are consistent, then S1 X Sy is consistent.
(d) If S1 and So are consistent, then Sy > Sy is consistent.

It is worth noting that in the POB-algebra, users may express queries that are
sometimes “internally inconsistent”. For instance, a user may ask a selection query
involving the selection condition (z.soil =loamy ®,,. 2.soil =loamy)[0.3,0.7]. Here,
the user is selecting objects that have loamy soil assuming mutual exclusion of two
identical selection expressions! Clearly, this query does not make sense. Similarly,
a query involving the selection condition (z.rain < 10 ®;, x.rain >20)[0.3,0.7] does
not make sense — one cannot assume independence of rain being less than 10 and
over 20! Determining what queries are “safe” w.r.t. such probabilistic intuitions is
a major challenge that will be addressed in a future paper.

8. POB-ALGEBRA: EQUIVALENCE RESULTS

In this section, we derive some results on equivalences that hold in our POB-algebra.
We focus here on equivalences similar to well-known equivalences in the context of
classical relational algebra. The list of equivalences is by no means complete, but
shows that query optimization in our POB-algebra is possible along similar lines
as in classical relational algebra [Abiteboul et al. 1995]. Our first result says that
selections may be reordered.

Theorem 8.1 Let I = (m,v) be a POB-instance over the POB-schema S. Let ¢4
and ¢o be two selection conditions. Then

O¢q (U¢2 (I)) = O¢s (U¢1 (I)) = Op1ng2 (1)7 (1)

where the last expression assumes that ¢1 and ¢» have the same object variable.

40 . T. Eiter et al.

Our next result says two things: first that the projections may be reordered and
second, that projections may be pushed through selections under appropriate con-
ditions.

Theorem 8.2 Let I be a POB-instance over the POB-schema S. Let A and B be
sets of attributes, and let ¢ be a selection condition in which all path expressions
start with attributes from A. Then,

A (Mg (1)) = g (Ma(T)) (2)
A (04 (1) = 0p(I1a(I)) . (3)

Note that, for example, for A C B, Equation (2) reduces to I a (IIg(I)) = I (I),
since Hg (ITa (I)) = Mans(ITa (I)) = IIA(I) (see Definition 7.10).

The next result, which states that selections and projections can be pushed
through the renaming operator, requires some notation. For any renaming ex-
pression N : B« (_j, the inverse of N, denoted by N 1!, is the renaming expression
C + B. Furthermore, the notation On(X) stands for the result of applying the
renaming specified by N on the formal object X.

Theorem 8.3 Let I be a POB-instance over the POB-schema S, and let N be a
renaming expression for S. Let ¢ be a selection condition and let A be a set of
attributes. Then

ao(ON (1)) = dn (a5, _, (¢)(D)) (4)
A (On(T) = v (s, (a)(D)) - (5)

The following theorem shows that joins are always associative and commutative,
regardless of what conjunction strategy is used in the join. In addition, selects may
be pushed “through” a join by appropriately splitting the selection condition and
the same is true of projections.

Theorem 8.4 Let Sy, Sy, and S3 be pairwise join-compatible POB-schemas and
let Iy, 1o, and I3 be POB-instances over S1, So, and Ss, respectively. Let ® be a
probabilistic conjunction strategy. Let ¢1, ¢o, and ¢z be selection conditions such
that ¢1 and ¢o involve only attributes from Ay — As and Ay — Ay, respectively,
where Ay and As denote the sets of top-level attributes of S1 and So, respectively.
Let B be a set of attributes and define By = (BUAS)NA and By = (BUA;)NA,.

Then
Il e :[2 = :[2 [Il 6
(Il Mg Iz) [13 = Il [(Iz Mg 13) 7

Tp1neangs (It Mg In) = 045(04, (I1) Mg 04, (1)) 8

(
(
(
(L g I) = Mg (s, (I) =g g, (I2)) - (

)
)
)
9)

Note that in classical relational databases, Equivalence (8) remains true if ¢ and
¢» access common attributes of A; and As. This is no longer guaranteed for POBs,

Probabilistic Object Bases : 41

as the join may change the value of common attributes. As Cartesian product is a
special case of join, we obtain the following corollary to Theorem 8.4.

Corollary 8.5 Let S, So, and S3 be pairwise Cartesian-product-compatible POB-
schemas and let 11, Iy, and I3 be POB-instances over Sy, So, and Sg, respectively.
Let ¢1, ¢o, and ¢3 be selection conditions such that ¢ and ¢o involve only attributes
from the sets of top-level attributes Ay and A, of S1 and So, respectively. Let B
be a set of attributes and let B; = BN Ay and B, = BN A,. Then

LxL=ILxI (10)

(I xI) x I3 =1; x (I x I3) (11)
Toingangs (It X In) = 04, (04, (I1) X 04,(I2)) (12)
(L x L) = Mg, (I;) x g, (L) . (13)

Theorem 8.6 Let Iy, I, and I3 be POB-instances over the same POB-schema S.
Let @ /@ /6 be a probabilistic conjunction/disjunction/difference strategy and let
A be a set of attributes. Then,

Il ﬂ® 12 - IQ ﬂ® Il 14

(Il ﬂ® Iz) ﬂ® 13 - Il ﬂ® (Iz ﬂ® 13) 15

Il U@ 12 - IQ U@ Il 16

(11 U@ 12) U@ 13 - Il UEB (
A (L Ng L) = I (I;) Ng 4 (1) 18
)

(14)
(15)
(16)
I Ug I3) (17)
(18)
(19)
(20)

HaA(L o L) =Ha(L) o Ha(L) . 20

Note that literally taken, Equations (18) and (20) are not true for relational data-
bases. The reason is that we use oids for objects in POBs, while relational databases
only contain values.

Finally, we remark that Equations (2), (5), (10), (11), and (13) are actually
unrelated to probabilities (since the operations projection, renaming, and Cartesian
product are unrelated to probabilities).

9. IMPLEMENTATION

We have implemented a prototype distributed POB system. The server (POB-
server) runs on top of ObjectStore and is implemented in SUN-C++. A thin client
for handling database transactions is implemented using GNU-C++.

9.1 POB-Server

The POB-server is a collection manager of POB-schemas. Each POB-schema con-
sists of a set of POB-classes and their associated POB-object instances. The POB-
server manages (i) persistent schemas, which correspond to permanent data and
(ii) temporary schemas, which maintain intermediate schemas.

42 . T. Eiter et al.

The probability interpreter contains functions for computing probabilistic
conjunction and disjunction strategies. It also contains a library of distribution
functions for manipulating probabilistic tuple values associated with objects in the
database.

The POB-schema class maintains an inheritance probability table (the proba-
bility assignment g in Definition 5.4). The class contains methods to add, remove,
and retrieve POB-classes and POB-objects. In addition, given two classes ¢; and
¢z, where ¢; is a subclass of ¢y, there is a method that computes the conditional
probability that an arbitrary object belongs to ¢; given that it belongs to co.

POB-classes are objects in the POB-schema class. They have a name, a col-
lection of attributes (with associated types), and a collection of parent POB-class
names along with associated probability assignments. Methods associated with
POB-classes provide abilities to establish attribute/type information, parent POB-
class/probability assignments, adding and removing POB-objects from the POB-
class, and various self-replicating functions that are useful for query processing.

POB-objects contain an object name, the oid, a collection of probabilistic tuple
values, and a POB-class pointer which points to the POB-class of which it is an
instance. The POB-class pointer is provided for fast access to class-level informa-
tion: attributes, types, parents, etc. Methods associated with POB-objects include
functions for setting probabilistic tuple values and various self-replicating functions
to facilitate query processing.

The POB-server handles client requests. It contains a pointer to an ObjectStore
database which provides persistence services. The POB-server includes methods
for: connecting to a database, disconnecting from a database, creating and removing
schemas, creating and removing classes, creating and removing objects, computing
the probability that an object is a member of class ¢; given that it is a member of
class o, computing the probabilistic extent of a class, checking if an object satisfies
a given selection condition, executing an arbitrary query in the probabilistic object
algebra, and a variety of printing functions.

Note that each method may not correspond to a logical unit of work in this case
a request. In some instances, several requests are handled within one method while
in other instances, a single request is handled through a combination of methods.

9.2 Experiments

Using the POB-server, we have conducted a set of experiments to assess the various
equivalences described in Section 8 as well as to assess the performance of selection.
We do not describe all the experiments we conducted (due to space reasons), but
only a few sample experiments are listed below. The limiting factor in all exper-
iments was the size of the “largest intermediate schema.” This is the number of
objects in the largest schema encountered when executing the query. For a selec-
tion query, this is just the number of objects in the POB-instance on which the
selection is performed. In the case of a join/Cartesian product, this is the product
of the sizes of the POB-instances being joined (or whose Cartesian product is being
computed). In the experiments involving Equations (8), (12) and (13) described
below, we varied the number of objects in the largest intermediate schema from 0
to 270,000 objects and measured the times taken (on a Sun Ultra 10 workstation)
for both the left side and the right side of the rewrite rules in question. The idea

Probabilistic Object Bases : 43

was to see whether the left side of a rule should be rewritten to the right side or
the other way round.

Effectiveness of Equation (8). Our first experiment evaluated the effectiveness
of pushing selections into joins (Theorem 8.4). Figure 7 (a) shows what happens
if the selectivity is varied using independence. It is easy to see that the right side
of this equation pays off in a huge way and that as the selectivity decreases (i.e.,
fewer and fewer objects are selected), more and more objects can be efficiently
handed. For instance, with 20% selectivity, 270,000 objects in the largest interme-
diate schema can be computed in about 30 seconds.

Figure 7 (b) shows the effect of evaluating the right side of Equation (8) with
different probabilistic strategies. We see that precisely which strategy is used has
very little impact on the computation time.

Effectiveness of Equation (12). We conducted experiments similar to those
described above with Equation (12). Figure 7 (c) shows the result of testing — it
shows that pushing selections into a Cartesian product may save up to 80 90% of
the time and this saving increases as the number of objects increases.
Effectiveness of Equation (13). We conducted experiments similar to those
described above with Equation (13). Figure 8 (a) shows the result of testing it
shows that pushing projections into a Cartesian product does not help very much.
The reason for this is because projection does not reduce the number of objects.
Effectiveness of Selection. We also conducted some experiments on the effec-
tiveness of selection on POB-schemas of sizes between 3000 and 10000 objects. In
the experiment, we executed queries of the form “Select x from schema e where
x.D > wval”. Figure 8 (b) shows the result when two different selectivities are used

50% (i.e., half the objects satisfy the selection condition) and 30% (i.e., 30% of
the objects satisfy the selection condition). We also tested what happens when we
consider membership selection queries of the form “Select z from schema e where
(z is a member of class C)”. Figure 8 (c) shows the result of this query with two
different selectivities. Note that the queries generally exhibit linear behavior w.r.t.
the number of objects. In addition, membership queries are computationally more
expensive than simple inequality queries.

We are part way towards developing a POB query optimizer. While the equiva-
lence results of Section 8 readily serve as rewrite rules, the problem of developing
a cost model is a challenge that we are currently working on. Once cost models for
POBs are developed, a CASCADES [Graefe 1995] style framework may be readily
used for query optimization. We are currently working on this problem.

10. RELATED WORK

Our work has been inspired by the prior work of Kornatzky and Shimony [1994] who
describe a probabilistic object-oriented data model in which, like in our approach,
uncertainty in the values of attributes and in the class graph may be represented
by probabilities. The main differences between [Kornatzky and Shimony 1994] and
our approach can be briefly summarized as follows:

(1) Kornatzky and Shimony introduce an object calculus for extracting objects
from probabilistic object-oriented databases. This calculus can thus be com-
pared to our selection operation. It is more restrictive in the sense that it only

44

query processing time in seconds query processing time in seconds

query processing time in seconds

1000
900
800
700
600
500
400
300
200
100

45

T. Eiter et al.

Equation 8 (L) vs. (R) using independence

(L) 50% selectivity —=—
r (R) 50% selectivity ———

(R) 20% selectivity -
r (R) 80% selectivity —=

x S RSV

0 50000 100000 150000 200000 250000

number of objects in schema 1 x schema 2

(a)

Equation 8 right side using different strategies with 20% selectivity

40 t

25
20
15 +

independence —=—
ignorance
positive correlation -

1400

1200

1000

800

600

400

200

50000 100000 150000 200000 250000
number of objects in schema 1 x schema 2

(b)

Equation 12 (L) vs. (R)

(L) 50% selectivity A

(R) 50% selectivity -+

0 50000 100000 150000 200000 250000
number of objects in schema 1 x schema 2

()

Fig. 7. Experimental results

query processing time in seconds query processing time in seconds

query processing time in seconds

Probabilistic Object Bases

Equation 13 (L) vs. (R)
1400

(L) 50% selectivity —o—
(R) 50% selectivity ——+—
1200 |

1000

600 -
400 r

200

O 7 J“’“"“"'"" — L ‘ |

0 10000 20000 30000 40000

number of objects in schema 1 x schema 2

(a)

45

50000

Quer)} 0 (50% selecti\}ity) —e
Query 1 (30% selectivity) -+

5 T | | | | | |
3000 4000 5000 6000 7000 8000 9000
number of POB-objects
(b)
90

Querf/ 0 (62% selecti\}ity) —
80 | Query 1 (25% selectivity) ———

3000 4000 5000 6000 7000
number of POB-objects

()

Fig. 8. Experimental results

8000

46 . T. Eiter et al.

handles probabilities on atomic formulas (which always evaluate to either true
or false), while our selection operation also handles probabilities on conjunc-
tions and disjunctions of atomic formulas, using probabilistic conjunction and
disjunction strategies. Specifically, we make no independence assumption (as
Kornatzky and Shimony do). On the other hand, their object calculus has
quantifiers, which our selection operation does not include. However, it could
be easily extended in this direction.

(2) We also discuss, in detail, the algebraic operations of projection, renaming,
Cartesian product, join, selection, union, intersection, and difference. As they
were developing a calculus, Kornatzky and Shimony do not deal with this.

(3) We introduce, for the first time, results on query equivalences in probabilistic
object bases, and to our knowledge, our system is the first implementation of
a probabilistic object base.

(4) Kornatzky and Shimony assume that the class graph is a directed tree without
multiple inheritance. Moreover, incomparable classes are always disjoint. In
contrast, in our approach, the class graph may be any directed acyclic graph,
thus allowing multiple inheritance. Furthermore, the disjointness of classes can
be expressed in a flexible way by grouping them into partition clusters. The
consistency of schema declarations is guaranteed for a large subclass extending
directed trees.

(5) Kornatzky and Shimony assume a precise probability distribution on the set
of all possible values of an attribute (including a null value L that represents
the inapplicability of an attribute). Our approach, in contrast, just requires an
interval range for probability distributions. Furthermore, objects occurring as
attribute values are given special treatment in [Kornatzky and Shimony 1994];
our model can be extended in this respect.

(6) In [Kornatzky and Shimony 1994], the probabilistic extent of a class is derived
from statistical and subjective probabilities. Since, in general, inconsistency
may arise, the notion of cutsets of classes is introduced there. The probabilistic
extent of a class is then given by statistical probabilities in the class hierarchy
and by subjective probabilities with respect to a cutset. Our probabilistic
extent, in contrast, is just derived from statistical probabilities and classical
class membership. We thus avoid all the problems that come along with mixing
up statistical and subjective probabilities.

Sadri [1994] describes how to extend object-oriented databases by using the in-
formation source tracking method, in which every piece of information is assigned
a vector of confirming information sources. The formalism is based on a non-
probabilistic lattice structure, but Sadri mentions a possible extension by numerical
and especially probabilistic uncertainty. He models uncertainty on the attribute,
object, and class level, which roughly relates to our probabilistic attributes, to our
interpretation of selection expressions, and to our probabilistic extents, respectively.

In the area of uncertainty in AI, there is related work on object-oriented Bayesian
networks by Koller and Pfeffer [1997] and by Laskey and Mahoney [1997], and
on constructing Bayesian networks from first-order probabilistic knowledge bases
by Haddawy [1994]. The main idea behind object-oriented Bayesian networks is
to use methods from object-oriented programming languages in order to enable

Probabilistic Object Bases : 47

flexible and large-scale knowledge representation with Bayesian networks. The
objects in this framework are given by Bayesian network fragments. Objects that
share common features are grouped together into classes, which are organized along
inheritance hierarchies. Query processing in object-oriented Bayesian networks is
essentially reduced to a form of Bayesian network inference that exploits some
locality aspects of the object-oriented modeling for increased efficiency. Haddawy
[1994] aims at a first-order generalization of Bayesian networks. More precisely, he
describes how queries to first-order probabilistic knowledge bases satisfying certain
constraints can be translated into Bayesian network inference problems.

A step towards the model proposed in the present paper is an extension of the
relational model allowing complex values [Eiter et al. 2000a; 2000b] with probabil-
ities. However, the model in [Eiter et al. 2000a; 2000b] has no class hierarchy and,
in particular, inheritance is not addressed. Thus, it has no features of an object
oriented system, and is essentially in the group of probabilistic relational database
models, which we discuss next.

ProbView [Lakshmanan et al. 1997] is a probabilistic relational database model
which generalizes various approaches (like, for example, [Barbara et al. 1992; Cav-
allo and Pittarelli 1987]). Cavallo and Pittarelli’s important paper [1987] views
relations in a (flat) relational database as probability distribution functions, where
tuples in the same relation are viewed as pairwise disjoint events whose proba-
bilities sum up to 1. Drawbacks of this approach have been pointed out in [Dey
and Sarkar 1996]. An extension of the model using probability intervals, which are
viewed as constraints on the probabilities, is reviewed in [Pittarelli 1994]. Barbara
et al. [1992] consider a probabilistic extension to the relational model, in which im-
precise attributes are modeled as probability distributions over finite sets of values.
No probabilities can be assigned to outmost tuples. Their approach assumes that
key attributes are deterministic (have probability 1) and that non-key attributes in
different relations are independent. As pointed out in [Barbara et al. 1992], “lossy”
joins are possible in this model.

Another important probabilistic database model is that of Dey and Sarkar [1996],
which assigns each tuple in a (flat) relational database a probability value in a spe-
cial attribute. Based on [Dey and Sarkar 1996], a probabilistic extension to SQL is
developed in [Dey and Sarkar 1998]. The classical relational operations are defined
in [Dey and Sarkar 1996] adopting different assumptions on the relationship between
tuples; in particular, join assumes independence; union and difference assume pos-
itive correlation; and compaction assumes disjointness or positive correlation. Our
model is far more general.

Fuhr and Rolleke [1996] consider a probabilistic version of NF2 relations, extend-
ing their approach for flat tuples [1997], and define a relational algebra for this
model. Probabilities are assigned to tuples and to values of nested tuples (i.e.,
set-valued attributes), which are viewed as events that have an associated event
expression. The algebraic operators manipulate tuples by combining value and
event expressions appropriately. An intensional semantics is developed in [Fuhr
and Rolleke 1996] in which probabilities are defined through possible worlds. The
evaluation method assumes that in nondeterministic relations (i.e., relations with
uncertain tuples), joint occurrence of two different values is either always indepen-
dent or impossible—this is certainly restrictive.

48 . T. Eiter et al.

Dyreson and Snodgrass [1998] provide a version of SQL to handle temporal in-
determinacy, where there is uncertainty about when an event occurs. They use a
relational framework and focus on the important case where the space of values
over which uncertainty exists is huge.

Kiefiling and his group [1992] developed a framework called DUCK for reasoning
with uncertainty. They provide an elegant, logical, axiomatic theory for uncer-
tain reasoning in the presence of rules. In contrast, in our framework, rules are
not present; rather, our interest is in extending object database models to handle
uncertainty in an algebraic setting.

In an important paper, Lakshmanan and Sadri [1994b] show how selected prob-
abilistic strategies can be used to extend the previous probabilistic models. Lak-
shmanan and Shiri [1996] show how deductive databases may be parameterized
through the use of conjunction and disjunction strategies, an approach also fol-
lowed by Dekhtyar and Subrahmanian [1997]. We have built in this paper upon
the important concept of probabilistic conjunction and disjunction strategies, but
in an object oriented instead of a logic programming setting.

11. CONCLUSION

In this paper, we proposed an extension of the relational algebra to handle proba-
bilistic modes of uncertainty in object oriented database systems. More precisely,
the main contributions of this paper can be briefly summarized as follows:

(1) We presented a formal definition of a probabilistic object base, which extends
previous definitions given by Kornatzky and Shimony [1994].

(2) We gave a formal model theoretic basis for discussing the consistency of POBs,
and showed that consistency checking is NP-complete in general. We then
defined classes of POBs for which consistency can be checked in polynomial
time, and provided efficient algorithms for this task.

(3) We developed an algebra that extends the relational algebra to probabilistic
object bases. Specifically, this algebra recognizes that probabilities of com-
plex events depend on existing knowledge about dependencies between events,
and hence, it allows users to express algebraic queries under appropriate con-
junction, disjunction, and difference strategies (which encode such dependence
information).

(4) We presented a number of equivalence results that may form a set of rewrite
rules to be used in query optimization.

(5) Our POB framework has been implemented on top of ObjectStore in C++.

(6) Finally, we conducted a set of experiments on the efficacy of our equivalence
results for query rewriting (and hence for query optimization).

Several tasks remain for further work. One is the enhancement of the current
prototype by a sophisticated POB-algebra query manager, which optimizes queries
by using cost models and rewrite rules as shown in Figure 2. For the front end
of the system, it would be well worth developing a probabilistic version of SQL
(similar to, for example, Dey and Sarkar’s language PSQL [1998]).

Another important task for further work is to develop a model-theoretic semantics
for probabilistic attribute values. Specifically, we are planning to map the proba-

Probabilistic Object Bases : 49

bilistic knowledge in top-level attributes into a language in probabilistic logic, which
can be interpreted by probability distributions over a set of possible worlds.

A further topic of future research is to generalize our model. For example, one
could think about allowing arbitrary sets of probability distributions [Kyburg, Jr.
and Pittarelli 1996] as values of top-level attributes (and not just convex sets of
distributions that are specified by probabilistic triples), or about allowing negations
besides in selection conditions also, at a lower level, in selection expressions. It
would also be interesting to allow objects as attribute values.

Finally, another important topic is to explore how to perform updates on prob-
abilistic attribute values of existing objects in POBs.

ACKNOWLEDGMENTS

We are very grateful to the anonymous referees for their many constructive com-
ments and helpful suggestions for improvements.

REFERENCES

ABITEBOUL, S., HULL, R., AND VIANU, V. 1995. Foundations of Databases. Addison-Wesley,
Reading.

ATKINSON, M., DEWITT, D., MAIER, D., BANCILHON, F., DITTRICH, K., AND ZDONIK, S.
1989. The object-oriented database system manifesto. In Proceedings DOOD-89 (1989),
pp. 40 57. Elsevier Science Publishers.

BANciLHON, F., DELOBEL, C., AND KANELLAKIS, P. Eds. 1991. Building an Object-Oriented
Database System: The Story of Oz. Morgan Kaufmann, Los Altos (CA).

BARBARA, D., GARCIA-MOLINA, H., AND PORTER, D. 1992. The management of probabilis-
tic data. IEEFE Transactions on Knowledge and Data Engineering 4, 5, 387-502.

BERTINO, E. AND MARTINO, L. 1993. Object Oriented Database Systems: Concepls and
Architectures. Addison-Wesley, Wokingham.

BooLg, G. 1854. The Laws of Thought. Macmillan, London.

CAvALLO, R. AND PrrTARELLI, M. 1987. The theory of probabilistic databases. In Proceed-
ings VLDB-87 (1987), pp. 71 81. Morgan Kaufmann.

DEKHTYAR, A. AND SUBRAHMANIAN, V. S. 1997. Hybrid probabilistic programs. In Proceed-
ings of the 14th International Conference on Logic Programming (ICLP °97) (1997), pp.
391 405. MIT Press.

Dey, D. AND SARKAR, S. 1996. A probabilistic relational model and algebra. ACM Trans-
actions on Database Systems 21, 3, 339 369.

Dey, D. AND SARKAR, S. 1998. PSQL: A query language for probabilistic relational data.
Data & Knowledge Engineering 28, 107 120.

DYRESON, C. AND SNODGRASS, R. 1998. Supporting valid-time indeterminacy. ACM Trans-
actions on Database Systems 23,1, 1 57.

EiTer, T., Lu, J. J., LUKASIEWICZ, T., AND SUBRAHMANIAN, V. S. 1999. Probabilistic
object bases. Technical Report INFSYS RR-1843-99-11, Institut fiir Informationssysteme,
Technische Universitdat Wien.

Eirer, T., Lukasiewicz, T., AND WALTER, M. 2000a. A data model and algebra for prob-
abilistic complex values. Technical Report INFSYS RR-1843-00-04, Institut fiir Informa-
tionssysteme, Technische Universitdat Wien.

EITER, T., LUKASIEWICZ, T., AND WALTER, M. 2000b. Extension of the relational algebra
to probabilistic complex values. In Proceedings of the International Symposium on Founda-
tions of Information and Knowledge Systems (FoIKS 2000), Volume 1762 of LNCS (2000),
pp. 94-115. Springer.

FaGIN, R., HALPERN, J. Y., AND MEGIDDO, N. 1990. A logic for reasoning about probabil-
ities. Information and Computation 87, 78—-128.

50

T. Eiter et al.

Funr, N. AND ROLLEKE, T. 1996. A probabilistic NF2 relational algebra for integrated
information retrieval and database systems. In Proceedings of the 2nd World Conference
on Integrated Design and Process Technology (1996), pp. 17 30. Society for Design and
Process Science.

Funr, N. AND ROLLEKE, T. 1997. A probabilistic relational algebra for the integration
of information retrieval and database systems. ACM Transactions on Information Sys-
tems 15, 1, 32-66.

GAREY, M. R. AND JOHNSON, D. S. 1979. Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman & Co.

GRAEFE, G. 1995. The cascades framework for query optimization. Data Engineering Bul-
letin 18, 3, 19 29.

GRrosky, W. 1., JAaIN, R., AND MEHROTRA, R. Eds. 1997. The Handbook of Multimedia
Information Management. Prentice Hall.

GUNTZER, U., KIESSLING, W., AND THONE, H. 1991. New directions for uncertainty rea-
soning in deductive databases. In Proceedings of ACM SIGMOD 91 (1991), pp. 178-187.
ACM Press.

Happawy, P. 1994, Generating Bayesian networks from probability logic knowledge bases.
In Proceedings of the 10th Conference on Uncertainty in Artificial Intelligence (UAI-94)
(1994), pp. 262-269. Morgan Kaufmann.

HALpERN, J. Y. 1990. An analysis of first-order logics of probability. Artificial Intelli-
gence 46, 3, 311 350.

Kiessuing, W., THONE, H., AND GUNTZER, U. 1992. Database support for problematic
knowledge. In Proceedings EDBT-92, Volume 580 of LNCS (1992), pp. 421 436. Springer.

KIFER, M. AND L1, A. 1988. On the semantics of rule-based expert systems with uncertainty.
In Proceedings ICDT-88, Volume 326 of LNCS (1988), pp. 102-117. Springer.

KM, W. 1990. Introduction to Object-Oriented Databases. MIT Press, Cambridge (MA).

KOLLER, D. AND PFEFFER, A. 1997. Object-oriented Bayesian networks. In Proceedings of
the 13th Conference on Uncertainty in Artificial Intelligence (UAI-97) (1997), pp. 302-313.
Morgan Kaufmann.

KORNATZKY, Y. AND SHIMONY, S. E. 1994. A probabilistic object-oriented data model. Data
& Knowledge Engineering 12, 143 166.

KYBURG, Jr., H. E. AND PIrTARELLI, M. 1996. Set-based Bayesianism. IEEFE Transactions
on Systems, Man, and Cybernetics Part A: Systems and Humans 26, 3, 324 339.
LAKSHMANAN, L. V. S., LEONE, N., Ross, R., AND SUBRAHMANIAN, V. S. 1997. ProbView:
A flexible probabilistic database system. ACM Transactions on Database Systems 22, 419—

469.

LAKSHMANAN, L. V. S. AND SADRI, F. 1994a. Modeling uncertainty in deductive databases.
In Proceedings DEXA-9/, Volume 856 of LNCS (1994), pp. 724 733. Springer.

LAKSHMANAN, L. V. S. AND SADRI, F. 1994b. Probabilistic deductive databases. In Pro-
ceedings of the 1994 International Logic Programming Symposium (ILPS ’94) (1994), pp.
254 268. MIT Press.

LAKSHMANAN, .. V. S. AND SHIRI, N. 1996. A parametric approach to deductive databases
with uncertainty. In Proceedings of the International Workshop on Logic in Databases
(LID ’96), Volume 1154 of LNCS (1996), pp. 61-81. Springer.

Laskey, K. B. AND MAHONEY, S. M. 1997. Network fragments: Representing knowledge
for constructing probabilistic models. In Proceedings of the 13th Conference on Uncertainty
in Artificial Intelligence (UAI-97) (1997), pp. 334-341. Morgan Kaufmann.

PITTARELLI, M. 1994. An algebra for probabilistic databases. IEEE Transactions on Knowl-
edge and Data Engineering 6, 2, 293-303.

SApri, F. 1994, Modeling uncertainty in object-oriented databases. In Proceedings of the
Workshop on Incompleteness and Uncertainty in Information Systems (IUIS’93), Work-
shops in Computing (1994), pp. 56-68. Springer.

SuAaw, G. M. AND ZDONIK, S. B. 1990. A query algebra for object-oriented databases. In
Proceedings ICDE-90 (1990), pp. 154-161. IEEE Computer Society.

