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Abstract

In this paper we continue our researchon

the algorithmic aspectsof Halpernand Pearls

causesand explanationsin the structural-model
approach. To this end, we presentnew char

acterizationof weak causedor certainclasses
of causalmodels,which showv that under suit-

able restrictions deciding causesand explana-
tionsis tractable.To ourknowledge thesearethe

first explicit tractability resultsfor the structural-
modelapproach.

1 INTRODUCTION

Dealingwith causalityis animportantissuewhichemeges
in mary applicationsof Al. While this issue has been
widely addressedit is not settledyet, and a numberof

competingapproacheso modelingcausalitycanbe found

in the literature. Someof them are basedon modal non-
monotoniclogics (developedespeciallyin the context of

logic programming)Jike Geffner’s approacHh8, 9], which

has beeninspired by default reasoningfrom conditional
knowledge bases. More specializedmodal-logic based
formalismsplay an importantrole in dealingwith causal
knowledge aboutactionsand change;seeespeciallythe
work by Turner [24] and the referencestherein for an
overview. A differentfamily of approachesvolved from

theareaof Bayesiametworks, suchasPearls approacho

modelingcausalityby structuralequationgl, 6, 20, 21]. In

particular the evaluationof deterministicandprobabilistic
counterfctualshasbeenexplored[1].

Causalityplaysanimportantrole in the generatiorof ex-
planations,which are of crucial importancein areaslike
planning diagnosisnaturallanguagerocessingandprob-
abilistic inference. Differentnotionsof explanationshave
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beenstudiedquite extensvely, seeespecially[14, 7, 22]

for philosophicalwork, and[19, 23, 15] for work in Al

thatis relatedto Bayesiametworks. A critical examination
of suchapproache$rom the viewpoint of explanationsin

probabilisticsystemss givenin [2].

In arecentpapei11], HalpernandPearformalizedcausal-
ity using a model-baseddefinition, which allows for a
precisemodelingof mary importantcausalrelationships.
Basedon a notion of weak causality they offer appealing
definitionsof actualcausality[12] and of causalexplana-
tions [13]. As Halpernand Pearlshaw, their notions of
actualcauseand causalexplanation,which is very differ-
ent from the conceptof causalexplanationin [17, 18, 8],
modelswell mary problematicexamplesn theliterature.

The following example from [11, 12, 13] illustratesthe
structural-modehpproachSeeespecially1, 6, 20, 21, 10|
for moredetailson structuralcausaimodels.

Example 1.1 (arsonists) Suppose two arsonists lit
matchesn different partsof a dry forest, andboth cause
treesto startburning. Assumenow eithermatchby itself
sufficesto burn down the whole forest. We may model
such a scenarioin the structural-modelframewnork as
follows. We assumetwo binary backgroundvariables
U; andUs;, which determinethe motivation andthe state
of mind of the two arsonistswhereU; is 1 iff arsonist;
intendsto starta fire. We thenhave threebinary variables
Ay, Ay, and B, which describethe obsenable situation,
where 4; is 1 iff arsonisti dropsthe match,and B is 1
iff the whole forestburnsdown. The causaldependencies
betweerthesevariablesareexpressedy functions,which
saythat the value of A; is given by the value of U;, and
that B is 1 iff either A; or A, is 1. Thesedependencies
canbegraphicallyrepresentedsin Fig. 1.

Causesand explanationsfor events, suchas B=1 (the
whole forestburnsdown), are definedby consideringthe
valuesof variablesin the abose model and certainhypo-
theticalvariants(seeSection2). O

The semanticaspectsof causesand explanationin the
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Figurel: CausalGraph

structural-modehpproacthave beenthoroughlystudiedin
[11, 12, 13], while theircomputationatomplexity hasbeen
analyzedn [3, 5]. As shovnthere,causesandexplanations
arecompletefor the classesy andX¥ of the Polynomial
Hierarchy andthusintractablein general. As for compu-
tation, Hopkins [16] explored search-basedtrateyies for
computingactualcasesn both the generalandrestricted
settings However, no tractablecaseqapartfrom trivial in-
stancesyvereexplicitly known sofar. In this paperwefill
this gapandmake thefollowing major contributions:

e We presenta new characterizatiorof weak causesn
the structural-modebhpproachwhich appliesto a classof
causalmodelswherethe causaldependenciesanbe hier
archicallystructuredwhich we call decomposablgraphs
Examplesof causamodelswhicharecoveredby thisclass,
consideredn Section5, arecausatrees(Sectiord) andthe
moregeneralayeredcausagraphg(Section6).

e By exploiting the characterizationwe obtain algo-
rithms for decidingweak causesactual causesand dif-
ferentnotionsof explanationsasdefinedfor the structural-
modelapproacH11, 13, 5].

¢ Imposingsuitableconditions the algorithmsfor decid-
ing weakcausesactualcausegtcrunin polynomialtime.
By this way, we obtain several tractability resultsfor the
structural-modehpproachandin fact, to our knowledge,
thefirst oneswhich areexplicitly derived.

o Furthermoregxtendingwork by Hopkins[16], we dis-
cusshow irrelevant variablescan be efficiently removed
from a causalmodel when determiningweak and actual
causes. This canlead to greatsimplifications,and may
speedup thecomputatiorconsiderably

Note thatdetailedproofsof all resultsaregivenin the ex-
tendedpaper{4].

2 PRELIMINARIES

We assumae finite setof randomvariables Eachvariable
X; may take on valuesfrom a finite domain D(X;). A
valuefor a setof variablesX = {X;,...,X,} is amap-
ping z: X - D(X;)U --- UD(X,) suchthat z(X;) €
D(X;) (for X =0, the uniquevalue is the empty map-
ping #). The domainof X, denotedD(X), is the set
of all valuesfor X. We say X is domain-boundedff a

constant: existssuchthat|D(X;)| <k for every X; € X.
For YCX andz € D(X), denoteby z|Y the restriction
of z to Y. For disjoint setsof variablesX,Y and val-
uesze€ D(X),ye D(Y), denoteby zy the union of z
andy. For (not necessarilydisjoint) setsof variablesX,Y
andvaluest € D(X),y € D(Y), denoteby [z(y] theunion
of z|(X\Y) andy. We often identify singletons{X;}
with X;, andtheir valuesz with z(X;).

21 CAUSAL MODELS

A causal model M = (U, V, F) consistsof two disjoint
finite setsU and V' of exogenousand endaenousvari-
ables,respectiely, anda set F ={Fx | X € V} of func-
tions Fx : D(PAx) — D(X) thatassignavalueof X to
eachvalueof theparentsPAx C U U V\{X} of X.

The causalgraph for M, denotedG(M), is the directed
graph (N, E), where N=UUV and E={(Y,X)¢€
N x N | YePAx}. Denoteby Gy (M) the restriction
of G(M) to V. A directedgraphis boundedff thenumber
of parentof eachnodeis boundedoy a constant.

We focus here on the principal class[11] of recussive
causalmodels M = (U, V, F) in which a total ordering
< on V exists suchthatY € PAx implies Y < X, for

all X,Y eV. In suchmodels,every assignmento the
exogenousvariablesU =« determinesa unique value y

for every set of endogenousvariablesY CV, denoted
Ym(u) (or simply Y(u)). In the sequel, M is resened
for denotinga recursve causalmodel. For ary causal
model M = (U, V, F), setof variablesX CV, andz €

D(X), the causalmodel M, = (U,V, F;), where F, =

{Fy |YeV\X}U{Fx =z(X')| X'eX}, isasubmodel
of M. ForYCV, weabbreviateYy,, (u) by Y, (u).

Example 2.1 (arsonistscontinued)M = (U, V, F) for Ex-
amplel.1lis givenby U ={U;, Uz}, V={A4;,A,,B},
andF ={Fy,, Fa,,Fp}, whereF4, =U, Fa, =Us, and
Fp=1iff Ay =1o0r A, =1 (Fig. 1 shawvsthecausabraph,
i.e., the parentrelationshipdetweerthevariables).d

As for computation,we assumethat in M =(U,V, F),
every function Fix : D(PAx)— D(X), X €V, is com-
putablein polynomialtime. Thefollowing is immediate.

Proposition 2.1 Forall X,Y CV andx € D(X), theval-
uesY (u) andY,(u), givenu € D(U), are computabldn
polynomialtime

2.2 WEAK AND ACTUAL CAUSES

Wenow recallweakcause$rom[11, 12]. A primitive event
is an expressionof theform Y =y, whereY is a variable
andy is avaluefor Y. The setof eventsis the closureof
the setof primitive eventsunderthe Booleanoperators-
andA. Thetruth of anevent¢ in M =(U,V, F) under



u € D(U), denoted M, u) = ¢, is inductively definedby:

o (M,u) EY =yiff Yyu(u) =y,
o (M,u) = —¢iff (M,u) = ¢ doesnothold,
o (Mu) £ ¢ Aiff (M,u) | ¢ and(M,u) k= 4.

We write ¢(u) to abbreviate (M, u) =¢. For X CV and
z € D(X), wewrite ¢, (u) to abbreviate (M, u) |= ¢. For
X={X1,..., Xk} CV with k>1 and z; € D(X;), we
useX =x; -- -z toabbreviate X1 =21 A ... A Xy =24.
Thefollowing is immediate.

Proposition 2.2 Let X CV andz € D(X). Givenu €
D(U) and an event¢, decidingwhetherg(u) and ¢, (u)
(givenz) hold canbedonein polynomialtime

Let M =(U,V, F) be a causalmodel. Let X CV and
z € D(X), andlet ¢ beanevent. Then, X =z is aweak
causeof ¢ underu iff thefollowing conditionshold:

AC1. X (u) =z and¢(u).

AC2. Someset of variablesWCV\X and somevalues
TeD(X), weD(W) exist with:

(@) ~¢zw(u), and
(b) paws(u) forall ZCV\ (X UW) andz = Z(u).

Moreover, X = z is anactual causeof ¢ underu iff addi-
tionally thefollowing minimality conditionis satisfied:

AC3. X is minimal. Thatis, no propersubsebf X satis-
fieshothAClandAC2.

Thefollowing resultis known.

Theorem 2.3 (see[3]) Let M =(U,V,F), XCV, ze€
D(X),andue D(U). Let¢ beanevent. Then, X =z
is an actual causeof ¢ underw iff X is a singletonand
X =z is aweakcauseof ¢ underu.

Example 2.2 (arsonistscontinued) Considerthe context
u1,1 =(1,1) in which both arsonistsintend to start a
fire. Then,A; =1, Ao =1,andA; =1A Ay, =1 areweak
causesof B=1. In fact, 4; =1 and A, =1 are actual
causef B=1, while 4; =1 A A3 =1 is not. Further
more, A; =1 (resp., A; =1) is the only weak causeof
B =1 underthe context u; o = (1, 0) (resp.,ug,1 = (0, 1))
in which only arsonistl (resp.,2) intendsto startafire. O

2.3 EXPLANATION

We now recall the conceptof explanationfrom [11, 13].
Let M =(U,V,F) be a causalmodel. Let X CV and
z € D(X), let ¢ beanevent,andlet C C D(U) be a set
of contets. Then, X =z is an explanationof ¢ relative
to C iff thefollowing conditionshold:

EX1. ¢(u) holds,for eachcontextu € C.

EX2. X =z is aweakcauseof ¢ undereveryu € C such
thatX (u) = z.

EX3. X isminimal. Thatis, for every X’ C X, someu € C
exists suchthat X'(u) = z|X' and X' =2|X’ is not a
weakcauseof ¢ underu.

EX4. X(u)=2z andX (u') # z for someu,u’' € C.

Example 2.3 (arsonistscontinued) Considerthe set of
contexts C ={uy,1,41,0,u0,1}- Then, both 4, =1 and
A, =1 are explanationsof B=1 relative to C, while
A; =1 A Ay =1 is not, as here, the minimality condi-
tion EX3is violated.O

24 PARTIAL EXPLANATION AND
EXPLANATORY POWER

We finally recall the notions of partial and a-partial ex-
planationand of explanatorypower [11, 13]. Let M =
(U,V, F) beacausalmodel. Let X CV andz € D(X),
let » beanevent,andletC C D(U) besuchthat$(u) holds
for all ueC. We useC% —, to denotethe uniquelargest
subsel’’ of C suchthat X = z is anexplanationof ¢ rela-
tiveto C'. Thefollowing propositionis easyto se€[5].

Proposition 2.4 If X =z is an explanationof ¢ relative
to someC’ CC, thenC%_, is defined,and it containsall
u € C sud thateither X (u) #z, or X(u)=z and X =z
is a weakcauseof ¢ underu.

Let P beaprobabilityfunctionon C, anddefine

P(C%_,|X=2) = ¥ Pu) / ¥ P).
uECg}:E, uw€C,
X(u) =2 X(u) ==

Then, X =z is calledana-partial explanationof ¢ relative
to (C, P) iff C%_, is definedand P(C%_, | X =z) > a.
We say X =z is a partial explanation of ¢ relatve
to (C, P) iff X =z is ana-partial explanationof ¢ relative
to (C, P) for somea > 0; furthermore,P(C}’}:r | X =zx)is
calledits explanatorypower(or goodnesks

Example 2.4 (arsonists continued) Let C = {u1,1,u1,0,
uo,1}, and let P be the uniform distribution over C.
Then, both A; =1 and A, =1 are 1-partial explanations
of B=1. Thatis, both A; =1 and A, =1 arepartial ex-
planationsof B =1 with explanatorypower1. O

As for computation,we assumethat probability func-
tions P arecomputablén polynomialtime.

3 |IRRELEVANT VARIABLES

In this section,we describehow an instanceof deciding
weak causecan be reducedto an equivalent instancein



which the (potential)weakcauseor the causalmodelmay
containfewer variables. Thus, suchreductionsremove ir-
relevantvariablesn weakcausesndcausamodels.

3.1 REDUCING WEAK CAUSES

We first characterizérrelevantvariablesn weakcauses.

Thefollowing resultshovs thatdecidingwhetherX =z is
aweakcauseof ¢ underu is reducibleto decidingwhether
X'=z|X'"is aweakcauseof ¢ underu, where X' is the
setof all X; € X thatareancestor®f variablesin ¢.

Theorem 3.1 (see[5]) Let M =(U,V,F), Xoe XCV,
zeD(X), andue D(U). Let ¢ be an event. Assume
that no directedpath in G(M) goesfrom X, to a vari-
ablein ¢, and that Xo(u) =2(Xp). Let X'=X\{Xo}
andz’ =z|X'. Then, X =z is a weakcauseof ¢ underu
iff X' =z’ is aweakcauseof ¢ underu.

The next result shows that decidingwhether X =z is a
weak causeof ¢ underu is reducibleto decidingwhether
X'=z|X'"is aweakcauseof ¢ underu, whereX' is the
setof all X; € X not“blocked” by someotherX; € X.

Theorem 3.2 LetM=(U,V,F), Xo € X CV,z € D(X),
andue D(U). Let ¢ be an event. Assumethat every
directedpathin G(M) from X, to a variable in ¢ con-
tainssomeX; € X' = X\{Xo}, andthat Xo(u) = z(Xo).
Letz' =z|X'. Then, X =z is a weakcauseof ¢ underu
iff X' =z’ is aweakcauseof ¢ underu.

The following result shavs that computingthe set of all
variablesin a weakcausethatarenotirrelevantaccording
to Theorems3.1and3.2 canbedonein lineartime.

Proposition 3.3 GivenM = (U,V,F), X C V,andan
eventg,

(a) theset X' of all X; € X sudh that X; is an ancestor
in G(M) of avariablein ¢ is computablen linear time

(b) the set X' of all variables X; € X sud that there
exists a path from X; to a variable in ¢ that contains
no X; € X\{X;} is computablén linear time

3.2 REDUCING CAUSAL MODELS

We next give a characterizatiorof irrelevant variablesin
causamodelswhichis essentiallydueto Hopkins[16].

In the sequel,let M = (U, V, F) be a causalmodel. Let
X CV,zeD(X), andu € D(U), andlet ¢ beanevent.

The setof relevant variablesof M with respectto X =«
and¢, denotedr? _, (M), isthesetof all variablesA € V/
suchthateither(i), or (i), or (iii) holds:

(i) A€ X, andA isonnodirectedpathin G(M) from a
variablein X \ {A} to avariablein ¢.

(i) A is on a directedpath in G(M) from a variable
in X \ {A} toavariablein ¢.

(iii) A doesnotsatisfy(i)—(ii), andeitherA isin ¢, or A is
aparentof avariablethatsatisfieqii).

Notethat X C Rff:z(M). A variableA € V is irrelevant
w.rt. X =z andgiff A ¢ Rf(:z(M). We write G}"(:w (M)
to denotetherestrictionof G(M) to R?(:w (M), andoften
useGY (M) to abbreiate G = (M).

The reducedcausalmodel of M then doesnot contain
the above irrelevant variablesanymore. More formally,

the reducedcausalmodelof M = (U, V, F') with respect
to X =z and ¢, denotedM%__, is the causalmodel
M'=(U,V',F'), whereV' = R%__ (M) and

F' = {F'y=F} | AeV' satisfieqi) or (jii) } U
{F'a=Fy | AcV' satisfieqii) },

where F% assignsAjs(ua) to A for every value uy €
D(U,) of thesetU 4 of all ancestorBeU of A in G(M).

The following theorem shows that deciding whether
X'=zx', whereX' C X, is aweakcauseof ¢ underu can
be donewith respectto Mf}zm insteadof M. This result
is a generalizatiorof a similar resultby Hopkins[16] for

eventsof theform X' =z’ and¢ =Y =y, whereX' =X

andX',Y aresingletons.

Theorem 3.4 LetM=(U,V,F), X'CXCV,z' € D(X"),
z € D(X), andu e D(U), andlet ¢ be an event. Then,
X' =1 isaweakcauseof ¢ underu in M iff X'=2'isa
weakcauseof ¢ underu in Mf}:m.

The following resultshaws that the reducedcausaimodel
andtherestrictionof its causalgraphto the setof endoge-
nousvariablescan be computedin polynomialandlinear
time, respectiely.

Proposition 3.5 GivenM=(U,V, F), X CV, z € D(X),
and an event ¢, the directed graph G}"(:w(M) (resp.,
causal model Mi’,zm) can be computedin linear (resp.,
polynomial)time

4 CAUSAL TREES

In this sectionwe describeour first classof tractablecases
of causesaandexplanations.More precisely we show that
decidingwhetherX = z is aweakcauseof Y =y underu
in M =(U,V, F) is tractable,when X, Y are singletons,
V is domain-boundedand G¥ (M) is a boundeddirected
treewith rootY (seeFig. 2).

Underthe sameconditions,decidingwhetherX =z is an
actual causeof Y =y underw in M, deciding whether
X =z is anexplanation(resp.,a partial explanationor an
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Figure2: Pathfrom X toY in aCausalTree

a-partialexplanation)of Y =y relativeto C (resp.,(C, P))
in M, and computingthe explanatory power of X =z
for Y =y relativeto (C, P) in M areall tractable.

Obsenre thatthe classof tractablecasesf causesandex-
planationsdescribedabove can be recognizedvery effi-
ciently. Thisis shavn by thefollowing proposition.

Proposition 4.1 Given M=(U,V,F) and X,Y€V, de-
ciding whetherGY (M) is a (bounded)directedtree with
rootY canbedonein lineartime

4.1 CAUSES

We first focuson decidingweakandactualcauses.

In the sequel,let M = (U,V, F) be a causalmodel, let
X,Y CV be singletons,and let z € D(X), ye D(Y),
andu€ D(U). Let Gy(M) coincidewith G¥% (M), and
let Gy (M) beadirectedtreewith rootY".

We now giveanew characterizationf X = x beingaweak
causeof Y =y underu in M, which canbe checledin
polynomialtime undersomeassumptions\We needsome
preparatiorby the following definitions.

Let X = Pk - pk—1 ... 5 PO2Y be the uniquedi-
rectedpathfrom X toY in Gy (M). Foreveryie{l,...,
k}, denoteby W thesetof all parentsof Pi~1 in Gy (M)
thataredifferentfrom P? (cf. Fig. 2). Foreachi € {1, ...,
k}, wedefinep? = Pi(u).

We defineR® = {D(Y)\{y}}, andfor eachi € {1, ...
we defineR! asfollows:

Ri={pCD(P) |IweD(W?3Ip’ € Ri~L:
Pil(u) € D(P)\p,
pep iff Pl (u)ep’}.

Kk},

Intuitively, R* containsall setsof possiblevaluesof P?
in AC2(a). Here, P9 =Y mustbe setto a value differ-
entfrom y, andthe possiblevaluesof eachother P¢ de-
pendon the possiblevaluesof Pi~1. At the sametime,
the complementf setsin R? areall setsof possibleval-
uesof P? in AC2(b). In summaryAC2(a) and(b) hold iff
somep € R* existssuchthatp # () andz & p.

Thisresultis moreformally expressedy thefollowing the-
orem,which canbe provedby inductiononi € {1, ..., k}.

Theorem 4.2 Let M =(U,V,F), X,Y eV, ze D(X),

yeD(Y), andueD(U). Let Gy(M)=G%(M), let

Gy (M) bea directedtreewith root Y, andlet R¥ be de-
finedasabove Then,X =z is a weakcauseof Y =y un-
deru in M iff (o) X (u) =z andY (u) =y, and (3) some
p € R* existssud thatp # 0 andz ¢ p.

The next theoremshows thatdecidingwhetherX =z is a
weak causeof Y =y underu in M is tractable, when X
andY aresingletonsV is domain-boundedand G (M)
is aboundedlirectedtreewith rootY . This resultfollows
from Theorem4.2 andthe recursve definition of R¢. By
Theorem?2.3, the sametractability result holds for actual
causesasthenotionof actualcausecoincideswith theno-
tion of weakcausewhereX is asingleton.

Theorem 4.3 Given M=(U,V,F), X,Y€eV, z € D(X),
yeD(Y), andue D(U), whee V is domain-bounded,
and G¥ (M) is a boundeddirectedtree with root Y, de-
cidingwhetherX = z is a weak(resp.,an actual) causeof
Y =y underu in M canbedonein polynomialtime

4.2 EXPLANATIONS

The following two theoremsshow that decidingwhether
X =z is anexplanation(resp.,a partial explanationor an
a-partialexplanation)of Y =y relatveto C (resp.,(C, P))

in M, and computingthe explanatory power of X =z

forY =y relatveto (C, P) in M areall tractableunderthe
conditionsof the previoussubsectionTheseresultsfollow

from Proposition2.2andTheoren#.3.

Theorem 4.4 Given M=(U,V,F), X,Y€eV, z € D(X),
ye€D(Y), andC C D(U), whee V is domain-bounded,
and G% (M) is a boundeddirectedtree with root Y, de-
ciding whetherX =z is an explanationof Y =y relative
toC in M canbedonein polynomialtime

Theorem 45 Let M =(U,V,F), X,Y eV, ze€D(X),
yeD(Y),CCD(U), and P bea probability functionon(,
sud that V' is domain-boundedi¥ (M) is a boundeddi-
rectedtreewith rootY’, andY (u) =y for all u € C. Then,

(a) decidingif X =z is a partial explanationof Y =y
relativeto (C, P) in M is possiblein polynomialtime

(b) decidingwhetherX =z is an a-partial explanation
of Y =y relative to (C,P) in M, for somegiven
a >0, canbedonein polynomialtime

(c) given X =z is a partial explanationof Y =y rela-
tiveto (C, P) in M, theexplanatorypowerof X =z is
computablén polynomialtime

5 DECOMPOSABLE CAUSAL GRAPHS

In this sectionwe show thatthetechniqueof decomposing
causaltreesfor decidingcausesand explanationsand for



computingthe explanatorypowerdescribedn theprevious
sectioncanbeextendedo generakcausalgraphs.

Intuitively, the main idea is to decomposehe directed
graphGy (M) into a chain of subgraphslongwhich we
can propagatesetsof possiblevaluesof variablesbackto
thevariablesn a potentialweakcauseg(seeFig. 3).

Tk T2 Tt 70
< | h N . N —
Sk———» 5’2 5’1 SOK

Figure3: Decomposabl€ausalGraph
51 CAUSES

We first concentrat®n decidingweakandactualcauses.

In the sequel,let M = (U,V, F) be a causalmodel, let
X CV,ze D(X),andu € D(U), andlet ¢ beanevent.

Intuitively, to decidewhetherX =z is a weak causeof ¢
underu in M, we decomposé&y (M) into a chainof di-
rectedsubgraphsver the component®f anorderedparti-
tion (79,...,T*) of V, which areconnectedo eachother
exactly through somesetsS° C 79, ..., S* C Tk, where
everyvariablein ¢ (resp.,X) belonggo 7° (resp.,5*). We
thenpropagatesetsof possiblevaluesof the S¢ in AC2(a)
and(b) alongthe chainfrom S° to S*. Sucha propagation
worksif certainconditionshold, which arespecifiedn the
following concepibf a decompositiorof Gy (M).

A decompositiorof Gy (M) with respecto X =z and¢
is alist ((T°,8°),...,(T*,S*)) of pairs(T?, S?) of sets
of endogenousariablessuchthat(D1)—(D6) hold:

D1. (T°,...,T*) isanorderedpartitionof V.

D2. T°D> 80, ..., Tk D Sk,
D3. Every A€V occurringin ¢ belonggo 7, andS* D X .

D4. For every i€ {0,...,k—1}, no two variables A €
TOU---uTHluTi\ StandBeT*t u---UTk
areconnectedy anarrov in Gy (M).

D5. Foreveryie{l,...,k}, every child of a variablein
St in Gy (M) belongsto (T¢\ S)US—1. Every
child of avariablein S° belongsto (7° \ S9).

D6. For everyi€{0,...,k — 1}, every parentof a vari-
ablein St in Gy (M) belongsto T**1. Thereareno
parentsof ary variableA € S*.

Sucha decompositions width-boundedff a constant ex-
istssuchthat|T%| <1 for everyi € {1,...,k}.

Obsene that every M}izz =(U,V',F"), whereno Ae X
is on a pathfrom a variablein X\{A} to avariablein ¢,
hasalwaysthetrivial decompositior{(V', X)).

We next define the relations R?, which contain triples
(p, q, F), wherep (resp.,q) specifiesa setof possibleval-
uesof F C S in AC2(a) (resp., AC2(b)).

In detail,we defineR® asfollows:

R’ ={(p,q,F)|F C S° p,qCD(F),
I CTO, WnS®=S0F,
Jwe D(W):
pEDP Iff —dpy(u),
9€ T bz ()
forall Z CTO\ (SkUW)}.

Foreveryie€ {1,...,k}, wethendefineR? asfollows:

Ri={(p,q,F)|F C S, p,qC D(F),
IW CT, WNSi=Si\F,
Jwe D(W)3(p',q',F') e Ri~L:
pep iff F'p,(u)€p,
a€q iff F'yp,(w) €T
forall ZC T\ (SkUW)}.

We are now readyto give a new characterizatiomf weak
causewhich is basedon the above conceptof a decompo-
sition of Gy (M) andtherelationsR:.

Theorem5.1 Let M =(U,V,F), X CV,z€e D(X), and
u € D(U). Letp beanevent.Let((T°, S°),...,(T*,S*))
beadecompositiomf Gy (M) with respecto X =z and¢.
Let R* bedefinedasabove Then,X =z is a weakcause
of ¢ underu in M iff (o) X (u) =2 and ¢(u) holds,and
(B) some(p, q, X) € R* existssudthatp # () andz € q.

The next result shows that decidingwhether X =z is a
weak(resp.,anactual)causeof ¢ underu in M istractable,
whenV is domain-boundedand when G}"(:w(M) hasa
width-boundeddecompositiorprovidedin theinput. This
resultfollows from Theorems2.3, 3.4, and5.1 andthere-
cursive definitionof the R*’s above.

Theorem 5.2 Given M =(U,V,F), X CV, z€ D(X),
u€ D(U), an event¢, and a width-boundeddecomposi-
tion ((T°,S5°),...,(T*,S*)) of G%_, (M) with respect
to X =z and ¢, whee V is domain-boundeddeciding
whetherX =z is a weak(resp.,an actual) causeof ¢ un-
deru in M canbedonein polynomialtime

52 EXPLANATIONS

The following two theoremsshow that decidingwhether
X =z is anexplanation(resp.,a partial explanationor an
a-partial explanation)of ¢ relatve to C (resp.,(C, P)) in



M, and computingthe explanatorypower of X =z for ¢
relative to (C, P) in M areall tractable whenwe assume
the samerestrictionsasin Theorem5.2. Theseresultsfol-
low from Proposition2.2 andTheoremb.2.

Theorem 5.3 Given M=(U,V,F), XCV, ze€D(X),
CC D(U), an event¢, and a width-boundeddecomposi-
tion ((T°,S°),...,(T*,S*)) of G%_, (M) with respect
to X =z and ¢, whee V is domain-boundeddeciding
whetherX =z is an explanationof ¢ relativeto C in M
canbedonein polynomialtime

Theorem 5.4 Given M=(U,V,F), XCV, zeD(X),
C C D(U), an eventg, a probability functionP onC, and
a width-boundeddecompositior((7°, S°), ..., (T*, S*))
of G}"(Zx(M) with respectto X =z and ¢, whee V is
domain-boundedand ¢(u) for all u € C,

(a) decidingif X =z is a partial explanationof ¢ relative
to (C, P) in M canbedonein polynomialtime

(b) decidingwhetherX =z is an a-partial explanation
of ¢ relativeto (C, P) in M, for somegivena >0,
canbedonein polynomialtime

(c) given X =z is a partial explanation of ¢ relative
to (C,P) in M, computingthe explanatory power
of X =z canbedonein polynomialtime

6 LAYERED CAUSAL GRAPHS

In generaljt is notclearwhethercausabraphsawith width-
boundediecompositionsanbeefficiently recognizedand
whethersuchdecompositionsanbe efficiently computed.
In this section,we discussa large classof causalgraphs,
called layeredcausalgraphs,that have natural nontrivial
decompositionghatcanbe computedn lineartime.

Intuitively, suchcausalgraphsGy (M) canbe partitioned
into layersS°, ..., S* suchthatevery arrov goesfrom a
variablein somelayer S? to onein Si~! (seeFig. 4).

‘ SO=Y
— ,

Figure4: Pathfrom X toY in aLayeredCausalGraph

More formally, let M =(U, V, F') beacausamodel,andlet
XCV, Y={Y,}CV, zeD(X), yeD(Y), andueD(U).
Then,Gy (M) is layeredw.r.t. X andY iff anorderedpar
tition (SY,. .., S*) of V existswith (L1) and(L2):

L1. For every arrov A— B in Gy (M), there exists
somei € {1,...,k} suchthatA € St andB € S¢~1.

L2. Y=5%andS* D X.

A layeredGy (M) is width-boundedor aninteger! > 0 iff
thereis an orderedpartition (S°, ..., S*) of V with (L1)
and(L2) suchthat|S?| <1 for everyi € {1,...,k}.

The following proposition shovs that layered causal
graphsGy (M) have anaturalnontrivial decomposition.

Proposition 6.1 Let M=(U,V, F), XCV,Y={Y,} CV,
reD(X), andyeD(Y). Let(S°...,S%) be an or-
dered partition of V' satisfying (L1) and (L2). Then,
((8°,89),...,(S*,S*)) is a decompositiorof Gy (M)
withrespecto X =z andY =y.

The next resultshows thatrecognizinglayeredandwidth-
boundedcausalgraphsG¥ (M) andcomputingtheir natu-
ral decompositiortanbe donein lineartime.

Proposition 6.2 GivenM=(U,V, F), XCV,Y={Yp} C
V,z € D(X),andy € D(Y), decidingwhetherGY, (M) =
(V', E') is layeredandwidth-boundedor aninteger ! > 0,
and computingthe ordered partition (S°,...,S*) of V'
with (L1) and(L2) canbedonein linear time

Proof (sketch). Obsenethatif thereis adirectedpathfrom
anodein X toY, thenthe orderedpartition (S, ..., S*)
of V' with (L1) and(L2) is unique,if it exists. We can
then compute(S°,...,S%) =(T*,...,T%) as follows.
We first computeG¥ (M). We thensetA = X andi =0.
Then,(a) setT" to theunionof A andthesetof all parents
of achild of A, (b) setA to the setof all childrenof A,
and (c) decrement. We now repeat(a)—(c)until A = .
Then, GX (M) is layerediff the computedT'®’s are pair-
wisedisjoint, andGY (M) is width-boundedff every |T"|
is boundedThis provesthe statedresult. O

By Proposition6.1, all the resultsof Sections5.1 and5.2
on cause@ndexplanationsn decomposableausalgraphs
alsoapplyto layeredcausalgraphsasa specialcase.

It is easyto verify thatthe relationsR¢ of Section5.1 can
besimplifiedasfollowsfor layeredcausagraphs:We have
RY={(D(Y)\{y},{y},Y)}, andfor eachi € {1, ..., k},

therelation R is now givenasfollows:

Ri={(p,q,F)|FCS', p,qCD(F),
Jwe D(S\F)3(p’,q',F')e R 1:
pep iff F'p,(u)€p,
geq iff F' ;0. (w)€q’ forall ZCF\SF} .

The following theoremis thenan immediatecorollary of
Theoremb.1andPropositiont. 1.

Theorem 6.3 Let M =(U,V,F), XCV,YeV, z €
D(X),yeD(Y),andue D(U). LetGy (M) belayered
with respecto X andY’, andlet R* be definedas above



Then,X =z is a weakcauseof Y =y underu in M iff
(@) X (u) =z andY (u) =y, and(B3) some(p, q, X) € R*
existssuch thatp # () andz € q.

The next theoremshaows that decidingwhetherX =z is
aweak (resp.,an actual)causeof Y =y underu in M is
tractablewhenV is domain-boundedandG; (M) is lay-
eredandwidth-boundedThisresultis animmediatecorol-
lary of Theoremb.2 andProposition6.1.

Theorem 6.4 Let M=(U,V,F), XCV,Y€eV, zeD(X),
ye€D(Y), andue D(U). If V is domain-boundedand
G¥% (M) is layeredandwidth-boundedor a constant > 0,
thendecidingwhetherX =z is a weak(resp.,an actual)
causeof Y=y underu in M is possibldén polynomialtime

Similarly, decidingwhetherX = z is anexplanation(resp.,
a partial explanationor an a-partial explanation)of Y =y
relatve to C (resp.,(C, P)) in M, and computingthe ex-
planatorypower of X =z for Y =y relative to (C, P) in
M areall tractableunderthe samerestrictions.Thisis im-
mediateby Theorems.3and5.4 andPropositiont. 1.

7 SUMMARY AND OUTLOOK

In this paper we presentechew characterizationsf weak
causedor certainclasseof decomposableausalmodels,
in particular for causakreesandthe moregeneraklassof
layeredcausabraphs.By mean®of thesecharacterizations,
we then showved that under suitablerestrictionsdeciding
causesand explanationsis tractablefor theseclasses.To
ourknowledge thesearethefirst explicit tractabilityresults
for the structural-modebpproach. Furthermorewe have
alsodiscussechow irrelevant variablescan be efficiently
removedwhendecidingcausesandexplanations.

In this paper we focusedon the problemsof deciding
causeandexplanations.Anotherimportantproblemis to
computesome(resp. all) causeandexplanationsX’ = z’
suchthat X’ is containedn agivensetof endogenousari-
ablesX (cf. [5]). It is not difficult to seethatby meansof
the characterizationthatwe have obtained alsothis com-
putationcanbeaccomplishedn polynomialtime [4].

An interestingtopic of further studiesis to explore how to

efficiently computedecomposition®f causalgraphs,and
in particularwhetherthereare otherimportantclassesof

causapgraphdifferentfrom causatreesandlayeredcausal
graphsn whichwidth-boundedlecompositionsanberec-
ognizedandcomputedefficiently.
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