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Abstract

We presentthe languagePC+ for probabilistic
reasoningaboutactions,which is a generaliza-
tion of theactionlanguage® + thatallowsto deal
with probabilisticaswell asnondeterministi@f-
fects of actions. We definea formal semantics
of PC+ in termsof probabilistictransitionsbe-
tweensetsof states.Usinga conceptof ahistory
andits beliefstate we thenshov how severalim-
portantproblemsin reasoningaboutactionscan
be conciselyformulatedin ourformalism.

1 INTRODUCTION

One of the mostcrucial problemsthat we have to facein
reasoningaboutactionsfor mobile roboticsin real-world
ervironmentss uncertaintybothabouttheinitial situation
of the robot’s world and aboutthe resultsof the actions

taken by the robot (dueto noisy effectorsand/orsensors).

Oneway of addinguncertaintyto reasoningaboutactions
is basedn qualitatvemodelsin whichall possiblealterna-
tivesareequallytakeninto consideration Anotherway is
basedon quantitatve modelswherewe have a probability
distribution onthesetof possiblealternaties,andthuscan
numericallydistinguishbetweemossiblealternatves.

Well-known first-orderformalismsfor reasoningaboutac-
tions such as the situation calculus[18] easily allow for

expressingqualitative uncertaintyaboutthe effects of ac-
tionsandtheinitial situationof theworld throughdisjunc-
tive knowledge.Moreover, therearegeneralizationsf the
actionlanguageA [6] thatallow for qualitatve uncertainty
in the form of nondeterministi@ctions. An importantre-

centformalismin thisfamily is theactionlanguage + [7],

which is basedon the theoryof nonmonotonicausalrea-
soningpresentedn [13], andhasevolved from the action
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language® [8]. In additionto allowing for conditionaland
nondeterministieffectsof actions,C+ alsosupportscon-
currentactionsaswell asindirecteffectsandpreconditions
of actionsthroughstaticcausallaws. Closelyrelatedto it

is therecentplanninglanguage( [3].

Therearea numberof formalismsfor probabilisticreason-
ing aboutactions.In particular Bacchusetal.[1] proposea

probabilisticgeneralizatiorof the situationcalculus which

is basedon first-orderlogics of probability, andwhich al-

lows to reasoraboutanagents probabilisticdegreesof be-

lief and how thesebeliefs changewhen actionsare exe-

cuted. Pooles independenthoicelogic [16, 17] is based
on agyclic logic programsunderdifferent“choices”. Each
choice along with the agyclic logic programproducesa
first-ordermodel. By placingaprobabilitydistribution over
the differentchoiceswe thenobtaina distribution over the
setof first-ordermodels. Otherprobabilisticextensionsof

the situationcalculusaregivenin [12, 5]. A probabilistic
extensionof theactionlanguageA is givenin [2].

The mainideabehindthe presentpaperis to orthogonally
combinequalitative and quantitatve uncertaintyin a uni-

form framework for reasoningaboutactions:Eventhough
thereis extensvework on qualitatve andquantitatve mod-
els separatelythereis only few work on suchcombina-
tions. Onesuchapproachs dueto HalpernandTuttle [10],

which combinesnondeterminisnmand probabilisticuncer

tainty in a game-theoretidramevork. Halpernand Tut-

tle arguein particularthat “some choicesin a distributed
systemmustbe viewed asinherentlynondeterministi¢or,

perhapdetter nonprobabilistic) andthatit is inappropri-
ate,bothphilosophicallyandpragmaticallyto modelprob-
abilistically whatis inherentlynondeterministic” This un-
derlinesthe strongneedfor explicitly modelingqualitative
uncertaintyin additionto probabilisticuncertainty

In this paper we combinethe qualitative uncertaintyin the
actionlanguagée + with probabilisticuncertaintyasin [16,
17]. Themaincontributionsaresummarizedsfollows:

e \We presenthe languagePC+ for probabilisticreason-
ing aboutactionswhichis a probabilisticgeneralizatiorof



the actionlanguage’+. It allows for representingictions
with conditionalandindirect effects,nondeterministiac-
tions, and concurrentlyexecutedactionsas the main fea-
turesof C+ aswell asprobabilisticknowledgeaboutthe
effectsof actionsandtheinitial situationof theworld.

¢ As acentralproperty PC+ combinesn asingleframe-
work qualitative aswell as quantitatve uncertainty both
aboutthe effectsof actionsandaboutthe initial situation
of theworld. Here, qualitatve uncertaintyis represented
by forming a setof possiblealternatves,while quantitatve
uncertaintyis expressedhrougha probability distribution
on asetof possiblesetsof possiblealternatves.

¢ We definea formal semanticsof PC+ by interpreting
probabilistic action descriptionsin PC+ as probabilistic
transitionsasin partially obsenableMarkov decisionpro-
cessegPOMDPs)[11]. However, it is importantto point
out that theseprobabilistictransitionsare betweensetsof
statesratherthansingle states It is this which allows to
handlequalitative uncertaintyin additionto the quantita-
tive probabilisticuncertaintyasin POMDPSs. Differently
from standard>OMDPs ourapproacthereonly allows for
obsenationswithout noise, but not for noisy sensing. It
alsodoesnot dealwith costs/revardsof actions.

¢ We definehistoriesandtheir belief statesn PC+. Infor-
mally, ahistoryh is asequencef actionsandobsenations,
which are labeledwith a reasoningmodality over setsof
states. It hasan associatedelief state,which comprises
possiblesetsof statesand probabilisticinformationto de-
scribethe qualitatve and quantitatve knowledgeabouth.
Notethatsuchbelief stateamodelpartial obsenrability.

e We shov how to expressa numberof importantprob-
lemsin probabilisticreasoningaboutactions(namely the
problemsof prediction,postdiction,and planning;seees-
pecially[18, 12, 7]) in termsof belief statedn PC+.

The work closestin spirit to this paperis perhapghe one
by Baral et al. [2], which alsoproposes logic-basedor-

malism for probabilistic reasoningabout actions. How-

ever, thereare several crucial differences.First, andasa
centralconceptuatlifference our work orthogonallycom-
binesquantitatve and qualitative uncertainty in the form

of probabilitydistributionsandsetsof possiblealternatves,
respectiely, while Baral et al. only allow for quantitatve

uncertaintyin the form of probability distributions. Note
that Baral et al. circumwent the problem of dealingwith

gualitative uncertaintyby makingthe strongassumptiorof

a uniform distribution whenever the probabilitiesfor pos-
sible alternatves are not known. Second,Baral et al. al-

low only for a quite restrictedform of probability distribu-

tions, which are either uniform distributions or produced
from uniform distributions. Third, our languagePC+ gen-
eralizesthe actionlanguageC+, while Baral et al’s lan-

guagegeneralizeshe actionlanguaged. NotethatC+ is

a novel actionlanguagethat evolved from A andthatis

muchmoreexpressvethanA.

Another important formalism that is relatedto ours is

Pooles independenthoice logic [16, 17], which usesa

similar way of addingprobabilitiesto an approachbased
on agyclic logic programs.But also herethe centralcon-

ceptualdifferenceis thatPooles independenthoicelogic

doesnot allow for qualitatve uncertaintyin addition to

guantitatve uncertainty Poolecircumwventsthe problemof

dealingwith qualitative uncertaintyby imposingthestrong
condition of agyclicity on logic programs. Furthermore,
Pooleswork is moreinspiredby thesituationcalculusand
lessby theactionlanguagesroundA.

Therestof this paperis organizedasfollows. In Section2,
we definePC+ andits semantican probabilistictransi-
tions betweersetsof states.Section3 introduceshistories
andbeliefstatesIn Sectiord, we describehow severalim-
portantproblemsin probabilisticreasoningaboutactions
canbe expressedn our framework. Section5 summarizes
the main resultsand gives an outlook on future research.
Notethatfurthertechnicalesultsanddetailedproofsof all
resultsaregivenin the extendedversionof this paper{4].

2 SYNTAX AND SEMANTICS OF PC+

In this section,we first recall nonmonotoniccausaltheo-
riesfrom [7]. We thenpresenthelanguagePC+ for prob-
abilistic reasoningaboutactions,and give an example of
a probabilisticaction descriptionand initial databasesx-
pressedn PC+. We finally definethe semanticof PC+
throughprobabilistictransitionsbetweersetsof states.

Informally, the main idea behindour probabilistic exten-
sion of C+ is to associatewith the initial databaseand
with every stochasticaction a probability distribution on
a setof contets which arevaluesof exogenousrariables.
Every sequencef actionsfrom aninitial databasés then
associateavith a probability distribution on a setof com-
bined contexts. Hence,probabilisticreasoningaboutac-
tionsin PC+ canessentiallybe reducedto standardrea-
soning about actionsin C+ with respectto such com-
binedcontexts. NotethatPoolesindependenthoicelogic
[16, 17] usesa similar way of addingprobabilitiesto an
approactbasedn agyclic logic programs.

2.1 PRELIMIN ARIES

We now recall (nonmonotonic)causaltheoriesfrom [7],
which are usedto specifyinitial setsof statesandtransi-
tionsfrom statedo setsof stateghroughactions.Roughly
acausatheoryT is asetof “causalrules” F' <= G with the
meaning‘if G holds,thenthereis a causefor F”. In this
paper we consideronly finite 7. We now first definethe
syntaxof causatheoriesandthentheir semantics.

We assumea finite set of variables X'. Every variable
X € X maytake onvaluesfrom afinite domainZ(X). We
defineformulasby induction asfollows. False andtrue,



denotedl and T, respectiely, are formulas. If X € X
andz € I(X), thenX =z is aformula(calledatom). If F
andG areformulas,thenalso—F and(F A G) areformu-
las. As usual,X # z abbreviates—X =z. A (causal)rule
is an expressionof the form F' < G, whereF’ andG are
formulas.A causaltheoryis afinite setof rules.

An interpretation] of ) C X’ mapseveryY € ) to anele-
mentof I(Y"). WeuseI()) todenotehesetof all interpre-
tationsof Y. We obtainI(F) andI(F < @) from F and
F <@, respectiely, by replacingevery atomY =y such
thatY e Y andI(Y) =y (resp.I(Y) #y) by T (resp.,L).
An interpretation] of ) satisfiesan atom Y =y with
Y €Y, denotedl Y =y, iff I(Y)=y. Satishctionis
extendedo all formulasover ) asusual.

Let T be a causaltheoryandI be aninterpretationof the
variablesn T'. Thereductof T relativeto I, denoted?, is
definedas{F | F <G €T, I =G}. Theinterpretation/
is amodelof T', denoted! =T, iff I is the uniguemodel
of TT. ThetheoryT is consistentff it hasamodel.

2.2 SYNTAX OF PC+

We next definethe syntaxof the probabilisticactionlan-
guagePC+, which generalizeghe syntaxof C+ [7]. We
referto [7] for further motivationandbackgroundor C+.
We illustratethe languagePC+ alonga (simplistic) robot
actiondomain,whichis summarizedn Fig. 1. This exam-
ple shawvs in particularhow quantitatve aswell asquali-
tative uncertaintyaboutboth the effectsof actionsandthe
initial situationof theworld canbeencodedn PC+.

We divide the variablesin X into rigid, fluent action,
andcontet variables. The fluent variables(or fluentg are
additionally divided into simpleand statically determined
ones. We assumethat action variableshave the Boolean
domain{_L, T}. Intuitively, theworld is describedhrough
rigid variablesand fluents. The valuesof rigid variables
do not changewhenactionsare performed while thoseof
simple (resp., statically determined)fluents may directly
(resp. indirectly) changehroughactions.Action variables
areusedto describeactions,while context variablesallow
for addingprobabilisticknowledgeaboutthe effectsof ac-
tionsandabouttheinitial situationof theworld.

Example2.1 In therobotactiondomainin Fig. 1, a mo-
bile robotr maymoveto thelocationsa, b, ande, andcarry
one of two objectso; ando, after pickup. This world is
describedthroughthe simple fluents at(o1), at(o2), and
at(r) with the domain {a,b,c, lost}, where at(O)=1L
iff O is atlocation L. Moreover, we have the simpleflu-
entholds with thedomain{oi, 02, nil}, whereholds = O
iff » holdsO. We thenhave the actionvariablesgoto(a),
goto(b), goto(c), pickup, and drop, which representhe
elementaryactions “move to location L”, “pick up an
object”, and “drop an object”, respectiely. Finally, the
action “move to location L” succeednly with a cer

tain probability To modelthis, we usethe contet vari-
ablesc,(a), c4(b), andc,(c) with the domain{ok, fail },
wherec, (L) = ok iff “moveto locationL” succeeds.

We next definestaticcausallaws, which represenknowl-
edgeaboutfluentsandrigid variables. Formally, a static
causallaw is anexpressiorof theform

caused F if G, Q)

whereF andG areformulassuchthateither(a) everyvari-
ableoccurringin F' is a fluent, and no variableoccurring
in G is anactionvariable,or (b) every variableoccurring
in F or G isrigid. If G=T, then(1) is abbreviated by
caused F. Roughly (1) encodeghat every stateof the
world thatsatisfies7 shouldalsosatisfy£'. More formally,
(1) isinterpretedasthecausakule F < G.

Example 2.2 Thestaticcausalaw caused at(O) = L if
holds = O A at(r) = L (6) expresseshatif therobotr is at
locationL, andr holdsO, thenO is alsoatlocationL.

We now definedynamiccausallaws, which expresshow
the simplefluentschangethroughactions,andwhich also
encodeexecutiondenialsfor actions.Formally, a dynamic
causallaw is anexpressiorof theform

caused F'if G after H | (2)

whereF', G, and H areformulassuchthat (i) every vari-
able occurringin F' is a simple fluent, (ii) no variable
in G is an action variable, and (iii) no variablein H is
a contt variable. If G=T, then(2) is abbreviated by
caused F after H. We useinertial X to abbrevi-
ate the setof all rules (2) suchthat F=G=H =X=x
andze€I(X). If F=1 andG =T, then(2) is calledan
executiondenialandabbreviatedby

nonexecutable H . 3)

Roughly (2) expresseshatevery possiblenext stateof the
world that satisfiesG shouldalsosatisfy F', if the current
stateand the executedaction satisfy H. More formally,
(2) is interpretedasthe causalrule F' <= G A H, whereG
and F refer to the possiblenext statesof the world, and
H refersto the currentstateandthe executedaction.

Example 2.3 The dynamiccausallaw caused holds =

nil after drop (13) saysthatr holdsnothingafter drop.

The executiondenial(12) expresseshat pickup cannotbe
executedf r alreadyholdsanobjector if thereis noobject
at the samelocationasr. The dynamiccausallaw (11)
saysthatr cannotpick up anobjectthatis notatthe same
locationasr, and(10) saysthatr holdso, respectiely o2

after pickup. Thus,thereis qualitatve uncertaintyin the
effectsof pickup: if botho, ando, areatthesamedocation
asr, thenpickup resultsin r picking up eithero; or o-, but

it is unpredictablavhich objectr actuallypicksup.



A causallaw (or axiom) is a static or dynamic causal
law. Our causalaws generalizeheir classicakcounterparts
from [7] in the sensethat they may also contain context
variables.We next introducethe new conceptof a context
law. Context variablesalongwith suchcontext laws allow
for expressingprobabilistic effects of actionsand proba-
bilistic knowledgeabouttheinitial situationof the world.

Moreformally, adynamiccontextlaw for acontext variable
X € X is anexpressiorof theform

X =(x1:p1,...,%y : p) after A 4)

where (i) I(X)={z1,...,zn}, (i) p1,...,pn >0, (iii)
p1+ -+ pp=1,and(iv) A is aformulaoveractionvari-
ables.WeusePr(X =z;) todenotep;. If A=T, then(4)
is calleda staticcontext law andabbreviatedby

X=(®1:p1,---,%n :Pn)- (5)

Roughly (4) encodeshatafterexecutinganactionthatsat-
isfies A, the probability that X hasthe value z; is given
by p;. Notethata possiblegeneralizatiorof contet laws
could beto specifya setof probability distributionsrather
thanasingleprobability distribution.

Example 2.4 The actionsgoto(a), goto(b), and goto(c)
succeedonly with certainprobabilities. This is modeled
using the context variablesc, (a), ¢q(b), andey(c) in the
dynamiccausallaws (7) and(8), alongwith the dynamic
contet laws (14)—(16).For examplethe probability thatr
really arrivesata afterexecutinggoto(a) is givenby 0.95.

We next definetheconcepbf aprobabilisticactiondescrip-
tion (resp.,initial database)which encodeghe effects of
all actions(resp. theinitial situationof theworld).

Definition 2.5 A probabilisticactiondescriptionD is afi-
nite set of causaland dynamiccontext laws suchthat D
containsexactly onedynamiccontext law for every context
variableX € X in D. Any suchD is aprobabilisticinitial
databaseif all causalandcontext lawsin D arestatic.

Example 2.6 In the robot action domainin Fig. 1, the
probabilisticaction descriptionD is completelygiven by
thesentenceé)—(17).Here,axioms(6) and(17) take care
of thewell-known ramificationandframeproblem respec-
tively. Notethataxiom (18) forbids concurrentactions.

A probabilisticinitial databasé, maybegivenasfollows.
The initial locationsof o, ando, are known with proba-
bilities, which we expressby the context variablesc,(o,)
andc,y(o,), thestaticcontext laws cq4(o,) = (@ :0.1,5: 0.8,
c:0.1) and cug(o,) = (a:0.3,0:0.6,¢:0.1), respectiely,
andthestaticcausalaws caused at(O) = L if cq0) = L,
whereO € {01,0:} andL € {a, b, c}. For example,object
01 is atlocationa with a probabilityof 0.1. Moreover, r is
ata or b, expressedy caused at(r) =a V at(r) =b. Fi-
nally, » holdsno object,expressedy caused holds = nil.

(i) simplefluents:at(0O), O € {01, 02,7}: {a,b,c, lost};
holds: {01, 02, nil}.

(i) actionvariables:goto(L), L € {a, b, c}; pickup; drop.
(iii) context variablesicy (L), L € {a,b,c}: {ok, fail}.

(iv) staticcausalaws:

caused at(0) =L if holds=0O A at(r)=L (6)
(v) dynamiccausalaws:
caused at(r) = L if ¢4(L) = ok after goto(L) (7)
caused at(r) = L' if at(r) = L' Acy(L) = fail (8)
after goto(L)  (for L' #L)
nonexecutable goto(L) A at(r)=L 9)
caused holds = O if holds =0 (20)
after pickup  (for O € {01,02})
caused L if holds=0 (11)
after pickup Aat(r)=LA at(O)#L
nonexecutable pickup A [holds # nil (12)
V (at(r) =L A at(o1) # L A at(o2) # L)]
caused holds = nil after drop (13)
(vi) dynamiccontet laws:
cg(a) = (0k:0.95, fail : 0.05) after goto(a) (14)
cg(b) = (0k:0.95, fail : 0.05) after goto(b) (15)
cg(c) = (0k:0.90, fail : 0.10) after goto(c) (16)
(vii) inertial laws: for all simplefluentsf:
inertial f a7

(viii) otherexecutiondenials:for all actionvariablesa; # a»:
(18)

nonexecutable a1 A a2

Figurel: RobotAction Domain

In thesequel,D (resp.,Dy ) denotesa probabilisticaction
description(resp. probabilisticinitial database).

2.3 SEMANTICS OF PC+

We now definethe semanticof PC+. Informally, certain
interpretationf rigid andfluentvariablessene aspossi-
ble statesof theworld. We thenassociatevith Dy acollec-
tion of setsof suchstateswhereeachsetof stateshasan
associategbrobability. Furthermorewe associatevith D
a mappingthat assignsto eachpair (5, o), consistingof
a currentsetof statesS anda labeledaction or obsena-
tion o, a probability distribution on a collection of future
setsof states.Thus,we interpretD by probabilistictransi-
tionsasin partially obsenableMarkov decisionprocesses
(POMDPs)[11]. But the probabilistictransitionshereare
betweensetsof statesratherthan single states which al-
lows to handlequalitative uncertaintyin additionto quan-
titative probabilisticuncertainty Actionsandobsenations
aretreatedn auniformway andlabeledwith modalitiesto
specifyhow their preconditiongresp.,obsenedformulas)



areevaluatedon setsof stateqseealsoSection4).

Semanticsof Dg. Informally, weassociatevith D afinite

setof contextsy, whereevery contet + is in turn associ-
atedwith aprobabilityvalue Pr () andasetof statesp.,.

Thus, Dy is interpretedasthe collectionof all ¢.,, where
each®,, hasthe probability Pro(y). We saythat Dy is

consistentff ®., # () for all contexts .

Formally, let Xp denotethe set of all context variables
in Dg. We call y € I(X,) acontet for Dy. Its probabil-
ity, denotedPrq(7), is definedasIlxcx, Pr(X =~v(X)).

For Xy =0, the empty mappingy = 0 is the only context

for Dy, which hasthe probability Prq(y) = 1.

For eachy € I(X)), we define®,, asthe setof all models
overrigid andfluentvariablesof the causatheorycompris-
ing all y(F<=Q@) for eachaxiom(1) in Dy andall X=x <

X =z for eachsimplefluentX € X andz € I(X).

In orderto definethe semanticsof D, we now formally
definestatesactionsandobsenations.We alsodefinehow
a context vy, currentstates, andactionor obsenationo is
associateavith a setof futurestates®,, (s, o).

States. A states is either a memberof some®.,, or a
model over rigid and fluent variablesof the causalthe-
ory comprisingall v(F < @) for eachaxiom(1) in D, for
ary interpretationy of the context variablesin X', andall
X =z < X =z for eachsimplefluentX e X andzel(X).

Actions. An actione is aninterpretatiorof theactionvari-

ablesin X. Intuitively, eachactionvariableis a basicac-
tion, anda is the concurrenexecutionof all basicactions
thataretrueundera. The preconditionfor «, denotedr,,

is the conjunctionof all - H for every executiondenial(3)

in D suchthats U« |= H for somestates. An actiona is

executablen astates, denotedr, (s), iff sUa |=7,.

We next associatewith every action a a setof contexts,
andwith eachsuchcontext v a probability Pr,(v) anda
mappingfrom statess to asetof futurestates®, (s, «). In-
tuitively, if « is executedn the states underthe context «,
thenthesetof future statess givenby &, (s, a).

Formally, for statess suchthatm,(s), denoteby X , the
setof all contect variablesin someaxiom (1) or (2) in D
suchthats U a = H. WedefineX,, astheunionof all X ,.
We call vy € I(X,) acontet for . Its probability, deno-
ted Pr,(7), is definedasIl x ¢ ., Pr(X =~(X)).

An action transitionis a triple (s, a, s'), wheres and s’
arestatessuchthat s(X) = s'(X) for every rigid variable
X € X, anda is anactionsuchthat, (s). A formula F' is
causedn (s, a,s") undery € I(X,) iff D containseither
(a) anaxiom (1) suchthats’ U~ =G, or (b) anaxiom (2)
suchthatsUa |E H ands' Uy = G. We say (s,a,s') is
causallyexplainedunder+ iff s’ is the only interpretation
that satisfiesall formulascausedn (s, a, s') undery. For
every states andactiona, we define®, (s, o) asthe set

of all s’ suchthat (s, a, s') is causallyexplainedunder-.
Notethat®.,(s, o) = 0 if nosuch(s, a, s") exists,in partic-
ular, if theactiona is notexecutablén the states.

Observations. An observationw is aformulaoverfluents.
For statess, we user,, (s) to abbreviates |=w. In orderto

treatactionsandobsenationsin auniformway, we alsoas-
sociatewith every obsenationw asetof contexts, andwith

eachsuchcontext v a probability Pr,,(~) anda mapping
from statess to a setof future states®, (s, w).

Formally, we defineX,,=(. TheemptymappingyeI(X,,)
is the context for w. It hasthe probability Pr,,(y) =1.

For statess andobsenationsw, we define®,, (s, w) = {s},
if m,(s), and®.,(s,w) =10, otherwise.

We arenow readyto definethe semanticof D.

Semanticsof D. Intuitively, we use D to associatewith
setsof statesS, andactionsor obsenationso aprobability
distribution on future setsof statesPr,( - |S). We say D
is consistentff ®, (s, &) # 0 for all statess, actionsa with
T (s), andcontextsy € I(X,). We now first extendr, (s)
and®, (s, o) from statess to setsof statesS.

In order to specify how preconditionsof actions (resp.,
obsened formulas) are evaluatedon sets of states,we
add modality labelsto actions(resp.,obsenations). For-
mally, a labeledaction (resp.,labeledobservatioi is of
the form o 7, whereo € {<, 0} andr is an action (resp.,
obsenation). For setsof statesS, we usewo.(S) (resp.,
ma-(S)) to denoteds € S: 7w, (s) (resp.,.Vs€S: m-(s)).
Moreover, we defineX,, = X, andPr., = Pr,.

For every setof statesS, every labeledactionor obsena-
tion o = o 7 with 7, (S), andevery context y € I(X,,), we
then define @, (S, 0) = U,cq ®,(s,7). Obsere that for
obsenationsw, it holdsthat ®.,(S, Sw) ={s€S|skFw}
and®, (S, Ow) = S.

We arenow readyto definethe probabilistictransitionbe-
tweensetsof statesS andS’ undero with 7, (S) by:

Prq(8'|S) = Zyej(;\e,),sfzq>7(5,(,) Prq(v).

Intuitively, given ary setof statesS suchthatz,(5), the
®.,(S,0)’s are the future setsof statesunder o, where
eachd®,, (S, o) hasthe probability Pr, (7).

Assumption 2.7 In therestof this paperwe implicitly as-
sumethatD andDg areconsistentandthatall staticcausal
laws (1) in D overrigid variablesalsobelongto Dy.

3 HISTORIES AND BELIEF STATES

Our framework for reasoningandplanningin PC+ invol-
vesfinite sequence®sf labeledactionsand obsenations,
calledhistories which areinductively definedasfollows.
The emptyhistory ¢ is a history. If h is a history, ando



is a labeledaction or obsenation, then h, o is a history.
Historiese, r areabbreviatedby r. Theactionlengthof a
history h is the numberof occurrencesf actionsin h.

Example 3.1 In therunningexample,& goto(b), Opickup,
Ogoto(c), Oat(o1)=cV at(o2)=c is a history of action
length3. Informally, it representthe statementif goto(b)
hasbeenexecuted then pickup, goto(c) canbe executed,
andat(o;)=cV at(02)=c is obseredafterthat”.

We usethe notion of a belief stateto describethe proba-
bilistic informationassociateavith a history h. Intuitively,
a belief stateconsistsof a probability value for A and a
probabilityfunctionon a setof statesets.

Definition 3.2 Thebeliefstateb,=(pp, Sy, Pry,) for ahis-
tory h consistof arealnumberp, €[0, 1] (calledprobabil-
ity of h, denotedPr(h)), a setof statesetsS;,, anda prob-
ability function Prj, on Sy,. It is inductively definedby:

o If h=¢, thenp,=1, S, ={®,|y€I(Xp)}, andfor
all Se Sy, Prp(S)= Z'yEI(Xo),SZQL, Pro(7).

e If h=r,0, thenby is definediff (i) b, = (p,, S, Pr)
is defined,and(ii) 7, (S) for someSeS,. If by, is defined,
thenit is givenasfollows:

Dh =DPr- ESegmﬂ-a(sj PT‘T(S)

Sn ={8.,(S,0)|v€I(X,), SES,, (S}

Prp(S") = I’;_;'ZSE&, Pr,(S'|S)-Pr.(S) (VS'E€Sy).
o (S)

Intuitively, b. describesheprobabilisticknowledgeassoci-
atedwith Dy, while b, , representthe probabilisticknowl-
edgeaboutthe world afterthe historyr, o a (resp.,r, o w),
which depend®n (i) our respectie knowledgeafterr, and
(ii) theeffectsof a encodedn D (resp. theobsenationw).

The following resultshavs that o = ow correspondgo a
conditioningof Pr, on all statesetsSe S, with 7, (5),
alongwith removing from suchS' all statesviolating w.

Proposition 3.3 Leth =r, o beahistory wheeo =ow is
alabeledobservation.Then,b, = (p, Sk, Pry) is defined
iff () b, = (p-, Sy, Pry) is defined,and (ii) someS € S,

existswith 7, (.S). If by, is definedthenit is givenby:

P zpr'ESeSmm,(S) Pr.(S)
Sh ={{seS|skEw}|SES,, 7, (9)}
Pri(S") =B~ .Y sc s, nos), Pre(S) (VS €Sh).

Pro S lses s = w}
4 REASONING AND PLANNING IN PC+

We now shaw at the examplesof prediction, postdiction,
andplanning[18, 12, 7] how importantproblemsin prob-
abilistic reasoningaboutactionscanbe formulatedin our
framework of PC+. We definethemin termsof proba-
bilities of historiesin PC+. Recall that the probability
of a history h, denotedPr(h), is definedas p,, where
br = (pn, Sk, Pry) is thebelief statefor h.

4.1 PREDICTION

We considetthefollowing probabilistic prediction(or also
probabilistic tempoal projection) problem: Computethe
probability that a sequencer of actionsand obsenations
is certainly possible giventhatanothersequence’ of ac-
tions andobsenationshasoccurred.Here,the probability
thato is certainlypossibleaftero’ is thetight lower bound
for the probability that o is possibleaftero’. We now de-
fine this probability in termsof probabilitiesof histories.
Notethatfurthersemanticallyneaningfulprobabilitiescan
be definedin a similar way, for example,the probability
that o may be possibleafter ¢’, which is the tight upper
boundfor the probabilitythato is possibleaftero’.
Definition 4.1 Leto =o01,...,0, ando’ =01, ..., 0}, be
sequence®f actionsand obsenations. The probability
that o is certainly possible denotedPred(e > o), is de-
finedasPr(Ooy, . . .,0o0y,). Theprobabilitythats is cer
tainly possibleafter o', denotedPred (o’ v o), is definedas
Pr(¢oy,...,00,,001,...,00,) / Pr(Cot,...,00).

Proposition4.2 Leta=au,aa, . .., a, (resp.wi,wa, . . .,
wp) be a sequenceof actions (resp., observations),and
let  and1y beobservationsThen,

e Pred(e > ¢,a,1) is the probability that ¢ certainly
holdsinitially, that o cancertainlybeexecutedandthats)
certainlyholdsafter that.

e Pred(¢ > a,1)) is the probability that o can certainly
be executed and that then«) certainly holds, giventhat ¢
is observednitially.

e Pred(¢,a 1) istheprobabilitythat certainlyholds,
giveng is observednitially, anda hasbeenexecuted.

e Pred(e > ¢,q1,wr,Q2,ws,...,0,,wy) IS the prob-
ability that ¢ certainly holds initially, that a= a1, as,
..., ay can certainly be executed,and that then wy, wo,
..., wn, respectivelycertainly hold.

Example 4.3 Let Dy and D be givenasin Example2.6.
Supposethat the robot r is initially at location a and
holdsno object. Moreover, assumehatthe two objectso;
and o2 areboth at locationb. Then, the probability that
the robotr cancertainly move to b, cancertainly pickup
an object, and can certainly move to ¢, andthat then at
leastoneobjectis certainlyatlocationc is givenby 0.855:
Leto = at(r) =aAat(o1) =bAat(o2) =bA holds = nil,
a=goto(b), pickup, goto(c), andy=at(o1 )=cVat(o2)=c.
We thenhave Pred(¢ > a,1) =0.855, which is obtained
as follows (cf. Fig. 2.a). Obsenation ¢ leadsto a con-
text (0: Cat(o1), 0 Cat(0)) = (b, b) Of probability 0.8 - 0.6.
Action goto(b) thenyieldstwo contexts, 1 : ¢4 (b) = ok and
1:¢4(b) = fail of probabilities0.95 and0.05, respectiely.
Action pickup is only executablein 1:¢,(b) = ok, which
leadsto theemptycontext () of probability1. Finally, action
goto(c) yieldstwo contexts 3: ¢4 (c) = ok and3:cy(c) =



¢ - =024 (0-10:6=0.08 (erb) T (o)
gota(b) 005 »\0.05 0957 005
) Lie g(b)=tail! Lieg(b)=ok|  Lieg(b)=fail} Licg(b)=ok Licy(b)=fail
prkup wi @E 05

goto(c) : o ‘ 09/ “o1 09’ o1 09/ TNo1
" 3icl(H=ok  3ic,lc)=fail Bege)mok ieg(e) fail Sicg(c) ok Sieg(c)fail 3 (c)mok Sog(c)=fail Seg(c)=ok 3eg(c)=fal

(a) Prediction

(b) Postdiction

Figure2: Evolving Contexts'

fail of probabilities0.9 and 0.1, respectiely; in the for-
mer, ¢ is truein all statesput notin thelatter In summary
Pred(¢ > a,v) = Pr(C¢, Oa, 0¢) / Pr(C¢) = (0.8-0.6 -
0.95-0.9) / (0.8-0.6) =0.855.

The probability that at leastone objectis certainly at lo-
cationc afterr movedto b, picked up an object,andthen
movedto c is givenby Pred (¢, a > 1) =0.9.

The probability that » can certainly move to b, can cer
tainly pickup an object,and cancertainly move to ¢, and
that then object o, is certainly at location ¢ is given by
Pred(¢ > a,1') =0, wherey' = at(o1)=c, asin noemeg-
ing contet, ¢’ is truein all states. Indeed,in the worst
casey mightpick up oo andcarryit to ¢. Thus,the prob-
ability thato, is atc after ¢, maybe0. In contrastjf we
have a probability distribution for pickup, then Pred (¢ >
a,y") >0, if r picksup o; with a positive probability.

Finally, supposehat objecto, is initially at eithera or b,
ratherthanat b. Hence,considernow ¢’ = at(r)=a A
at(o1) =bA(at(o2) =aV at(oz) =b) A holds = nil, which
is wealer than ¢. We then obtain Pred(¢' > a,v) =
Pred(¢ > a,) and Pred(¢' > a,v') > Pred(¢ > a,9").
Here, we have a positive probability, sincethereexists a
combinedcontext of positive probability that satisfies¢’,
whereobjecto, is absenfrom b, which makes pickup de-
terministic,andthuso; is certainlycarriedto c.

4.2 POSTDICTION

Informally, the probabilistic postdiction (or also proba-
bilistic explanatior) problemthatwe considetherecanbe
formulatedasfollows: Computethe probabilitythatobser
vationswerecertainlyholding alonga sequencef actions
andobsenationsy thatactuallyhappened.

Definition 4.4 Let v, be a sequenceof actionsand ob-
senations, and let v, resultfrom v, by removing some
obsenations. Then, the probability that v» certainly oc-
curredif v; hasoccurreddenotedPost(v2|v4 ), is defined
asPr(vh) | Pr(vy), wherevy andy; resultfrom v, andy,
respectiely, by labelingremoved obsenationsin v, with
O andall otheractionsandobsenrationswith <.

Proposition4.5 Leta=ay,aa, . .., a, (resp.wi,wa, . ..,
wp) bea sequencef actions(resp.,observations)y=ay,

W1, g, Wa, - . ., 0y, Wy, aNd ¢, 1 beobservationsThen,

o Post(¢,a,1|a,) is the probability that ¢ certainly
heldinitially, givena wasexecutedand wasobserved.

e Post(¢,v|v) is the probability that ¢ was certainly
holding initially, givena;, as, . .., a, wasexecuted,and
w1, ws, - - . ,wn, respectivelywasobservedfter that.

o Post(¢,v|a) is the probability that ¢ was certainly
holdinginitially, andws , ws, - . . , w, Wascertainly holding
afterayg, ao, .. ., a,, respectivelygivena wasexecuted.

Example 4.6 Let Dy and D be givenasin Example2.6.
Supposéhatthe robotr movedto b, picked up anobject,
andthenmovedto ¢, andthatthe objecto; wasobsened
at ¢ after that. Then, the probability that the object o,
wascertainlyatb in theinitial situationis givenby 0.923:
Consider = goto(b), pickup, goto(c), v = at(01)=c, and
¢ =at(o1)=b. We thenhave Post(¢, a,|a, 1)) =0.923,
whichis obtainedasfollows: Eachof the 9 initial contexts,
given by the value pairsfor (0:cat(o,), 0:Cat(0s)), EXCEPL
(¢, ¢) admitsexecutionof « resultingin a context in which
1) is obsenable. In detall, (b, a), (b,b), (b,c), and(c,b)
can be extendedby 1:¢,(b) =0k, 0, and 3:¢4(c) = ok,
and (a,a), (a,b), (a,c), and (c,a) by 1:¢4(b) = fail, 0,
3:¢y(c) = ok (cf. Fig. 2.b). Letvy = o, andvy = ¢, , 9.
Then,Pr(v;y) = (0.24 4+ 0.48 + 0.08 + 0.06) - 0.95- 0.9+
(0.034+0.06+0.01+0.03)-0.05-0.9 = 0.741 andPr(v}) =
(0.24 + 0.48 + 0.08) - 0.95 - 0.9 = 0.684, as¢ only holds
in (b,a), (b,b), and(b,c). Hence,Post(¢, o, | a, 1) =
Pr(vy)/ Pr(vy) = 0.923. Notethatif at(r) # b would be
obsened after goto(b) in «, thenwe could concludethat
initially ¢ hasthe probability0, whichis intuitive.

4.3 PLANNING

We now formulatethe notionsof a (sequential)plan and
of its goodnesgor reachinga goalobsenationgiventhata
sequencef actionsandobsenationshasoccurred.

Definition 4.7 Letv beasequencef actionsandobsena-
tionsandiy anobsenation. The sequenc®f actionsa =
ai,...,a, is a plan of goodnesg for «) after v hasoc-
curred, denotedPlan(v; a; ) = g, iff Pred(v > a,1) =g.

Pairs(z, y) areshortfor (0 : Cat(01) 0% Cat(os))=(Z, y).



In the generalplanningproblemin our framework, we are
then given a sequencef actionsand obsenationsy that
hasoccurreda goalobsenation, andathresholdd, and
we wantto computea plana suchthat Plan (v; a; 1) > 6.

Example4.8 Let Dy and D be asin Example2.6. Let
¢ = at(r)=a A at(o1)=bAat(o2)=bandy = at(o1)=cV
at(o2)=c. Then,a = goto(b), pickup, goto(c) is a plan of
goodnes$.885 for ¢ giventhat¢ holdsinitially.

On the otherhand, Plan(¢; a; ¢') =0 for ¢’ = at(o1)=c,
sincer might (unpredictably)carry o2 to ¢ insteadof o;.
However, Plan (¢, a',v')=0.8852=0.731 for o/=a, drop,
goto(b), pickup, goto(c). Note that o' is optimal, since
moving twice to ¢ andto b is necessaryn general.

If pickup would be probabilisticand, e.g., obey the uni-
form distribution, then Plan(¢; «;¢') > 0 would hold. In-
deedtherewould beacontext ¢ afterexecutinga wherey
holdsin all its associatedtates A wrongpickup decreases
thesuccesprobability, whichis, however, still non-zero.

5 SUMMARY AND OUTLOOK

We have presentedhe probabilisticactionlanguagePC+,
which generalize€+ by probabilisticinformationinto an
expressve framework for dealingwith qualitatve aswell
asquantitatve uncertaintyaboutactions.lts formal seman-
ticsis definedin termsof probabilistictransitionshetween
setsof states We have thenshown that,usingthe concepts
of a historyandits belief state severalimportantproblems
in reasoningaboutactionscanbe conciselyexpressedn it.

In the extendedreport[4], we also provide a formulation
of conditionalplanningin PC+. Furthermorewe present
acompactepresentationf belief stateswhichis basedn
thenotionof acontext to encodepossiblesetsof statesand
we prove its correctnes# implementingbelief states.Fi-
nally, we alsodiscusshow to reduceprobabilisticreason-
ing aboutactionsin PC+ to reasoningin nonmonotonic
causaltheories[7], which is a steptowardsimplementa-
tion ontop of existing technologyfor nonmonotonicausal
theorieg(suchasthe CausalCalculator{14]).

An interestingtopic of future researchis to provide more
efficient algorithmsanda detailedcomplexity analysisfor
probabilisticreasoningaboutactionsin PC+ . Otherinter-
estingtopicsareto add coststo planningand conditional
planningandto definein our framework further seman-
tic notionslik e counterfctualsjnterventions actualcause,
andcausalexplanationstakinginspirationby similar con-
ceptsin the structural-modeapproactto causality[15, 9].
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